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Abstract—Small cell deployments have proven to be a cost-
effective solution to meet the ever growing capacity and coverage
requirements of mobile networks. While small cells are commonly
deployed indoors, more recently outdoor roll-outs have garnered
industry interest to complement existing macrocell infrastructure.
However, the problem of where and when to deploy these small
cells remains a challenge. In this paper, we investigate the small
base station (SBS) placement problem in high demand outdoor
environments. First, we propose a dynamic placement strategy
(DPS) that optimizes SBS deployment for two different network
objectives: 1) minimizing data delivery cost, and 2) minimizing
macrocell utilization. We formulate each problem as a mixed
integer linear program (MILP) that determines the optimal set
of deployment locations among the candidate hot-spots to meet
each network objective. Then we develop two greedy algorithms,
one for each objective, that achieve close to optimal MILP
performance. Our simulation results demonstrate that significant
delivery cost and MBS utilization reductions are possible by
incorporating the proposed deployment strategies.

Index Terms—Small base station deployment; heterogeneous
network design; traffic offloading; data delivery cost.

I. INTRODUCTION

In the last few years, global mobile data traffic has ex-

perienced at least a ten-fold growth according to Cisco’s

Global Visual Networking Index (VNI) [1]. This growth is

driven by the proliferation of data-intensive applications such

as high definition video streaming, social networking, and

online gaming. In addition to that, the number of smartphones

and Internet connected devices is growing exponentially and

currently exceeds the world’s population [1]. Therefore, cel-

lular operators have been searching extensively for solutions

to increase capacity and improve coverage to satisfy mobile

users, as well as to cope with this explosion in data traffic. As

improvements in radio link are approaching theoretical limits,

most cellular operators have established that the next perfor-

mance leap will stem from changing the network topology [2].

Using a mixture of macro base stations (MBSs) overlaid

with small cells is referred to as a Heterogeneous Network

(HetNet). HetNets are now considered a core part of the 3rd

Generation Partnership Project (3GPP) Long Term Evolution

(LTE) and LTE-Advanced [2] and enable a significant increase

in spectrum reuse per area [3].

A small cell is a cellular coverage area that is served by

low-power small base station (SBS) [4]. An SBS is a fully

featured mini base station that is typically intended for indoor

deployment and backhauled to the operator’s core network

(CN) via an Internet connection (such as DSL, cable, etc.) [4],

[5]. Small cell deployments include femtocells, picocells and

metrocells. Recently, however, several operators are starting

outdoor deployments [5], and recent research efforts have

proposed to deploy small cells in public transportation vehicles

including buses and streetcars [6]. SBSs can be used to

offer enhanced capacity at high demand areas (hot-spots) and

thereby offload traffic from macrocells [7] [8]. Due to their

potential benefits, small cell deployments have generated sig-

nificant interest in the mobile industry and academia/research

bodies. In fact, the total number of already deployed small

cells has exceeded the total number of macrocells [5].

Adopting small cells generates two significant challenges.

First, an exhaustive deployment of SBS in all regions of

interest (especially outdoors) is an overkill since not all regions

necessitate an SBS deployment to meet its demands. Second,

given a restrictive deployment strategy (i.e. with a cap on

the total number of SBSs to deploy), we are faced with the

challenge of where to deploy them to maximize the operator

deployment objectives. One objective for example may be to

minimize the total cost of service delivery, whereas another

may be to minimize the resources/power consumed at the

MBSs. Therefore, effective SBS deployment strategies are

needed in order to realize the potential benefits of HetNets.

In this paper, we study the problem of optimizing SBS

placement in high-traffic urban environments to complement

macrocells serving outdoor users. We optimize SBS deploy-

ment for two different objectives 1) minimizing delivery cost,

and 2) minimizing macrocell utilization. In our solutions

we incorporate information of the requested and achievable

rates at each candidate site, in addition to other deployment

constraints. Our main contributions in this paper are:

• We propose a Dynamic Placement Strategy (DPS) for

SBS deployment that exploits knowledge of traffic de-

mand and achievable throughput at the candidate sites

(hot-spots). Two DPS problems are formulated as mixed

integer linear programs (MILP) for the different de-

ployment objectives. These MILPs provide benchmark

solutions for the DPS problem.

• We propose two greedy algorithms for the formulated

DPS problems. Extensive simulations indicate that the

algorithms achieve close to optimal results compared to

the DPS MILP-based benchmark solutions.



As a result of the proposed dynamic placement strategies, the

overall mobile user experience is enhanced while minimizing

the additional associated costs.

The remainder of this paper is outlined as follows. Section

II overviews the related work. In Section III, we describe our

system model and elaborate on the link and traffic models.

The proposed DPS MILP formulations and the corresponding

greedy algorithms are developed in Section IV. The perfor-

mance evaluation is elaborated upon in Section V, and we

conclude this work in Section VI.

II. RELATED WORK

Small cell deployments are gaining high interest in industry

and academia due to their diverse benefits. The authors of [9]

studied the performance of co-channel LTE-Advanced HetNets

and their results show that there is a significant increase in the

network capacity when pico-cells are deployed. Similarly, the

work in [10] presents a simple study of an LTE scenario

with one MBS and one pico BS to demonstrate that picocells

are able to increase network capacity and reduce power

consumption.

Although there are many research efforts addressing the

benefits of small cell deployments, works targeting SBS place-
ment optimization for LTE outdoor scenarios remain limited.

Among the works addressing indoor optimal deployment of

small cells are [11] and [12]. In [11], I. Ahmed et al.
propose a genetic placement algorithm for airport environ-

ments to serve traffic demand and minimize outage and

power consumption. On the other hand, the work presented

in [12] studies the femtocell placement problem in commercial

buildings. The objective is to minimize the power consumption

of user equipment (UE) while covering all areas in a building.

The work in [13] is closest to our work. The authors propose

a sampling based optimization method for 3rd Generation

(3G) small cell deployments. SBSs deployment is optimized

with the objective of maximizing UEs throughput. As opposed

to [13] which focuses on UE throughput, we discuss the

problem of optimizing deployment to achieve network-wide

objectives. We formulate placement strategies that 1) minimize

the service delivery cost (by maximizing the offloaded traffic),

Macrocell MBS
(eNB) Hot-Spots

Fig. 1. An instance of the considered network.

TABLE I
SUMMARY OF IMPORTANT SYMBOLS

Symbol Description

i Candidate site index i = {1, 2, . . . , C}
j eNB index j = {1, 2, . . . ,M}
C Set of candidate sites

M Set of eNBs in the network

N Total number of SBSs that can be deployed

xi The fraction of BS air-time allocated to candidate site i

si Indicator variable representing SBS installation at candi-
date site i

Di Demand at candidate site i [Mbps]

Ri Achievable throughput at candidate site i [Mbps]

Uj Set of indices of candidate cites in the coverage area of
macrocell j

and 2) minimize MBS utilization, thereby providing more

resources for additional services in the macrocell.

III. SYSTEM OVERVIEW

In this section, we present the notations used in this paper,

as well as our network and traffic models.

A. Notations

We use the following notational conventions: X denotes a

set and its cardinality |X| is denoted by X . �x is used to denote

vectors, e.g., �x = (xa : a ∈ A). The frequently used symbols

are summarized in Table 1.

B. Network Model

An instance of our network model is represented in Fig.

1. The indicated hot-spots are of concern to mobile operators

due to the constant high demand in these geographical regions.

In this paper, we optimize the SBSs placement among these

candidate sites based on the network objective. We consider

downlink (DL) transmission in the LTE HetNet that consists

of a set of MBSs, or evolved Node B (eNBs), denoted by

the set M = {1, 2, . . . ,M}. The candidate sites where SBSs

can be deployed are denoted by the set C = {1, 2, . . . , C}. An

arbitrary eNB is denoted by j ∈ M and a candidate site by

i ∈ C. We define the set Uj which contains the indices of all

the candidate sites that are in the coverage area of eNB j.

We assume that eNBs and small cells operate on different

dedicated frequency carriers [14] [15] in order to neglect the

frequency interference between the two tiers. For the sake of

simplicity we also assume that there is enough distance be-

tween each candidate site and the others to eliminate frequency

interference between small cells. Finally, at each candidate site

a backhaul and power source can be set-up to facilitate the

deployment.

C. Link and Traffic Models

We denote the requested peak traffic demand at each can-

didate site i as Di [Mbps], where �D = (Di : i ∈ C). It is

assumed that this demand is known based on service provider

network monitoring tools. To determine the average path loss



at each candidate site, we consider the following path loss

model:

PLi(di) = 128.1 + 37.6 log10 di (1)

where di is the distance in km between the center of candidate

site i and its associate eNB (i.e. the closest macrocell).

Hence, the achievable throughput at each candidate site can be

approximated using Shannon’s capacity equation with signal-

to-noise ratio (SNR) clipping at 20dB for practical modulation

orders as follows:

Ri = B log2(1 + P rx
i /N0B) (2)

where Ri is the data rate at candidate site i, B is the eNB

bandwidth, P rx
i is the received power at site i (computed using

the PL model of (1)), and N0 is the background noise power

spectral density. Therefore, the vector of achievable rates at

each candidate site is denoted by �R = (Ri : i ∈ C).
Each MBS j can use its air-time to serve the macro-

cell traffic and the traffic demanded at the candidate sites

(hot-spots). The fraction of air-time during 1 second that is

required to serve the macrocell users (not in the hot-spots)

is denoted by Bj ; which is assumed to be known based on

network monitoring tools. This will provide a remaining air-

time fraction of 1−Bj to serve the different hot-spots.

IV. SMALL CELL DYNAMIC PLACEMENT STRATEGIES

The main objective of this work is to determine the optimal

locations to deploy a limited number of SBSs among a set of

candidate hot-spots in a network of macrocells. We have two

network goals: 1) to minimize the service delivery cost and 2)

to minimize the macrocell resources consumed. Toward this

end, we propose dynamic placement strategies which are first

formulated as two Mixed Integer Linear Programs (MILPs) to

provide benchmark solutions. Then, we develop two greedy

algorithms for each network objective that achieve close to

optimal performance.

A. Decision Variables

We introduce a decision variable si to indicate if a SBS

will be installed at candidate site i. Therefore si is defined as

follows:

si =

{
1, if a SBS is deployed at candidate site i

0, otherwise.
(3)

We also define an air-time decision variable xi which

represents the fraction of BS air-time (during 1 second) that is

allocated to candidate site i. Since the achievable throughput

at site i is Ri [Mbps], the transmitted data during 1 second

will be xiRi.

B. DPS: Optimal Problem Formulations

1) DPS-Minimizing Delivery Cost (DPS-MinCost): The

objective of DPS-MinCost formulation is to minimize the

data delivery cost of network traffic. Using the optimiza-

tion variables defined in Section IV-A, the total data de-

livered per second through the MBSs can be expressed as

∑M
j=1

∑
∀i∈Uj

xiRi; whereas the total data delivered per

second through the SBSs is
∑C

i=1 siDi. Note that it is assumed

that the SBS backhaul is larger than the demanded traffic at

each site, i.e. larger than max(Di). The cost of delivering

the data is assumed to be proportional to the amount of data

transmitted, with the delivery cost through SBSs expressed

as a fraction of the cost through MBSs as presented in [16]

and [17]. We denote this factor by γ, where common values for

γ are 3−5. With these definitions, the DPS-MinCost problem

can be formulated as:

minimize
�x,�s

⎛
⎝ M∑

j=1

∑
∀i∈Uj

xiRi +

C∑
i=1

siDi/γ

⎞
⎠ (4)

subject to: C1:

C∑
i=1

si ≤ N,

C2:
∑

∀i∈Uj

xi ≤ 1−Bj , ∀ j ∈ M,

C3: xiRi + siDi ≥ Di, ∀ i ∈ C,

C4: 0 ≤ xi ≤ 1, si ∈ {0, 1}.
The objective function minimizes the delivery cost by deploy-

ing SBSs in hot-spots with high demands. Note that this is

also equivalent to maximizing the amount of offloaded traffic,

i.e. traffic delivered through the SBSs. Constraint C1 ensures

that the total number of deployed SBSs is less or equal to

the maximum number of SBSs that the operator can deploy,

which is denoted by N . Constraint C2 limits the allocated air-

time to all SBS served by MBS j to 1−Bj , where Bj is the

air-time used for the MBS traffic. The purpose of Constraint

C3 is to ensure that each candidate site receives its requested

demand. As indicated in the constraint, this can come from

either the MBS or the deployed SBS. Finally, C4 defines the

domain of the decision variables. By solving (4) the optimal

subset of candidate sites will be selected for deployment, and

the remaining hot-spots will be served by the MBSs.

2) DPS-Minimizing MBS Utilization (DPS-MinUtil): The

formulation in (4) minimizes the data delivery cost, but does

not necessarily minimize the load at the macro-cell. This may

be another objective, where lower macrocell load corresponds

to less downlink power consumption, or more resources for

other services. In order minimize MBS resource utilization,

the sites that require significant MBS air-time will be selected

for deployment. The emphasis here is the ratio between the

demand and the achievable rate for each site, i.e. Di/Ri.

Therefore, a site with a moderate demand maybe selected for

deployment if it has a low Ri (indicating that it is located

at the cell edge). The DPS-MinUtil problem can therefore be

formulated as the following MILP:

minimize

C∑
i=1

xi (5)

subject to: C1 to C4.



Here, the objective is to minimize the sum air-time fractions

allocated to serve the SBSs in the network of M MBSs,

and similar resource and service constraints hold as in (4).

The solution to (5) will determine the optimal subset of

candidate sites that minimize the total load of the MBSs. The

preceding MILPs provide a solution benchmark but require

an optimization solver to generate the results. We therefore

present the following corresponding greedy algorithms that

achieve close to optimal performance.

C. DPS Greedy Algorithms

1) Greedy DPS-MinCost Algorithm: The Greedy DPS-

MinCost algorithm is represented in Algorithm 1. The algo-

rithm’s objective is to minimize delivery cost of mobile traffic,

similar to the DPS-MinCost formulation. The DPS-MinCost

algorithm is divided into three stages. The first stage is the pre-

selection process (indicated in lines 4-9) where the constraint

violating candidate site(s) are included in a pre-selected set.

Violating candidate site(s) are the sites that if not considered

in the SBS deployment solution S, will either overload the

macrocell resources (C2) or violate the demand satisfaction

constraint (C3). The second stage, represented by lines 10-

11, continues the selection process of candidate site(s) based

on their demands, where the ones with the highest demands

are considered first. The third stage, represented by lines 12-

15, checks if the resulting candidate site(s) selection S will

not cause an overload to the macrocell resources. If any of

the macrocells is overloaded (i.e. air-time consumed ≥ 1),

the algorithm will re-select other candidate site(s) within the

problematic macrocell to resolve the overloading issue. Similar

to the second stage, the re-selection process in the third stage

is conducted based on the demand. The rest of the algorithm

checks if there is a feasible SBS deployment solution after ap-

plying the aforementioned stages. If so, the algorithm returns

the viable solution. If not, the highest demand candidate site

in the violating macrocell will be added to the pre-selection

set and the algorithm re-performs the aforementioned stages.

2) Greedy DPS-MinUtil Algorithm: The Greedy DPS-

MinUtil algorithm, represented in Algorithm 2, aims to mini-

mize macrocells utilization in the network, i.e. similar to the

DPS-MinUtil formulation. As in algorithm 1, the Greedy DPS-

MinUtil algorithm has a pre-selection stage (indicated in lines

4-9) where all the violating candidate site(s) are included in a

pre-selection set. Unlike algorithm 1, where the remaining can-

didate site(s) are chosen based on their demands, the Greedy

DPS-MinUtil algorithm selects the remaining candidate site(s)

based on their fraction of air-time, as indicated in lines 10-11.

If the resulting SBS deployment solution does not violate the

air-time constraints (as indicated in line 12), the solution is

returned as feasible.

V. PERFORMANCE EVALUATION

In this section we present the numerical results that demon-

strate the potential of the proposed deployment strategies. We

also compare the results of the proposed algorithms to the

benchmark MILP results.

Algorithm 1 Greedy DPS-MinCost

1. Input: M, C, �D, �R, N , Uj

2. Output: S {deployment set}

3. Initial phase: no deployment solution

4. for j = 1 to M do
5. check for deployment constraints C2, C3 and C4 in all

candidate sites in Uj

6. if candidate site(s) i violates any constraint then
7. site(s) i are added to the pre-selection set P

8. end if
9. end for

10. S = P

11. update S to include N − |P| additional site that have the

highest demand

12. for j = 1 to M do
13. check MBS j for the violation of deployment con-

straints; reallocate SBS(s) on that macrocell j based

on its candidate site(s) demands Di while considering

the needed air-time to match the demand

14. update S based the reallocation process

15. end for
16. if a deployment violation still persist then
17. add the highest demand candidate site(s) i from violat-

ing macrocell j to the set P

18. if |P| ≤ N then
19. restart Algorithm 1

20. end if
21. else
22. return S as valid deployment solution

23. end if
24. return no feasible solution found

Algorithm 2 Greedy DPS-MinUtil

1: Input: M, C, �D, �R, N , Uj

2: Output: S {deployment set}

3: Initial phase: no deployment solution

4: for j = 1 to M do
5: check for deployment constraints C2, C3 and C4 in all

candidate sites in Uj

6: if candidate site(s) i violates any constraint then
7: site(s) i are added to the pre-selection set P

8: end if
9: end for

10: S = P

11: update S to include N−|P| candidate sites with the highest

xi

12: if
∑

∀i∈Uj
xi > 1−Bj ∀j then

13: Return S as the valid deployment solution

14: else
15: return no feasible solution found

16: end if

A. Evaluation Setup
We consider a network with 7 MBSs (or eNBs) and 30

hot-spots (candidate sites). Each eNB has a 0.5 km radius,



TABLE II
SUMMARY OF IMPORTANT PARAMETERS

Parameter Value

C 30 candidate sites

M 7 MBSs

N Varied between 12 and 30

Path loss According to (1)

eNB total transmission power 40W

eNB inter-site distance 1000m

Background MBS traffic air-time Uniformly distributed over [0 0.5]

Candidate site demand Di Uniformly distributed over [1 16]
[Mbps]

a transmit power of 40W and a transmission bandwidth of

10MHz. The locations of the candidate sites are randomly

selected within the macrocells and the traffic demand Di
is randomly generated with a uniform distributed over the

interval [1 16] Mbps. A summary of the simulation parameters

is provided in Table II. We use MATLAB as s simulation

platform and Gurobi Optimization [18] to solve the DPS

MILPs. Simulation experiments are repeated 100 times to

obtain the average values of following metrics:

• Normalized total cost: the total delivery cost of data in

the network, where 1 Mbps costs 1 cost unit through the

MBSs and 1/5 units through the SBSs (i.e. γ=5).

• Macrocell offloaded traffic: the percentage of the total

network traffic that is offloaded to the SBSs.

• Macrocell resource utilization: the fraction of the MBS

air-time consumed for data delivery.

Note that for a given value of maximum SBS deployments

(N ), it may not be possible to find a viable deployment

solution that satisfies all the site demands �D, i.e. Constraint

C3 in (4). This occurs for instances where N is small and

the sites have high data demands. We quantify the percentage

of successful SBS deployment solutions for a given N in a

deployment success rate metric.

B. Results

Fig. 2 shows the normalized data delivery cost for a vary-

ing number of SBS installations N . As expected, the cost

decreases with increasing N for all the DPS approaches. This

is because delivery through SBSs is lower by the factor γ
compared to delivery via MBSs. We also observe that the DPS-

MinCost approach achieves a lower cost compared to the DPS-

MinUtil approach, but converges as N increases. The reason

is that with many SBSs available for deployment, both DPS

approaches will have a large overlap in the selected SBSs, and

the cost difference will diminish. At N = 30, all the SBSs

will be selected for installation since C = 30. This is also

apparent in Fig. 3 which illustrates the macrocell offloaded

traffic percentage, where at N = 30 all the traffic is offloaded

to SBSs. From Fig. 3 we also observe that the lower cost

is associated with more traffic being offloaded to the SBSs,

which is in agreement with the discussion in Section IV-B1.

Figures 2 and 3 also demonstrate how the greedy MinCost and

MinUtil algorithms achieve close to optimal results.

In order to investigate the effectiveness of the DPS-MinUtil

approach we plot the macrocell utilization fraction in Fig. 4.

As indicated, the DPS-MinUtil optimal and algorithm results

consume less MBS resources. This is in spite of a higher data

delivery cost as illustrated in Fig. 2. Therefore, although the

macro-cells are less loaded, the overall delivery cost is higher.

The reason for this is that a hot-spot that is near the macrocell

may have a high traffic demand that can be served with low

air-time, and therefore a SBS will not be deployed in this site.

This will translate to more data transmitted through the MBS

core network, and therefore increase the delivery cost. In future

work, we plan to investigate composite objective functions that

consider the mutual effect of minimizing delivery cost and

MBS resource consumption.

Finally, in Fig. 5 we illustrate the deployment success rates

for the DPS MILPs and the DPS algorithms. Although we have

seen that the algorithms have close to optimal performance,

Fig. 5 indicates that they have a considerably lower success

rate for medium values of N . This implies that there are cases

with viable SBS deployment solutions which the algorithms

are not able to generate. This is due to the limited search scope
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of the algorithms to the violating macrocell. On the other hand,

the DPS MILPs extend their search scope beyond the violating

macrocells, even if this means having a deployment solution

with a reduced performance. Therefore, another direction for

future work is to implement additional iterative subroutines in

the algorithms before ending the search procedure.

VI. CONCLUSION

In this paper, we investigated the small base station place-

ment problem in high demand outdoor environments with the

objectives of minimizing data delivery cost and macrocell

resource utilization. We proposed two dynamic placement

strategies that account for the resource and service constraints,

and formulated them as MILP optimization problems. We

then developed two greedy algorithms that achieve close to

optimal performance albeit with a lower solution success rate.

A detailed performance evaluation of the proposed deploy-

ment strategies was conducted, and the trade-offs between

delivery cost and MBS utilization were discussed. Our results

demonstrate that significant delivery cost and MBS utilization

reductions are possible by incorporating the proposed SBS

deployment strategies. At higher loads, it is recommended

to pursue a DPS that minimizes MBS utilization to allow

the MBS to serve additional users if needed. On the other

hand, a DPS that minimizes delivery cost is operationally more

efficient at lower loads, without violating site demands. Future

work includes investigating composite deployment objective

functions and network power consumption reduction.
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