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ABSTRACT
Motivation: Identifying single nucleotide polymorphisms (SNPs) that
underlie common and complex human diseases, such as cancer, is
of major interest in current molecular epidemiology. Nevertheless,
the tremendous number of SNPs on the human genome requires
computational methods for prioritizing SNPs according to their
potentially deleterious effects to human health, and as such, for
expediting genotyping and analysis. As of yet, little has been done
to quantitatively assess the possible deleterious effects of SNPs for
effective association studies.
Results: We propose a new integrative scoring system for prioritizing
SNPs based on their possible deleterious effects within a probabilistic
framework. We applied our system to 580 disease-susceptibility
genes obtained from the OMIM (Online Mendelian Inheritance in
Man) database, which is one of the most widely-used databases
of human genes and genetic disorders. The scoring results clearly
show that the distribution of the functional significance (FS) scores
for already known disease-related SNPs is significantly different from
that of neutral SNPs. In addition, we summarize distinct features
of potentially deleterious SNPs based on their FS score, such
as functional genomic regions where they occur or bio-molecular
functions that they mainly affect. We also demonstrate, through a
comparative study, that our system improves upon other function-
assessment systems for SNPs, by assigning significantly higher FS
scores to already known disease-related SNPs than to neutral SNPs.
Supplementary Material: http://compbio.cs.queensu.ca/RankingSN
Ps/default.html.
Contact: {lee,shatkay}@cs.queensu.ca

1 INTRODUCTION
Much effort in current epidemiology, medicine, and phamarco-
genomics is focused on the identification of genetic variations
that are involved in common and complex diseases. In particular,
single nucleotide polymorphisms (SNPs), which are substitutions
of single nucleotides at specific positions on the genome occurring
in more than 1% of the human population, are at the forefront
of such studies, as they are the most common form of genetic
variations on the genome. Knowledge of disease-causing SNPs
is expected to enable early diagnosis, effective treatment, and
ultimately, prevention of target disease.
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Typically, the first step toward identifying causal SNPs for
common and complex human diseases, involves association studies.
However, due to the tremendous number of SNPs on the human
genome, estimated at over ten million (Sherry et al., 2001), there is
a clear need to prioritize SNPs based on their potential deleterious
functional effects (Bhatti et al., 2006). For instance, SNPs occurring
in functional genomic regions such as protein coding or regulatory
regions are more likely to have deleterious effects, and, as such,
more likely to underlie disease. By focusing on a small number of
these functionally significant SNPs that are likely to be involved in
disease, a substantial amount of genotyping and analysis overhead
can be reduced.

To pursue this aim, a variety of web services and public databases
have been recently introduced to prioritize SNPs by their putative
deleterious effects on major bio-molecular functions (for review,
see Rebbeck et al. (2004)). These tools examine the functional
category of genomic regions where each SNP occurs, such as
exons, splice sites, or transcription regulatory sites, and predict
the potential corresponding functional effects that the SNP may
have, using a variety of machine-learning approaches. These
computational methods, along with other tools in molecular genetics
and epidemiology, are expected to enhance the identification of
SNPs underling human diseases (Rebbeck et al., 2004).

Yet, such tools and systems, which prioritize functionally
significant SNPs, still suffer from two main limitations. First, most
systems examine the putative deleterious effects of SNPs with
respect to only a single biological function, such as protein coding
or splicing regulation (but not both). Thus, to comprehensively
analyze the functional significance of SNPs, researchers must
spend much time and effort to separately apply multiple tools, and
interpret/integrate their (often conflicting) predictions.

Second, while many systems classify SNPs into qualitatively
distinct groups (e.g., ’deleterious’ vs. ’neutral’), few systems
numerically score or rank SNPs according to their functional
significance. Budget considerations often force researchers to select
a limited number of SNPs on the target genomic region for
conducting association studies. When the number of putatively
deleterious SNPs presented by current tools is larger than this pre-
specified limit, without additional ranking information, selecting
only some of them is not straightforward. As a result, researchers
must rely on other resources, such as the published literature, to
finalize their decision.

1© The Author (2009). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org

Associate Editor: Prof. Martin Bishop

 Bioinformatics Advance Access published February 19, 2009



Lee and Shaktay

To address these limitations, we propose a new integrative
scoring system for ranking SNPs based on their putative deleterious
effects. We aim to provide more comprehensive information
about the functional significance of SNPs. We thus assess the
deleterious effects of SNPs with respect to four major bio-
molecular functional categories: splicing, transcription, translation,
and post-translational modification. We attempt to overcome the
incompleteness and possible false findings of any individual
bioinformatics tool by combining the assessment results from
multiple independent prediction tools within a probabilistic
framework. Most significantly, we assign a specific numerical score
to each SNP, representing its putative deleterious effects. Using this
score, a limited subset of the most functionally significant SNPs can
be ranked and selected.

We applied our system to 112,949 SNPs located on 580 disease-
susceptibility genes obtained from the OMIM database. Consistent
with previous findings (Xu et al., 2005), our results show that splice
sites and exonic regions are most enriched for potentially deleterious
SNPs. We further demonstrate the utility of our scoring system by
showing that the functional significance score of known disease-
related SNPs from OMIM is significantly higher than the score
assigned to randomly selected neutral SNPs. We also show the
improved performance of our system through a comparative study
based on two evaluation measures. Finally, we discuss the impact of
our work, and outline directions for future research.

2 PROBLEM DEFINITION
We aim to quantitatively measure the potential deleterious effects of SNPs
on the bio-molecular function of their genomic region. For simplicity, we
refer to the assessed score as the functional significance (FS) score of each
SNP.

To formally define a scoring function for calculating the FS score, we
first introduce basic notations. Suppose that we are given p SNPs on the
target genomic region. Each SNP can be represented as a discrete random
variable, Xi (i = 1, .., p), whose possible values are the 4 nucleotides,
{a, c, g, t}. The true (and unknown) functional category of SNP Xi is then
represented by another discrete random variable Yi, whose value is 1 when
SNP Xi is deleterious and 0 otherwise. We note that we do not know the true
functional category Yi of SNP Xi in most cases. We thus estimate it using q
bioinformatics tools that predict, for each SNP Xi, the functional label (i.e.,
‘deleterious’ or ’neutral’) along four major bio-molecular functions: protein
coding, splicing regulation, transcriptional regulation, or post-translational
modification.

For each of the p SNPs and q tools, we define two random variables, δij

and Sij (i = 1, ..., p; j = 1, ..., q). The variable δij denotes the label
assigned to the ith SNP by the jth tool, that is, δij = 1 when the jth

tool predicts SNP Xi to be deleterious, and 0 otherwise. The variable Sij

represents the tool’s own confidence score with respect to the assigned label.
The higher the value of Sij , the more strongly the tool supports its own
prediction, δij . As different tools use different confidence scales, we define
another random variable, S̄ij , representing a normalized confidence score.
The normalization procedure is explained in Section 3.

We also define a random variable, Fjk , to indicate the bio-
molecular functions that each tool examines. We define the set F =
{‘protein coding’, ‘splicing regulation’, ‘transcriptional regulation’, ‘post-
translational modification’} consisting of the four bio-molecular functions
with which we are concerned. For each of the q tools and four bio-molecular
functions in F, a random variable Fjk (j = 1, ..., q, k ∈ F) is defined such
that its value is 1 when the jth tool examines the deleterious effects of SNPs
on function k, and 0 otherwise.

Last, for each tool, we define a continuous random variable TRj (j =
1, ..., q), corresponding to the tool reliability (TR) score for the jth tool.

Sij              Sij   :  R    (0, 1)
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Fig. 1. Outline of Our Assessment Process. In step I, we retrieve the
predicted functional labels of SNPs from integrated tools, along with their
confidence scores. In step II, we compute the tool reliability, and normalize
the confidence scores. In step III, we compute the functional significance
score of SNPs as stated in Definition 2.1.

This score represents how likely the tool is to correctly categorize SNPs
as deleterious. The computation procedure of the TR score is explained in
Section 3.

Based on the parameters TRj , Fjk , δij , and S̄ij , the functional
significance score of SNP Xi, denoted by FSi, is defined as follows:

Definition 2.1. Functional Significance (FS) score of SNP Xi

FSi
def
= max

k∈F

q∑
j=1

Fjk · TRj · (δij · S̄ij)

q∑
j=1

Fjk · TRj

.

That is, for each bio-molecular functional category k, we compute the
weighted average of the confidence of each prediction tool with respect to
the deleterious1 effect of the SNP, where the weight is the reliability score
of each tool. Note that although summation is done over all the tools (i.e.,
j = 1 to q, where q is the total number of tools, regardless of the bio-
molecular functional categories that they examine), Fjk allows only the
ones that examine the specific bio-molecular functional category k to be
considered. The maximum score, over all examined bio-molecular functions,
is then assigned as the FS score for the SNP.

3 METHODS
Our system conducts three main steps to calculate the FS score of SNPs,
as outlined in Figure 1. In step I, the functional labels for the SNPs (i.e.,
‘deleterious’ or ‘neutral’), predicted by q bioinformatics tools, are retrieved.
Confidence scores associated with these predictions are also retrieved, when
available. In step II-1, the reliability score of each tool is computed based on
its tendency to agree with other tools’ predictions. In step II-2, the confidence
scores, obtained in step I, are normalized to a value between 0 and 1, as
explained below. In step III, the FS score of SNPs is computed as shown in
Definition 2.1. We further describe each step below.

1 We note that by multiplying by δij , the confidence score of each tool is
counted only when the tool predicts the SNP to be deleterious.
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Fig. 2. The prediction flow-chart for four major bio-molecular functional categories. For the Protein Coding category, Ensembl (Hubbard et al., 2007) is used
to identify nonsense SNPs, and the web services, PolyPhen (Ramensky and Sunyaev, 2002), SIFT (Ng and Henikoff, 2001), SNPeffect (Reumers et al., 2005),
SNPs3D (Yue et al., 2006), LS-SNP (Karchin et al., 2005) are used to predict deleterious missense SNPs. For Splicing Regulation, Ensembl (Hubbard et al.,
2007) is used to identify SNPs in canonical splice sites, and ESEfinder (Cartegni et al., 2003), RescueESE (Yeo and Burge, 2004), ESRSearch (Fairbrother
et al., 2002), and PESX (Zhang et al., 2005) are used to examine SNPs in exonic splice sites. For Transcriptional Regulation, TFSearch (Akiyama, 1998),
ConSite (Sandelin et al., 2004), GoldenPath (Kuhn et al., 2007), Ensembl (Hubbard et al., 2007) are used to identify SNPs changing transcriptional regulatory
sites. For Post-Translational Modification, KinasePhos (Huang et al., 2005), OGPET (Gerken et al., 2004), and Sulfinator (Monigatti et al., 2002) are used.

STEP 1. Retrieving Predicted Labels and Scores
Given a set of p SNPs, {X1, ..., Xp}, we first retrieve their predicted
functional labels (i.e., ‘deleterious’ or ‘neutral’) and corresponding
confidence scores from 16 publicly available web services and databases,
as illustrated in Figure 2. We obtain the genomic location of each SNP
(e.g., exon, intron, splice site, 5’/3’ un-translated regions of a gene, or
directly upstream or downstream from a gene) from the dbSNP database
(build 126) (Sherry et al., 2001). According to the genomic location, each
SNP is examined for its possible deleterious effects with respect to the
corresponding bio-molecular functional category as follows:

• Protein Coding: SNPs in exonic regions may alter protein structure
and/or function by creating a new start or stop codon (i.e., nonsense
SNPs) or a deleterious amino acid substitution (i.e., missense SNPs);

• Splicing Regulation: SNPs in (canonical) splice sites may disrupt
splicing regulation, resulting in exon skipping or intron retention. SNPs
in exonic splice sites may interfere with alternative splicing regulation
by changing exonic splicing enhancers or silencers;

• Transcriptional Regulation: SNPs in transcription regulatory regions
(e.g., transcription factor binding sites, CpG islands, microRNAs, etc.)
can alter binding sites, and thus disrupt proper gene regulation;

• Post-Translational Modification: SNPs in protein coding regions may
alter post-translational modification sites, interfering with proper post-
translational modification.

As shown in Figure 2, the confidence scores for the SNPs that create a
new start or stop codon (i.e., nonsense SNPs) or the SNPs that occur in
the first two or in the last two bases of intronic splice sites (i.e., canonical
splice sites) are set to one. This is because their deleterious effects to
either Protein Coding or Splicing Regulation is unequivocal. Nonsense SNPs
lead to a premature termination of amino acid peptides, often resulting in
loss of protein function (Yamaguchi-Kabata et al., 2008). The change to
the canonical splice sites is also known to be detrimental as suggested by
the high selection pressure on the splice sites among mammalian genomes
(Burset et al., 2000). We note that other SNP prioritization studies (Bhatti
et al., 2006; Yuan et al., 2006; Xu et al., 2005) assign the highest rank or

score of functional impact to these two kinds of SNPs, as well. For the
remaining cases, the confidence scores are obtained from the tools that are
used to assess the corresponding bio-molecular functions.

STEP II-1. Computing Tool Reliability
The tool reliability score, TRj denotes how likely the jth tool is to correctly
predict deleterious SNPs (j = 1, ...q). We express the tool reliability score
using the conditional probability as defined below:

TRj
def
= Pr(Yi = 1 | δij = 1).

That is, for each tool j, we calculate the conditional probability of any
SNP Xi to actually be deleterious (Yi = 1) when the tool predicts so
(δij = 1). If the true labels of the SNPs, Y1, ..., Yp, are known, this score
can be statistically estimated. For example, using a maximum likelihood
approach, TRj can be estimated as the ratio between the number of correctly
predicted deleterious SNPs and the total number of SNPs predicted to be
deleterious by the tool. However, in most cases we do not know the true
functional categories of SNPs. We thus estimate the probability Pr(Yi =
1 | δij = 1) using the theoretical work proposed by Long and his colleagues
on classification (Long et al., 2005). When class labels are unknown, they
propose to estimate the prediction accuracy of a classifier based on the extent
to which the classifier tends to agree with other classifiers. They prove that
the conditional probability Pr(δij = 1 | Yi = 1) can be calculated in this
context as follows:

Pr(δij = 1 | Yi = 1) =

Pr(δij = 1) +

√
(1− Pr(Yi = 1))

Pr(Yi = 1)
· (ujm − uj · um) · (ujn − uj · un)

(umn − um · un)
,

(1)

where m and n represent the indices of any two distinct tools (m 6= n 6= j),
ujm

def
= Pr(δij = 1, δim = 1), and uj

def
= Pr(δij = 1). For the detailed

proof of Equation (1), we refer to the work by Long et al. (2005). Using
Bayes’ rule and Equation (1), we compute the tool reliability score of the
jth tool, TRj , as follows:
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TRj
def
= Pr(Yi = 1 | δij = 1) = (by Bayes

′
rule)

= Pr(δij = 1 | Yi = 1) · Pr(Yi = 1)

Pr(δij = 1)
= (by substituting Eq.(1) )

= Pr(Yi = 1) +

+

√
Pr(Yi = 1)

(1− Pr(Yi = 1))−1
· (ujm − uj · um) · (ujn − uj · un)

(umn − um · un)(uj)2
.

Note that we use the same uninformative priors, Pr(Yi = 1) and Pr(δij =
1) for all SNPs Xi, and as such, the tool reliability score is independent
of the SNP Xi. To estimate Pr(Yi = 1), which is the prior probability of
any SNP Xi to be deleterious, we take a conservative maximum likelihood
approach. That is, for each tool assessing the effect of a SNP on a specific
bio-molecular function, the fraction of SNPs that are unanimously predicted
to be deleterious by all the tools assessing the same function is used as an
estimate for Pr(Yi = 1), (1 ≤ i ≤ p).

STEP II-2. Normalizing Confidence Scores
To account for the fact that different tools use different scales to report their
confidence scores, we normalize the obtained confidence scores Sij to be
between 0 and 1 as follows:

S̄ij =
1

2
·

δij + (1− Cij) ·

(Sij −min
i

Sij)

(max
i

Sij −min
i

Sij)




where

{
Cij = 1 if Xi resides on a nonconserved regulatory site;
Cij = 0 otherwise,

and (1 ≤ i ≤ p; 1 ≤ j ≤ q). In principle, when SNP Xi is predicted
to be deleterious (i.e., δij = 1), the confidence score Sij is converted to
a value between 0.5 and 1; otherwise (i.e., δij = 0), Sij is converted to a
value between 0 and 0.5. We note that, for the SNPs occurring in regulatory
regions, we examine whether the SNP’s region is conserved across multiple
species (i.e., chimpanzee, dog, mouse, rat, chicken, zebrafish, and fugu) –
information that is obtained from GoldenPath (Kuhn et al., 2007) – to reduce
the effects of possible false-positive predictions. As is widely known, there is
a high rate of false positive findings of regulatory sites by in silico prediction
tools due to their relatively short length of DNA sequences (typically 6 to 10-
mers) (Zhang et al., 2003). Thus, when the predicted regulatory sites are not
within a conserved region, the confidence score for the SNPs in the region is
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Fig. 3. The distribution of FS scores for disease-related SNPs and for neutral
SNPs, assigned by our system. The X-axis represents the FS score for each
group of SNPs, binned into 10 equal intervals, while the Y-axis represents
the percentage of SNPs whose FS score corresponds to each bin.

set to 0.5, reflecting our uncertainty regarding the functionality of the region,
and the consequent, lack of confidence about potential deleterious effects of
SNPs on the function.

We also note that some prediction tools, such as SNPeffect (Reumers
et al., 2005) or LS-SNP (Karchin et al., 2005), do not provide confidence
scores. For these systems, we impute the confidence scores using the
confidence scores for the same SNP obtained from other tools. Suppose that
the jth tool, which examines the possible effects of SNP Xi on the bio-
molecular functional category k, does not provide a confidence score on its
prediction. Among the other tools that provide the confidence scores for the
same function k, let us denote the index of the tool whose tool reliability
score is highest as t. The imputed value is calculated as:

S̄ij = max

(
TRj

TRt
· Sit, 1

)
.

That is, when the jth tool is more reliable than the tth tool (i.e., TRj >
TRt), its confidence score would be imputed to be higher than that of the tth

tool, but not greater than one. Otherwise (i.e., TRj ≤ TRt), the confidence
score would stay the same or be reduced proportionally to the ratio of the
respective tool reliabilities.
STEP 3. Computing Functional Significance
Given the prediction results obtained in step I and the tool reliability and
normalized confidence scores computed in step II, the functional significance
(FS) score of SNP Xi is computed as stated earlier in Definition 2.1.

4 EXPERIMENTS AND RESULTS
We applied our method to 112,949 SNPs located on 580 disease-
susceptible genes for which the OMIM database references
the biomedical literature that report the existence of SNPs on
these genes that are either disease-causing or associated with
common disorders. The list of SNPs linked to the 580 genes,
along with their primary information (e.g., genomic location),
were downloaded from the dbSNP database (build 126) (Sherry
et al., 2001). The number of known disease-causing or disease-
associated SNPs on these 580 genes is 1,399 (the list was obtained
from ftp://ftp.ncbi.nih.gov/snp/database/organism data/human 9606/Omim-
VarLocusIdSNP.bcp.gz). The remaining 111,550 SNPs are not yet
identified to be related to disease. For simplicity, we refer to the
former set (of 1,399 SNPs) as disease-related SNPs, and the latter
set (of 111,550 SNPs) as neutral SNPs. We note, however, that
currently known disease-related SNPs can explain only a fraction
of the genetic basis of human disease, and as such, the latter
set of SNPs that are temporarily classified as neutral may include
functionally significant SNPs with deleterious effects that are not
yet identified.

In Section 4.1, we summarize the scoring results by our system for
all 112,949 SNPs, and show the distinguishing features of disease-
related SNPs compared to neutral SNPs. In Section 4.2, we further
validate that our integrative scoring system improves upon the state-
of-the-art when applied to the same set of SNPs.
4.1 Review of the Scoring Results
First, we examine the scores that our system assigns to disease-
related SNPs compared to neutral SNPs. Figure 3 shows the
distribution of the FS score for disease-related SNPs (shown on
the left) along with that of neutral SNPs (shown on the right). The
figure clearly shows that the distribution of the FS scores for disease-
related SNPs is significantly2 different from that of neutral SNPs

2 The difference is also statistically significant, with a p-value of practically
0, according to the Kolmogorov-Smirnov two-side test with α = 0.05
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Fig. 4. The distribution of low FS scoring vs. high FS scoring SNPs based
on functional genomic locations. The X-axis denotes 6 types of genomic
regions that are used in the decision procedure (shown in Figure 2), while
the Y-axis shows the percentage of SNPs whose FS scores are at least 0.5
(black bars) vs. the percentage of SNPs whose scores are lower than 0.5
(gray bars) on each region type.
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Fig. 5. The distribution of the assessed FS scores for exonic SNPs. The X-
axis represents the FS score for each group of SNPs, binned into 10 equal
intervals, while the Y-axis represents the percentage of SNPs whose FS score
corresponds to each bin.

on the same genes. In particular, the median FS score for neutral
SNPs is 0.1764, whereas, for disease-related SNPs, the median rises
to 0.5. Moreover, 48.39% of disease-related SNPs are assigned an
FS score greater than 0.5, whereas only 2.2% of neutral SNPs are
assigned such a high score.

Next, we examine the FS score distribution for SNPs based
on their functional genomic regions. Figure 4(a) shows, for each
genomic region, the percentage of high FS scoring vs. low FS
scoring neutral SNPs on the region. Figure 4(b) shows this score
distribution for disease-related SNPs. For clarity, the percentage is
displayed only up to 10%.
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Fig. 6. The distribution of bio-molecular functions affected by disease-
related exonic SNPs (shown on the left) and by neutral exonic SNPs (shown
on the right).

As shown in Figure 4(a), the majority of neutral SNPs are
located within intronic regions, and the FS score for most intronic
SNPs is lower than 0.5 (80.67%). A similar tendency is noted in
5’/3’ untranslated regions (UTR), in regions that are upstream or
downstream from genes, and in currently unspecified regions. In
contrast, despite the relatively smaller number of SNPs on splice
sites and on coding regions, these regions are enriched for high-
scoring putatively deleterious SNPs. That is, an FS score of at least
0.5 is assigned to all SNPs in canonical splice sites and to 46.07% of
the SNPs in coding regions. This scoring pattern is consistent with
previous findings that mutations in splice sites and coding regions
are likely to have direct impact on gene function (Yue et al., 2006;
Cartegni et al., 2003; Reumers et al., 2005).

Meanwhile, Figure 4(b) shows the FS score distribution for
disease-related SNPs as a function of their genomic regions. In
contrast to the case for neutral SNPs, shown above, most disease-
related SNPs are located within exons (94.21%). This is indeed
expected, as most association studies that validated these SNPs to
be disease-related, have focused on protein coding SNPs, whose
functional effects are relatively easy to pinpoint due to their direct
impact on protein products. Aside for the outstanding proportion of
exonic SNPs, disease-related SNPs show a similar scoring pattern
to that of neutral SNPs. Most SNPs on intronic, 5’/3’ UTR, and
up/downstream regions are assigned an FS score lower than 0.5, but
more than half of SNPs in exonic regions (53.04%) and all SNPs in
canonical splice sites are assigned an FS score of at least 0.5.

As is clear from the data shown above, most disease-related
SNPs are located on exons, while most (currently assigned) neutral
SNPs are located within introns. We thus need to examine whether
the difference in FS-score distributions between the two sets of
SNPs, shown in Figure 3, is an artifact of the difference in their
genomic region. Figure 5 shows the distribution of assigned FS
scores, this time only for 1,318 exonic SNPs that are already known
to be disease-related (shown on the left) and for 8,228 exonic SNPs
assumed to be neutral (shown on the right). As expected, the median
score for exonic SNPs is higher than that of SNPs in all regions,
both for disease-related SNPs and for neutral SNPs. Nevertheless,
still only 22.86% of neutral exonic SNPs are assigned an FS score
greater than 0.5, while the ratio rises to 56.30% for disease-related
exonic SNPs. The Kolmogorov-Smirnov test with 5% significance
level confirms that the two groups of exonic SNPs are unlikely to
share a common score distribution (p-value 1.30e-079).

Last, we examine what kinds of bio-molecular functions the
two groups of exonic SNPs mainly affect. Recall that SNPs in
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exonic regions may affect either Protein Coding, (exonic) Splicing
Regulation, or Post-Translational Modification (as summarized in
Figure 2), and we assign the maximum score over the three
functional categories to each exonic SNP as its final FS score (as
stated in Def. 2.1). We thus examine the proportion of the three bio-
molecular functions that are used to assign the final FS scores for
disease-related exonic SNPs and for neutral exonic SNPs. Figure 6
summarizes the results. In the case of disease-related SNPs, more
than half of the exonic SNPs affect Protein Coding, and about 37%
of the SNPs affect exonic Splicing Regulation. Conversely, only
8.48% of neutral exonic SNPs affect Protein Coding, while more
than two thirds of them affect (exonic) Splicing Regulation. In either
case, Post-Translational Modification seems to be a minor cause for
potential deleterious effects of SNPs.

4.2 A Comparative Study
To validate that our scoring system improves upon the state-of-
the-art, we compare our system with two public web-services that
numerically score deleterious effects of SNPs: SNPselector (Xu
et al., 2005) and FastSNP (Yuan et al., 2006). SNPselector provides
a numeric score for each SNP, called function score, which
designates the possible effects of SNPs on gene transcript structure
or on protein product. The score is a real number between 0.6
and 1.0; the higher the score is, the more deleterious the effects
of the SNPs are expected to be. FastSNP is another web-service
for SNP function analysis and prioritization. It assigns to each
SNP an integer score between 0 and 5, called risk rank, which
quantifies how likely the SNP is to have functional effects leading
to disease phenotypes. Last, as a baseline performance, we compute
the functional significance score of SNPs using a simple majority
vote. For example, when one third of the tools that examine the
deleterious effects of SNPs on protein coding predict the SNP to be
deleterious, a value of 1/3 is assigned as its FS score. Our scoring
scheme is distinguishable from this simple majority vote as it takes
into account the certainty of each prediction (through normalized
confidence-scores) as well as the reliability of each tool (through
tool-reliability-scores).

To compare the three scoring schemes to ours, we generated test
datasets using the following sampling procedure. For each disease-
related SNP Xi, one neutral SNP is selected uniformly at random in
the same functional region on the same gene as Xi. This selection
is done for all disease-related SNPs. As a result, a dataset of 1,399
SNP-pairs, one disease-related and one randomly selected neutral,
is generated. We repeat this procedure M times, generating M
test datasets (here, M=100). We note that, by limiting the random
selection to the same functional region on the same gene, we reduce

Table 1. The results of a comparative study based on two evaluation
measures, Higher Score and Paired T-Test.

EVALUATION MEASURE
SYSTEM Higher Score Paired T-Test (avg. p-value)

Our System 63.82 % 1.00 (0.00)

FastSNP 61.15 % 1.00 (3.61e-127)

SNPselector 55.39 % 1.00 (6.91e-125)

Simple Majority Vote 45.42 % 0.93 (0.01)

the bias that may arise due to the differences in the functional or
chromosomal regions.

Using the test datasets, we examine how well each system
distinguishes disease-related SNPs from neutral SNPs. Intuitively,
a better scoring system would assign a higher functional score to
disease-related SNPs than to neutral SNPs. First, we measure this
tendency by directly computing the percentage of disease-related
SNPs that are assigned a higher functional significance score than
their paired, randomly selected neutral SNPs, averaged over M test
datasets. We refer to this measure as Higher Score (%). Second,
using the paired t-test, we examine whether the disease-related
SNPs and the neutral SNPs in each dataset share the FS score
distributions with the same mean. We separately conduct the paired
t-test on each of the M datasets, and compute the proportion of the
rejected tests along with their average p-value. The rejection implies
that the FS score distribution of disease-related SNPs and that of
likely neutral SNPs are distinctive. Therefore, scoring schemes with
a high proportion of rejected t-tests are preferred. We refer to this
second measure as Paired T-Test.

Table 1 summarizes the results of our comparative study. Overall,
our system improves upon all the compared systems with respect to
both evaluation measures. In the case of the Higher Score measure,
our system assigns higher functional significance scores to about
64% of known disease-related SNPs than to neutral SNPs. FastSNP
comes second, and SNPselector and Simple Majority Vote follow.
The score difference between our system and the compared systems
is also statistically significant (p-values are 6.96e-038, 4.82e-105,
and 5.26e-174 for FastSNP, SNPselector, and Simple Majority Vote,
respectively, using the paired t-test, α = 0.05). It is notable
that our system greatly outperforms Simple Majority Vote, which
demonstrates the utility of the confidence and the tool reliability
scores, integrated into our scoring scheme.

In the case of the Paired T-Test measure, the first three systems,
namely, our system, FastSNP, and SNPselector perform the same;
all of the paired t-tests were rejected with a significance level 0.05.
However, the average p-value of the rejected tests is smallest (i.e.,
asymptotically zero) for our system among the three, which means
that the score distribution of disease-related SNPs and that of neutral
SNPs are most disparate when their FS scores are assigned by our
system. In the case of Simple Majority Vote, only 93% of the paired
t-tests were rejected. The average p-value for the rejected tests is
also the largest among all the compared systems.

5 DISCUSSION
We have presented a new scoring system for assessing the putative
deleterious effects of SNPs. Our integrative scoring method
combines assessments from multiple independent computational
tools, using a probabilistic framework that takes into account the
certainty of each prediction as well as the reliability of different
tools. An empirical study over 580 disease-associated genes
taken from the OMIM database shows that our system provides
distinct scoring patterns that are consistent with well-established
findings about functional SNPs. A comparative study based on two
evaluation measures also shows that our scoring system improves
upon other SNP scoring systems in terms of distinguishing known
disease-related SNPs from likely neutral SNPs.

Two main features distinguish our system from others. First,
we integrate multiple tools to overcome the incompleteness or
erroneous predictions of individual prediction tools. While a single
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tool may fail to capture the deleterious effects of many SNPs, a
combination of multiple independent tools, which are based on
different resources and algorithms, are less likely to all make the
same error. Thus the tools are likely to complement each other,
and as we have demonstrated in our results, typically compensate
for each other’s errors. As a result, the effect of possible false-
negative or false-positive predictions in any single tool is reduced
when computing the combined FS score.

Second, unlike other scoring systems, we take into account
the reliability of different tools as well as the certainty of each
prediction made by the tools. To the best of our knowledge, this
is the first SNP prioritization approach to measure the reliability
of individual tools and to use this information along with the
confidence scores obtained from each tool.

We note, though, that the FS score assigned by our system to
about 45% of disease-related SNPs is still below 0.5. There are
two possible explanations for this seemingly inappropriate FS score.
First, even though some SNPs, obtained from the OMIM database,
show a positive statistical correlation with common disorders in
some association studies, they may not all be actual disease-
causing mutations. Some of these SNPs may represent false positive
findings, or may simply be correlated with actual disease-causing
mutations. Our future study will focus on investigating the actual
disease-causing mutations that could be located near SNPs known
to be disease-related with low FS scores.

Second, while the disease-related SNPs may indeed be disease-
causing mutations, our current scoring scheme may not capture
them properly. For example, in addition to the bio-molecular
functions that we currently examine, there could be other genetic
mechanisms that have a profound impact on human pathogenesis.
We thus plan to update our system through combining other
epidemiological resources, such as literature information, as well as
integrating more prediction tools for each bio-molecular function.

We note that our integrative scoring system is primarily intended
for candidate-gene based association studies, where there is already
a region in which some SNPs are likely to have deleterious
functional effects. In the case of genome-wide association studies,
our system can be used to prioritize a subset of SNPs that needs
further investigation after indication for disease-association has
been detected for a genomic region.

We currently provide the calculated FS score of 112,949 SNPs
through our public web-based database service, F-SNP (available
at http://compbio.cs.queensu.ca/F-SNP). We will continue assigning
FS scores to other SNPs, and update the scoring results. In addition,
we plan to integrate our scoring system with our earlier tagging
SNP prioritization approach (Lee and Shatkay, 2006) for association
studies. By combining the two most representative selection
approaches for SNPs, we expect to provide a comprehensive SNP
prioritization system for facilitating effective association studies on
common and complex genetic disorders.
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