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Abstract
Current advances in high-throughput biology are accompanied by a tremendous increase in the

number of related publications. Much biomedical information is reported in the vast amount of

literature. The ability to rapidly and effectively survey the literature is necessary for both the

design and the interpretation of large-scale experiments, and for curation of structured

biomedical knowledge in public databases. Given the millions of published documents, the field

of information retrieval, which is concerned with the automatic identification of relevant

documents from large text collections, has much to offer. This paper introduces the basics of

information retrieval, discusses its applications in biomedicine, and presents traditional and

non-traditional ways in which it can be used.

INTRODUCTION
The past decade has been marked by an

unprecedented growth in both the

production of biomedical data and the

amount of published literature discussing

it. The ultimate goal of modern large-

scale biology is to translate these large

amounts of data into actual knowledge

of the complex biological processes

and accurate models of living cells

and organisms.

Any known or postulated information

pertaining to entities such as genes,

proteins, disease, drugs and their role in

biological processes is published in the

literature. The advancement of genomic

and proteomic technologies is

accompanied by an overwhelming

increase in the number of publications

discussing genes and proteins. The

abundance of both biological data and

literature produces a major bottleneck for

interpreting and planning large-scale

experiments. The ability to rapidly survey

this literature is therefore a necessary step

in both the design and the interpretation

of such experiments. Moreover,

automated text mining offers a yet

untapped opportunity to integrate many

fragments of information, gathered by

researchers from multiple fields of

expertise, into a complete picture

exposing the interrelated roles of genes,

proteins and chemical reactions in cells

and organisms.

For these reasons there is a surge of

interest in mining the biomedical

literature,1–11 (a comprehensive, growing

list is available on the Biomedical

Literature Mining Publication (BLIMP)

website12), ranging from relatively modest

tasks such as finding reported gene

locations on chromosomes7 to more

ambitious attempts to construct putative

gene networks based on gene-name

co-occurrence within articles.8 As the

literature covers all aspects of biology,

chemistry and medicine, theoretically

there is almost no limit to the types of

information that may be recovered

through careful and exhaustive mining.

Regardless of the explicit purpose,

there are several hurdles to overcome

when looking for information in the

biomedical literature. The sheer number of

available articles (eg over 15,000,000

abstracts currently in PubMed,13 and this

number grows by the hour), makes it very

difficult to find all and only the

documents relevant to a specific need.
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The ambiguity in both the English

language and the biomedical jargon causes

search engines to miss relevant papers and

retrieve irrelevant ones.

Characteristics of
biomedical text

Yet another issue is the inherent

difference between the scientific literature

and the text collections typically searched

by current text-handling tools. Much of

the work on text mining is aimed at (and

tested on) articles such as news reports,

typically written by professional writers

whose main goal is to clearly convey a

story to the average reader. In contrast,

scientific documents are written by

scientists whose first language may often

not be English, whose main focus is

research rather than report-writing, and

whose target audience is a relatively small

group of fellow scientists, all familiar with

the same domain-specific jargon.

Scientific articles thus often use non-

standard terms and structures, and include

material that may not directly pertain to –

or may even contradict – the paper’s main

point. Finally, the purpose of mining the

literature is not always crisp and clear,

making it difficult to test and evaluate the

merit of proposed biomedical text mining

solutions. All these factors add a level of

complexity, leading to a relatively poor

performance of standard automated tools

(see for instance Hersh14 and Hirschman

et al.15).
Automated text
mining comprises
several research areas

The automated handling of text is an

active research area, spanning several

disciplines, including the broad field of

natural language processing (NLP),16–18

the more specific domain within NLP of

information extraction19–21 and the area

of information retrieval.22–24 While NLP

and information extraction are

concerned with analysis of language and

the mining of information within a

given paper, information retrieval is

concerned with the high-level task of

obtaining the documents that may

contain the information. All these

techniques are being applied to a variety

of tasks related to biomedical text

mining. For example, in this issue there

is a discussion of the use of natural

language processing and ontologies in

biomedicine25 as well as of interaction

network extraction,26 which is an

application of information extraction.

This review focuses on the application

of information retrieval to biomedical text.

Information retrieval is a necessary first

step towards text mining. It is the process

of deciding which documents may

contain relevant information, and to

which of them other text-mining

techniques should be applied. Often,

information retrieval is used in and of

itself, as exemplified by PubMed13 –

arguably the most widely used biomedical

information retrieval tool. The following

sections provide a survey of basic concepts

and methods in information retrieval,

discuss the way they are applied in the

biomedical domain, and demonstrate the

use of information retrieval in non-

conventional ways toward obtaining facts

about relationships among genes.

INFORMATION
RETRIEVAL: THE BASICS
Information retrieval is concerned with

identifying, within a large document

collection, a subset of documents whose

content is most relevant to a user’s need.

More precisely, given a large database of

documents, and a specific information

need – usually expressed as a query by the

user – the goal of information retrieval is

to find the documents in the database that

satisfy the information need. Naturally,

the task has to be performed accurately

and efficiently.

Boolean queries and index
structures
A simple and common way to express an

information need is through a Boolean

query. The user provides a term (eg

OLE1), or a Boolean term-combination

(eg OLE1 and lipid). The result produced

by a retrieval system is the set of all the

documents in the database satisfying the

query constraints, eg containing both the

query terms OLE1 and lipid. This query

paradigm is used by the biomedical

literature database PubMed, and by many

other text search engines. It is supported

Information retrieval is
concerned with finding
relevant documents
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by an index covering all the terms in the

whole database of documents. Each term

may be a single word (eg ‘blood’) or a

phrase (eg ‘blood pressure’). It is common

practice to omit from the index terms that

are frequent and non-content-bearing,

such as prepositions. These terms are

referred to as ‘stop words’, and are usually

viewed as delimiters when processing

text. The index structure contains a sorted

list of terms, and holds, for each term, a

reference to all the documents in the

database that contain it, as demonstrated

in Figure 1. Further information on this

topic is available in books concerning

information management and access (eg

Witten et al.24).

The simple form of Boolean query,

which is efficiently implemented over

large databases, suffers several limitations:

• The number of retrieved documents is

typically prohibitively large.

• A substantial part of the retrieved

documents is irrelevant to the user’s

information need.

• Many relevant documents may not

be retrieved.

The second problem above stems from

polysemy: a word may have multiple

meanings in different contexts. For

instance, the term ‘arm’ may denote,

among others, a limb, a part of the

chromosome or a Drosophila gene (short

for armadillo). On the other hand, the

third problem stems from synonymy: a

single concept is discussed in various

abstracts under different names.

Similarity queries and the
vector model
A broadly used alternative to the Boolean

query is the similarity query, which is

typically based on the vector-space model,

discussed throughout this section. Under

this setting, documents are viewed as

(algebraic) vectors over terms, as we

formally define below. A query, q, may

consist of many terms, and even comprise

a complete document. It too is viewed as

a body of text, rather than merely as a

search-terms combination and is

represented as a vector as well. The

retrieval task reduces to searching the

database for document-vectors that are

most similar to the query-vector. Various

similarity measures over documents have

been devised and used.23,27

To explicitly define the vector model,

we refer to the large set of documents to

which retrieval is applied as the database,

and denote it as DB. The vocabulary of the

database is the set of terms occurring

within DB’s documents. Let M be the

number of distinct terms ft1, . . . , tMg in

this vocabulary. A term may be a single

word or a combination such as ‘acquired

immunodeficiency syndrome’. A

document, d, in the database is represented

as an M-dimensional vector:

d ¼ hwd1
, wd2

, . . . , wdM i,

where wdi is a weight representing the

occurrence or the significance of the term

t i within the document d. The choice of

term-weights can significantly influence

the results of a similarity search, and there

are many ways to calculate the weights.

For instance, the weight can be binary,

either 1 or 0, corresponding to the

presence or absence of a term in the

document. While this representation is

straightforward, it does not account for

various properties of documents and terms

that may improve retrieval. One simple

extension uses the number of times the

Figure 1: An index
relating terms to the
documents in which they
occur

Boolean queries
retrieve documents
containing specific
words

Similarity queries and
the vector model
provide flexibility

2 2 4 & HENRY STEWART PUBLICATIONS 1467-5463. BRIEF INGS IN BIOINFORMATICS . VOL 6. NO 3. 222–238. SEPTEMBER 2005

Shatkay



term occurs within the document as the

weight. An over-represented query-term

within a document indicates that the

document is likely to be relevant to

the query.

Term weighting
schemes: TFX IDF
and variations

Yet another consideration is the

distribution of query terms among

documents. If one query-term frequently

occurs in many documents, while another

is rarely used, documents containing the

rare term are likely to be more relevant to

the query than documents containing the

frequent one. These intuitions are

combined and formalised through a

family of weighting schemes commonly

known as TF 3 IDF. The acronym stands

for ‘Term Frequency 3 Inverse

Document Frequency’. Under this

general scheme, the weight for a term is a

product between the term frequency

within the document and another number

that is inversely proportional to the

number of documents containing the

term. Further discussion of weighting

schemes is available in the extensive

literature on information retrieval, eg

Salton23 and Witten et al.24 In the

biomedical context, Wilbur and Yang28

study weighting schemes pertaining to

retrieval from the biomedical literature.

Using the vector-space representation,

we can apply a vector-similarity measure

and assess similarity between pairs of

documents as well as between a query and

each document in the database. A

similarity measure that is widely used in

information retrieval is the cosine coefficient,

which denotes the cosine of the angle

between the two vectors, as illustrated in

Figure 2. This measure normalises the

vectors by their respective length,

compensating for the difference in the

number of terms between the typically

short queries and the longer documents.

Formally, the cosine coefficient

between two n-dimensional vectors,

V1, V2, whose respective lengths (norms)

are kV1k, kV2k, is defined as:

cos(V1, V2) ¼def

Pn
j¼1v

j
1 � v

j
2

kV1k � kV2k
:

Other similarity-based
approaches
Other approaches based on the vector-

space model also aim to reduce the

dependency of the retrieved documents

on the particular choice of query terms,

and effectively improve retrieval. One

way to do this is through the re-

weighting of query terms, where terms

occurring within relevant documents

receive a higher weight than those

occurring in irrelevant ones. This process

is called relevance feedback, and a re-

weighting scheme introduced by

Rocchio29 is often used. Typically it is

impractical to obtain actual relevance-

judgment about the retrieved documents.

Therefore, pseudo relevance feedback is

used instead. Under this scheme

(introduced by Buckley et al.30), given a

current query, Qold, the documents that

rank high with respect to it are considered

relevant while those ranking low are

considered irrelevant. If the weight for

term t in Qold was tQold
, the new weight,

tQnew
, in the updated query is calculated

as:

tQnew
¼ A � tQold

þ B � avg_t_weight_in_rel_docs

� C � avg_t_weight_in_nonrel_docs:

Here the parameters A, B and C measure

the relative importance attributed to the

original query Qold and to the relevant

and irrelevant documents respectively,

�

�

Figure 2: The angle between two vectors,
q and d

High weight is assigned
to significant terms,
which helps in finding
the documents
containing the most
significant query terms

Relevance and pseudo-
relevance feedback
guide the search
towards relevant
documents
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avg_t_weight_in_rel_docs is the average

weight of the term t in the documents

ranked as relevant to Qold, and

avg_t_weight_in_nonrel_docs is the

average weight of the term t in the

irrelevant ones.
Probalistic retrieval
models

Another way to relax the dependency

between retrieval results and the explicit

query terms is the use of probabilistic

models.27 Rather than require that a set (or

a subset) of query terms occur in a

document, the retrieval task is viewed as

that of finding documents that with high

probability satisfy the need represented by

the query. Van Rijsbergen’s work is one

of the earliest in this direction.31 More

recent work include Ponte and Croft’s

language model,32 and work on

probabilistic latent semantics by Hofmann

and others (eg Hofmann33). Another

related method, in the biomedical

context, about probabilistic themes,34 was

primarily applied to finding relationships

among genes, as discussed later.

A different approach is latent semantics

analysis introduced by Dumais et al.35–38

Two main ideas underlie this method:

• There is an abstract semantics that

explicit terms attempt to convey.

Different terms may convey the same

concept (synonymy), while a single

term may denote different concepts

(polysemy). While words are overtly

present in a document, their semantics

is not explicitly stated and is therefore

latent.

• A collection of documents, each

represented by an M-dimensional

vector, can be viewed as a matrix. As

such, algebraic operators can be

applied to it. One particular operator,

namely singular value decomposition, can

be used to identify and extract the

‘significant components’, known as

singular values, of the matrix.

Machine learning
methods are used for
both hard and soft
text categorisation

By combining these two ideas, each of the

k large singular values of the matrix

representing a document collection is

viewed as a surrogate for a class of terms

with a common hidden semantics. Both

queries and documents are transformed

and expressed as vectors over these

singular values rather than as vectors over

M terms, and the similarity measure is

applied to these transformed vectors,

whose dimensionality is lower than that of

the original term-space. Additional work

in this direction has been carried out by

several other research groups (eg Jiang and

Littman39 and Papadimitriou et al.40).

Text categorisation
A task often addressed by information

retrieval systems is that of text

categorisation. This is the labelling of text

by category-tags from a predefined set of

categories. There are two main

approaches to categorisation. One is the

knowledge engineering approach41,42

where the user manually defines a set of

rules to encode expert knowledge

regarding the correct categorisation of

documents. The main drawback of this

approach is the knowledge acquisition

bottleneck. The rules must be manually

defined by a knowledge engineer

interviewing a domain expert.

Any modification to the categories

requires further intervention by the

knowledge engineer.

The other is the machine learning (ML)

approach,43–53 where a text classifier is

viewed as a function learnt by an

inductive process, from a training set of

example documents, already classified into

a predefined set of categories. (As

indicated in some of the references, a

variation of the aforementioned Rocchio

method is also applied in text

categorisation.) ML-based classification is

partitioned into two types: hard and soft

classification. Under hard classification a

document is strictly assigned to a single

category, (eg Lewis et al.,48 Buckley et

al.54 and Joachims55). In contrast, soft

classification entails a ranking by relevance

of the categories for each document.

Under this approach, the classifier returns

a number between 0 and 1 (called the

categorisation status value, CSV), which

represents the strength of evidence or the
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probability that the document belongs to

a certain category. Documents can then

be ranked with respect to each category

according to their CSV. (See Yang56 for

discussion and further references.)

Supervised
categorisation uses a
training set and is
known as
classification.
Unsupervised
categorisation is
known as clustering

One final distinction made within

machine learning categorisation is

between supervised categorisation, known

as classification, and unsupervised

categorisation, known as clustering.

Classification was discussed above, where

a set of tags as well as a set of tagged

training examples are given, and the

learning task is to generate a classifier that

could correctly assign tags to yet-unseen

data items. In contrast, clustering is the

partitioning of examples into coherent

sets without the provision of predefined

tags or training examples. In this case, the

goal is to produce subsets (clusters), such

that documents within a cluster are similar

to each other according to some criteria,

while documents contained in different

clusters are dissimilar. Popular clustering

methods include hierarchical clustering,

k-means clustering,57 and probabilistic

approaches such as expectation

maximisation.58

Evaluation

Evaluation measures
are based on the ideas
of specificity
(precision) and
sensitivity (recall)

When developing a text-analysis tool, it is

critical to know how reliable the results

are likely to be. While we can neither

anticipate all the articles we may

encounter, nor predict performance in all

cases, it is useful to evaluate the merit of a

text-analysis tool by comparing its

performance with that of other candidate

techniques, with respect to a fixed gold

standard. Such an evaluation requires two

components:

• A corpus of annotated, tagged or

categorised text items for a gold

standard.

• A metric to measure the system’s

performance with respect to the gold

standard.

Common measures for evaluating

performance of information retrieval

systems are recall and precision.24,45,59

Recall (R) denotes the proportion of

relevant articles retrieved by the system

with respect to all the relevant articles in

the data set that should have been

retrieved (a notion similar to sensitivity).

Precision (P) denotes the proportion of

truly relevant articles among all the

articles that were retrieved (similar to

specificity). Other measures, such as the

F-score22 combine the two. In its simple

form it is expressed as:

F ¼ 2PR

P þ R
:

For a thorough discussion of evaluation

measures see Witten et al.,24 Lewis45 and

Yang.59

A comparison of tools or methods

requires an agreed upon corpus of

reference, reflecting some true domain,

with respect to which performance is

measured. Several standard text

collections, as well as standardised

retrieval/extraction tasks have been

devised – mostly during the past decade –

especially for supporting development and

evaluation of text-processing systems.

Examples include the Reuters set

classified into thematic categories,60 and

the OHSUMED collection of biomedical

abstracts,61 annotated with medical

subject headings (MeSH) and tagged by

relevance judgments with respect to

specific queries. Both of these collections

are used for evaluation in text-

categorisation research.

A forum for standardised evaluation of

retrieval methods is TREC, the Text

Retrieval Conference,62 sponsored by the

National Institutes of Standards and

Technology (NIST) and by DARPA.

Each year it offers several tracks, each of

which specifies data sets and tasks to be

performed on them. Very recently a new

track, TREC Genomics, concerned with

the retrieval of genomic data from the

literature and from other sources, has

been formed.14 The TREC Genomics

effort, as well as another recent evaluation

initiative, BioCreative, are discussed in

another paper within this issue.63
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INFORMATION RETRIEVAL
IN BIOMEDICAL
INFORMATICS
Large-scale experimental methods,

allowing analysis of genes and proteins

from a whole genome, provide the first

step towards understanding intricate

cellular processes at the molecular level.

While experiments are planned and

carried out, both their informed planning

and the interpretation of their results rely

heavily on the ability to put new

observations in the context of existing

knowledge and of previous hypotheses.

This type of information can often be

found in the published literature.

However, the conventional method for

finding it has been for individuals to

search through the literature, paper by

paper and gene by gene. A tedious task

for even a few genes, and almost

impossible on a genomic scale.
Biomedical
information
extraction looks for
explicit statements
about entities and
relationships within
the text

To improve the effectiveness,

efficiency and accuracy of the navigation

through the literature, partial-automation

of literature scanning is pursued in two

main directions. First, much work focuses

on information extraction from biomedical

text. This includes the identification of

named entities, such as genes and

proteins,9,15,64,65 and of relations such as

location of genes on chromosomes,2

association between a gene and a disorder

or between proteins and sub-cellular

organelles,4,66 interaction among

proteins36,67–69 and many others.5,70–75

These areas of research typically rely on

lexical and ontological resources, and on

techniques from natural language

processing to identify facts, entities and

certain structures within papers and

sentences. These topics are addressed in

several articles within this issue and the

next.25,26,76 The second direction

addresses literature mining at a coarser

granularity, namely that of finding, within

a large database of articles, all and only the

documents that contain relevant

information, without extracting explicit

facts from within the text. This approach

is anchored in information retrieval, and is

discussed throughout this section. The

high availability and accessibility of

abstracts (primarily through MEDLINE

and PubMed, from the National Library

of Medicine13), coupled with the limited

access to full-text, accounts for the trend

in most current biomedical text mining

work, as described below, to focus on

abstracts rather than on full-text articles.

Boolean search methods and
their extensions
The most extensive and widely used

information retrieval tool in the

biomedical domain is the PubMed

database and search-engine.13 It contains

over 15,000,000 scientific abstracts

(mostly from MEDLINE, maintained by

the National Library of Medicine, but also

from other sources), and is accessed daily

by millions of users throughout the world.

For instance, during March 2005 alone

over 68,000,000 PubMed searches

were performed.77

A typical literature search within

PubMed starts with a Boolean query. The

user provides a term or a Boolean term-

combination. The result is the set of all

the abstracts in PubMed satisfying the

query constraints, as discussed in the

section on ‘Boolean queries and index

structures’, above. We note that the lack

of uniformity in nomenclature used by

authors aggravates the problem of

synonymy. For instance, a search for

abstracts about the gene AGP1 may not

retrieve abstracts discussing this same gene

under another name (eg YCC5). Still, if

the user identifies a relevant document

among those returned by the initial

Boolean search, PubMed does offer a

similarity-based tool (see the section

‘Similarity queries and the vector model’),

known as neighboring,78 to access

documents similar to the relevant one.

While PubMed is an indispensable

resource, its size and breadth can make it

difficult for researchers working on a

specific organism or gene to obtain

exactly the information they seek. In

particular, as PubMed stores and searches

only abstracts rather than full-text

documents, it cannot locate information

In its most basic form,
biomedical information
retrieval is exemplified
by PubMed
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that appears in the full text alone. Tools

that provide access to small, organism- or

topic-specific subsets of documents from

PubMed, possibly including the full-text,

have recently been suggested. As these

tools are serving a smaller community and

search over a smaller database, they can

offer some enhanced functionality for the

community they serve. An example is the

Textpresso system,79 which focuses on

C. elegans and contains about 6,500 full

papers and 20,000 curated abstracts. The

system uses information extraction

techniques to identify entities of interest

(such as allele, process, function) based on

defined ontologies, and provides the

means to extend Boolean queries to

match the specific types of entities.

Early work on
discovery through
retrieval was done by
Swanson, in the
medical domain. It
was based on well-
chosen Boolean
queries and
examination of
overlap in the results

Both PubMed and smaller literature

databases such as Textpresso, primarily

enable searching for information about

‘one-gene-at-a-time’, which is not

suitable for large-scale literature mining.

Moreover, PubMed is not primarily

intended, and cannot be used ‘as-is’, for

finding or explaining, on a large-scale,

relationships among genes or other

biological entities. Information extraction

methods, as demonstrated in Textpresso,

can be used to scan the documents

retrieved by PubMed and search for facts.

However, when there are many such

documents, which are not all relevant to

the focus of interest, information

extraction can be hindered by exactly the

same problems that caused inaccurate

retrieval in the first place. For example,

entities that may seem like gene names

may not be genes at all, and much time

will be spent scanning through documents

that contain no relevant information

whatsoever. We also note that

information extraction aims to find in the

literature information that is readily stated

there. It does not aim to discover or

deduce new relationships or facts that are

not explicitly stated.

Thus, one important current goal of

information retrieval is to reduce the size

of the proverbial haystack, without

requiring much human curation, to the

point that a small enough set of relevant

documents is available for information

extraction methods to effectively and

accurately obtain the desired facts.

Another goal is to devise methods, based

on information retrieval, to directly aid in

the discovery of new facts and

relationships within large corpora of

documents. We next discuss ways in

which IR is used in the context

of discovery.

Information retrieval as a basis
for discovery in corpora
Early work on discovery of novel facts in

the medical literature, predating the

genomic era, was introduced by

Swanson.80–82 His method relies on

‘transitive’ relations, ie indirect links

among entities, as clues for yet-unknown

relationships. For instance, Swanson

identified literature reports about fish oil

causing reduction in blood viscosity and

decrease in platelet aggregability. He also

identified a different body of literature

discussing both of these symptoms as

characteristic of Raynaud’s syndrome.

Based on these two sets of seemingly

unrelated reports, he established the

hitherto unknown connection, namely that

fish oil can treat Raynaud’s syndrome.

This connection is illustrated in Figure 3.

Put simplistically, the discovery method

for relating entities A and B (where A is

fish oil, B is Raynaud’s syndrome in the

above example) consists of the retrieval of

all the documents containing term A and

all those containing term B. If these two

bodies of literature do not overlap, try to

find concepts C occurring in both of

them. The concepts C can indicate yet-

undiscovered relationships between

concepts A and B. This line of reasoning

was developed and further automated by

Weeber et al.,83 and Srinivasan and

Libbus,84,85 as well as by Wren.86

In the context of large-scale genomics,

methods to support biomedical analysis

based on information retrieval have also

been introduced and developed during

the last few years. Shatkay et al.6,87

introduced an information retrieval

scheme to find functional relationships
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among genes. The method comprises

three main ideas:

• Analysis of large-scale gene expression

data (microarrays) can benefit from the

automated introduction of text related

to the genes.

• Text discussing a gene can be used as a

‘surrogate’ representation for the gene.

• Once genes are represented by their

text documents and/or terms, this

representation can be clustered to find

genes with similar behaviours (similar

themes), in ways reminiscent of the

clustering methods applied to gene

sequences or gene expression profiles.

Basing the method on information

retrieval, rather than on extraction,

reduces the dependency on gene

nomenclature or on sentence structure.

The approach relies on the fact that many

individual genes and their function are

already discussed in the literature. A

database containing tens of thousands of

PubMed abstracts, pertaining to a specific

domain, is used. To find relationships

among a large set of genes, each gene is

mapped to a single abstract within the

collection, discussing the gene’s biological

function. This abstract is treated as the

gene’s representative. A probabilistic

theme-finding algorithm34 finds a set of

documents relevant to this abstract, and

produces a set of terms summarising the

thematic contents of the document set.

Applying the algorithm to each gene-

representing abstract produces for each

gene a body of related literature (20–50

abstracts bearing a common theme), along

with a list of terms that characterise its

theme. An automated comparison of the

abstract sets associated with the different

genes is then used to derive relationships

among them. This method was tested on

400 yeast genes over a database of about

40,000 PubMed abstracts; a study of the

biological roles of yeast genes by Spellman

et al.88 was used as a gold standard. In

addition, a thesaurus of biological

function terms for yeast genes, built by a

panel of four yeast experts, was used to

quantitatively evaluate the list of

characteristic terms. The results showed

that for about 100 genes an informative

representative abstract was found. For

these, the related genes identified by the

system typically shared the same biological

function, and on average, three or four of

the top five terms assigned by the system

to each gene correctly indicated its

function. A summary of the method is

shown in Figure 4.

Text categorisation for
bioinformatics
In recent years several groups have

applied clustering and classification

methods to text in the context of

bioinformatics. It is important to note that

all the studies described here vary in goal

and scope, and suffer from the lack of

agreed-upon evaluation standards for

testing their performance.

Renner and Aszódi89 suggested a

method for clustering protein annotations.

The basic idea is that by clustering the

annotations of proteins into groups one

can gain insight into the common

function that the proteins may have. The

method is based on first grouping terms

that occur in protein annotations into sets,

according to their tendency to co-occur.

A similarity measure among the

annotations is then devised based on the

proportion of terms in them that are in
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Figure 3: Swanson discovery of the link between fish oil and Raynaud’s
syndrome. The link was made by finding common terms, such as blood
viscosity, in the literature discussing these two separate concepts

In early work on
genomic discovery
through retrieval,
thematic analysis is
used for finding
functional relationships
among genes
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the same term-groups. Finally, the

annotations are clustered using

hierarchical clustering based on the

suggested similarity measure. The method

was tested by grouping 900 terms into

400 clusters. Clustering of documents

based on the term groups was tested on

two sets of fewer than 50 PubMed

abstracts. The method was applied to the

analysis of a set containing about 3,000

protein annotations.

Stephens et al.90 deduce relationships

among genes based on co-occurrence of

their names (where the names are given in

a thesaurus), which is a subject typically

handled by information extraction (eg

Jenssen et al.8). However, this work uses

information retrieval techniques to

identify co-occurrence. Documents are

represented as weight vectors, where the

genes mentioned in the documents are

the terms. Looking at the transposed

matrix, each gene is then viewed as a

vector whose attributes reflect the

documents that mention it. The

association between genes is measured by

the dot product between the two vectors

representing them (which corresponds to

the unnormalised cosine coefficient). This

measure essentially quantifies the co-

occurrence of the genes within

documents. The method was applied to a

set of about 5,000 PubMed abstracts.

Iliopoulos et al.91 apply k-means

clustering57 to a relatively small set of

PubMed abstracts (fewer than 2,000

documents) to obtain meaningful subsets,

each discussing some common subject.

The subjects are then represented through

terms extracted by statistical analysis of

term frequencies within the clusters. The

effectiveness of each of the three methods

above was demonstrated using a limited

example, but a thorough quantitative

evaluation was not reported.

Marcotte et al.92 apply a naı̈ve Bayes

classifier93 that relies on discriminating

terms, to identify abstracts that discuss

protein–protein interactions. The

classifier was tested on a set of 325

PubMed abstracts, of which 70 discussed

protein–protein interactions and 255 did

not. The performance on this limited set

was about 0.6 precision and recall at the

break-even point.

While the above methods categorise a

(relatively small) collection of abstracts

into topical sets, others apply

categorisation to directly enhance,

through the use of text, specific

applications that typically rely on

biological data.

Using an idea similar to the one

presented earlier6 of viewing an abstract as

a ‘surrogate’ or a representative for a gene,

Stapley et al.94 represent proteins by using

the abstracts that mention them. They

then train a support vector machine

(SVM) classifier to distinguish among

abstracts discussing proteins, based on the

different subcellular locations of the

proteins mentioned in the text. They

propose this classifier as an aid for

addressing the protein sorting problem,

which is the task of determining the

organelle within the cell to which the

Figure 4: Finding functional relations among genes via thematic analysis of the literature. Each
gene is represented as an abstract discussing the gene. A theme consisting of related
documents and summary terms is built around each abstract. Genes with similar themes are
grouped together

Clustering of protein
annotation text can be
used to group together
related proteins
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protein belongs. (Note that the same task

was tackled through information

extraction, looking for statements about

subcellular localisation in the literature, by

Craven and Kumlien.4) Another research

on text-based classification of proteins

into subcellular locations was performed

by Nair and Rost.95 In this case proteins

were represented by keywords obtained

from the protein annotation in SwissProt,

and classification was applied to the

keyword-vector representation of the

proteins, rather than to PubMed abstracts.

While the approach is interesting, the

results reported in both of these

papers94,95 did not improve upon the

state-of-the-art in protein subcellular

localisation (eg Emanuelsson et al.96 and

Park and Kanehisa97).

In a recent application,98 clustering of

genes was performed using latent

semantics analysis (LSA)37,38 of the

abstracts representing the genes. The idea

of clustering abstracts as surrogates for

genes is similar to that discussed above. In

this case, however, abstracts discussing

each gene were concatenated to create a

single document representing the gene,

and LSA was used to reduce the

dimensionality of the representation of

these documents and to cluster together

genes with similar topics. This study was

done on a very small scale (50 genes and

gene-documents), and was used to

reconstruct the 18-gene Reelin signalling

pathway in mouse.

Information retrieval in
integrative applications

Information retrieval
may enhance other
types of biological
data analysis

Several lines of work have recently

incorporated methods from information

retrieval into the analysis of other types of

data, to enhance the performance of

experimental data analysis.

The first such work we are aware of is

in the realm of protein homology,

performed by Chang et al.99 In this work,

text that accompanies protein sequences is

used to support homology search. As PSI-

BLAST is applied to the protein

sequences to detect homology among

proteins, it is augmented with the cosine

similarity measure which is applied to the

accompanying text. While this attempt

was a novel integration of text and

protein sequence data, the results did not

suggest a significant improvement over

simple protein homology.

Recent research by Glenisson

et al.,100,101 which directly continues the

line of work on large-scale gene

expression analysis using text,6 integrates

clustering of documents into the process

of clustering gene expression data. It

suggests that the integration of text

clustering with the clustering of the

expression of the genes discussed in the

text, produces more coherent and stable

clusters than those produced by

expression alone. Work by Raychaudhuri

et al.102 also suggests that text clustering

results in coherent clustering of the genes

represented by the text.

Another form of an integrative method

combines information extraction and

information retrieval. Donaldson et al.103

introduced their PreBind/Textomy

system, in which they combine the two

approaches to assist in recovering

protein–protein interactions from the

literature. On the information retrieval

step, an SVM classifier is trained to

distinguish between PubMed abstracts

that discuss protein–protein interaction

and abstracts that do not. The classifier is

then used to identify and retrieve the

abstracts that are relevant to protein–

protein interaction. Once they are

retrieved, information extraction is

applied to identify interaction facts within

the text. The SVM is used in this phase

again to find sentences containing the

interaction information. From each such

sentence, protein names are extracted

(based on a list of protein names and

synonyms), as candidates for protein–

protein interaction. Simple co-occurrence

of protein names within the complete

abstract is also an indicator for possible

interaction between the proteins. The

system serves as a curation aid for the

BIND database.104 The putative

interactions found are not meant to be

automatically placed in an interaction
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network. Rather, the BIND curators

examine and validate them by reading the

related text. The retrieval system was

trained and tested, on a set of about 1,100

expert-judged abstracts of which about

700 discuss interactions and 400 do not.

The success rate reported is 92 per cent in

both precision and recall for identifying

abstracts discussing interaction. The

extraction of actual protein–protein

interactions was tested by comparison to a

list of about 1,380 human-curated

protein–protein interactions in yeast

(restricted to interactions reported in the

literature). About 60 per cent of these

interactions were successfully recovered

from the abstracts that were classified as

discussing interactions. The higher

accuracy of the early classification phase

suggests that a major advantage of the

system lies in the retrieval step, which

identifies documents relevant to protein–

protein interaction.

We note that almost all of the work

surveyed here was based on abstracts

rather than on full-text articles, owing to

the high availability of abstracts. There is

an ongoing effort to obtain full-text

documents for biomedical text mining, as

is evident in the recent TREC Genomics

categorisation task,14 and in the launching

of several open access journals.

Underlying such efforts is the assumption

that there is much information in the full

text, where text-mining methods could

demonstrate their true utility. While the

full text enables access to much more

information, including complete

experimental reports, observations, facts

and hypotheses, it is also longer, less

concise and has more room for ambiguity

than the typical text in abstracts. These

latter factors may increase processing time

and space, and place a heavier burden on

text analysis tools. Thus, the pros and

cons of mining full-text biomedical

articles are yet to be studied.

CONCLUSIONS
The abundance of biomedical literature

motivates an intensive pursuit for effective

text-mining tools. Such tools are expected

to help uncover the information present

in the large and unstructured body of text,

while addressing three main problems:

• The sheer magnitude of the available

text collections.

• The ambiguity and non-uniformity of

the nomenclature used in the context

of genomics and proteomics.

• The linguistic complexity of the

scientific documents, stemming from

the diversity in expertise, style and

native language of the authors.

In general, information retrieval provides

the means for a coarse-grain search for

relevant documents. While it is not

intended to extract a tidy fact statement, it

can produce a relatively small set of

choice documents, thus restricting the

search-space within which the facts of

interest can be found. This focused set of

documents can also provide the relevant

literature needed for analysing and

explaining experimental results (on which

other automated mining systems may

operate). Moreover, we have shown that

a non-traditional use of information

retrieval can actually provide an effective

way for detecting specific putative

relationships among genes.6,100 Since

information retrieval does not look for

explicitly stated facts within the literature,

it has the potential to foreshadow yet

undiscovered facts. A clear advantage of the

information retrieval approach is its

relative independence of specific natural

language usage and nomenclature issues,

as it does not search for explicit gene

names or statements about their

relationships. The latter is a major feature

given the complex and incomplete

nomenclature of the biomedical domain.

Perhaps the most important point

demonstrated in the last section is the

need for uniform standards by which

system performance can be measured.

The construction of gold standards and

procedures for evaluating the utility of

biomedical literature-mining tools is a
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high-priority task. Efforts in this direction

are discussed in another paper within this

issue.63

As literature mining challenges in the

context of bioinformatics vary widely in

scope, data sources and ultimate goals, no

single tool can currently perform all the

required tasks. However, a combination

of methods is likely to address many of

the problems. Several such combinations

of data and methods were discussed in the

section on integrative applications.

To successfully mine the biomedical

literature, it is important to realise the

merits and the limitations of the different

literature-mining methods. Moreover, it

is essential to coherently state the actual

biomedical problems we expect to address

by using such methods. The ad-hoc

retrieval task in TREC genomics is

currently moving in the direction of

problem-specific retrieval. Moving away

from generic, all-purpose biomedical text

mining solutions, and focusing the efforts

on specific needs, is likely to expedite

progress both in biomedical text mining

and in large-scale biology.
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