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Abstract

The maintenance of biomedical digital libraries
(including  organism  databases and protein
databases) involves analysis of a large number of
documents. Much work is done manually: curators
study large numbers of biomedical documents while
updating and annotating organism databases such as
MGI (Mouse Genome Informatics) and Flybase (a
database of the fruit-fly genome). We summarize the
annotation process in organism databases, and
describe some of the roles played by the Gene
Ontology and by document databases such as
PubMed. Efforts are ongoing to automate parts of
the annotation process. Biomedical text mining
contests, such as the TREC Genomics Track [6, 7],
define annotation subtasks, and provide training and
test data. So far, these efforts have focused on the
analysis of the text content of documents. We are
investigating the analysis of figures in biomedical
documents; the information derived from figure
analysis may later be combined with the information
derived from text analysis. We present an algorithm
for using figures in document triage; triage involves
determining which documents are relevant to a given
annotation task. In our triage algorithm, we segment
figures into subfigures and classify the subfigures as
Graphical, Gel, Fluorescence Microscopy, and Other
Microscopy. A  secondary  classification into
subcategories is performed by clustering, using
clusters created from the subfigures in the labeled
training data. The classifications of all subfigures in
a document are combined to form a document
descriptor. The document descriptor is then classified
using a Naive Bayes Classifier, as either relevant or
irrelevant to the given annotation task.

1. Introduction

Much current work in biomedical literature mining
aims to extract information and discover knowledge

for populating biomedical digital libraries. As
demonstrated in several recent surveys of biomedical
text mining [1, 2, 3, 4], most biomedical literature
mining methods focus on the analysis of text,
typically from abstracts or keywords. Abstracts are
available from PubMed'; keywords are often taken
from MeSH terms”. The abstracts and keywords are
used to perform various tasks, including document
classification, named entity tagging (e.g. identifying
protein/gene names), and information extraction (e.g.
extracting interactions between proteins). However,
much of the biological information contained in
articles is not present in abstracts or keywords but
rather in the body of the article. With the increasing
availability of full-text documents, there is a trend
toward using full-text documents for biomedical
literature mining. We believe this raises new
opportunities for the document image analysis
research community. Figures and document layout
structure in full-text documents may be used to
improve literature mining.

In this paper, we focus on efforts to automate the
annotation process in biomedical organism databases.
Biomedical organism databases are important
research tools for biologists. Annotation, in this
context, means assigning attributes to biological
entities in the databases, based on evidence that is
found in biomedical publications and in other
resources. Currently, annotation is performed by
human curators; a daunting task given the tremendous
increase in the number of biomedical publications
over the past few years. Efforts to automate parts of
the annotation process are ongoing. So far, research
efforts have focused only on the analysis of the text
itself [6, 8]. We are investigating a new direction,
namely the analysis of figures in biomedical
documents; we believe that the information derived

! PubMed, see appendix A.2. Appendix figures A.1 and A.2
illustrate the keywords and abstract information available for a
sample abstract from PubMed.

2 MeSH, see appendix A.3.1.
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Figure 1. Document triage and annotation in a biomedical database. Document triage decides whether
a document is relevant for annotation. Triage is task specific. Annotation extracts different types of information in
different tasks. The supported information plus the link to the original document are stored into a biomedical

database.

from figure analysis can later be combined with the
information derived from text analysis to produce
more complete and accurate results.

2. Overview of Organism Databases and
Their Annotations

An organism database maintains information about
biological entities (such as genes and proteins)
associated with a specific model organism that is
widely studied and used in biology and medicine.
One such organism is the mouse; mouse genome
information is stored in the MGI (the Mouse Genome
Informatics) databases®. The fruit-fly is another such
organism; FlyBase® stores the genomic data of the
fruit-fly. Other more general and central databases
have also been created; an example is the protein
database Swiss-Prot’. There is an unprecedented
growth in the amount of information stored in such
databases, due to high-throughput biological
techniques, such as whole-genome sequencing, and
large-scale gene expression analysis.

2.1. Annotation of organism databases

The information in organism databases is typically
focused on genomic and proteomic facts and
hypotheses, concerning the genome and the genes it
contains, as well as the proteins derived from these
genes. Every piece of information, about a
gene/protein  becomes part of its annotation.
Biomedical publications are often used as evidence
for the annotation. For instance, there is often a
reference to the publication in which the gene
sequence was first shown, (where the gene sequence

3 MGI, see appendix A.1.1.
4 FlyBase, see appendix A.1.2.
5 Swiss-Prot, http://www.ebi.ac.uk/swissprot

is the string of nucleotides {A, C, G, T} constituting
the gene). Similarly there are references to the
publication(s) in which the protein product(s) for the
gene was first shown. Other aspects, such as the gene
function and the subcellular localization of its protein,
are also annotated and supported by references to the
relevant biomedical literature.

A major activity of many model organism database
projects is the annotation of genes and proteins using
standardized codes for process and function from the
Gene Ontology (GO)®. The Gene Ontology provides a
controlled vocabulary that allows genes and gene
products to be described in terms of their molecular
function, biological process, and cellular component.
Using this agreed-upon vocabulary within and across
different biomedical databases enables more effective
database searches by both computers and researchers.

As illustrated in Figure 1, annotation is task-
specific. For example, one annotation task involves
the assignment of GO codes to genes, while another
involves the association of genes with their
expression information. Annotation is preceded by
document triage, which identifies the subset of
documents that may contain evidence to support the
annotation: these documents typically discuss
experimental findings related to a particular gene or
gene product.

® See appendix A.3.2. for more discussion of the Gene
Ontology and GO evidence codes.



2.2. Examples of GO annotation in MGI

In this section, we demonstrate how an article is
used as a reference for GO annotations in MGI. This
GO annotation task was simulated in the TREC
Genomics Track 2004 [6]. Figure 2 shows the
abstract of a reference article [13] with PubMed
identifier 12235125 in the MGI database. Four genes
are annotated based on this article: Ctnnbl1, Mitf, Myc
and Tcf7. The details of one of the genes, Tcf7 are

shown in Figure 3. Tcf7 is annotated with GO codes
with respect to the three GO hierarchies: biological
process, cellular component and molecular function.
This gene has a total of 9 GO annotations, shown in
Figure 4. For each annotation, an evidence code and a
reference code are assigned to justify the annotation.
A GO evidence code describes the nature of the
evidence that supports this attribution. For example,
the evidence code IDA stands for “inferred from
direct assay”.
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Figure 2. A sample document [13] viewed through the MGI database. The top of the screen shot
shows four different identifiers for this document, including PubMed ID 122351215 and J number J:79002. Next, title
and abstract are shown. The Additional Information at the bottom shows that this document provides evidence for
annotation of 4 genes and 8 sequences. Details for one of these genes are shown in Figure 3. The screen shot was
taken directly from the MGI’s web site (http://www.informatics.jax.org/) in December 2005.
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Figure 3. Details for gene Tcf7, one of the four genes mentioned in Figure 2. The screen shot shows
some of the attributes of gene Tcf7, including synonyms, genetic map, sequence map, Gene Ontology (GO)
classifications, references and other accession IDs. There are 9 GO annotations in total. Details are shown in Figure
4. The screen shot was taken directly from the MGI’s web site (http://www.informatics.jax.org/) in December 2005.
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Figure 4. GO annotations for gene Tcf7. The screen shot taken directly from the MGI's web site
(http://www.informatics.jax.org/) shows that each GO annotation has a GO classification term, an evidence code, and
reference IDs. Six of the nine GO annotations shown in this figure use the reference "J:79002". This refers to the
sample document shown in Figure 2. Evidence code “IDA” stands for “inferred from direct assay”, and “IEA” stands

for “inferred from electronic annotation”.

2.3. Ongoing efforts to automate annotation
in organism databases

Annotation related to functional descriptions of
genes and gene products is typically extracted
manually: curators are employed to examine
biomedical documents and find evidence to assign
attributes to genes and gene products. This is a slow

and labor-intensive process. Moreover, it is becoming
more and more difficult to keep up with the
increasing number of entities in the database (due to
high-throughput experimental results) and the large
number of biomedical publications that are to be
reviewed for annotation. Therefore, efforts are
underway to automate parts of the triage and the
annotation procedures. While much work has been
done on biomedical text mining during the past few



years, the utility of such new systems is unclear. The
objective evaluation was very hard for early systems
as there were no objective benchmarks. This issue
was recently addressed by several evaluation efforts.
The most notable evaluation contests to date include
KDD Cup [5], TREC Genomics 2003-2005 [6, 7] and
the BioCreAtIvE challenge [8]. In these contests,
annotation subtasks were formally defined based on
real tasks carried out by human curators. Training and
test data sets labeled by human experts were
provided, along with objective evaluation metrics.
Text mining researchers participating in these
contests applied a wide variety of techniques to a
common problem. We believe that these tasks also
provide an excellent research ground for document
image analysis. In the following we briefly introduce
the TREC Genomics Track. Our experiments,
described in the next section, of using figures for
biomedical literature mining are based on the
subtasks that were defined in this track.

The TREC Genomics Track is an on-going contest
sponsored by NIST, focused on information retrieval
from biomedical text [6]. The 2004 track was its
second year, and included an ad-hoc retrieval task
and a categorization task. The categorization task had
three sub-tasks, one was a document triage task and
the other two were GO annotation tasks, defined to
simulate the task performed by MGI curators [6]. The
triage task is to classify a document as relevant or
irrelevant for GO annotation, given a set of labeled
documents as training data. The 2005 Genomics
Track refined this task, adding three finer categories
of information collected and catalogued by MGI [7].
The documents for the categorization task consisted
of full-text articles from three journals over two
years. The journals were Journal of Biological
Chemistry (JBC), Journal of Cell Biology (JCB), and
Proceedings of the National Academy of Science
(PNAS). Articles from 2002 were designated as
training data and those from 2003 as test data. The
training and test sets consist of 5,837 and 6,043
articles, respectively. The true triage decisions were
provided by MGI. While during the TREC contest the
data was available to participants only, the data is
now available to all by contacting NIST.

3. Using Figures for Document Triage

In this section, we present our work on using
figures for the document triage task discussed above.

3.1. Importance of figures

Figures are often content rich and concisely
summarize the most important results or methods
used in a paper. Recently the importance of figure
captions was noted for triage and annotation.
Specifically, Regev et al. used figure captions for task
1 in the KDD Cup 2002 [3, 9] with notably good
results. The task was to automate the document triage
for FlyBase by identifying papers that contain
information about gene expression in the fruit-fly.
Regev et al. note that curators who manually review
papers look primarily at the figures in the paper to
ascertain the presence of experimental evidence.
FlyBase curators have indeed mentioned that many of
the experimental results are presented in figures and
their captions [5]. Following this line of reasoning,
Darwish and Madkour [10] have also used text
extracted from figure captions for the triage task in
TREC 2004.

Figures, specifically fluorescence images from
biomedical articles, have been recently used to
predict protein sub-cellular localization. Murphy et al
[11] extracted figures from on-line biomedical
journals and classified the segmented figure images
into two classes: fluorescence microscopy images and
other images. They used fluorescence microscopy
images for protein sub-cellular prediction based on
image features. This is also an image classification
task, classifying an image into one of the sub-cellular
localizations. Samples of fluorescence microscopy
images from different sub-cellular locations are
shown in Figure 5. By utilizing the associated
captions, Murphy et al [11] aim to extract assertions
such as “Figure N depicts a localization of type L for
protein P in cell type C”.

As far as we know, as of yet, the figure images
themselves have not been considered for triage and
annotation. In this paper, we explore the possibility of
using figures for the triage task. We plan to combine
figure-based methods with text-based methods for
triage, as we view these as complementary, rather
than as competing approaches.
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Figure 5. Typical images from ten defined classes based on sub-cellular localization of 3-D HelLa

cell image collection (reproduced from [22] by permission of the author). We can see the images from
different sub-cellular locations are visually distinct. Fluorescence microscopy images convey important information
about the location and behavior of proteins, as well as many details of protein-protein interactions. They are

important tools for cellular research.

3.2 Our method of using figures in document
triage

Document triage can by viewed as a binary
classification task. The input is a set of full-text
documents. A document is classified as either positive
(to be used in annotation) or negative (not to be used
in annotation). To automate the task, we train a
classifier using a set of labeled training documents
(Section 3.2.1), and then apply the classifier to other
documents (Section 3.2.2). Our basic idea is to create
an image-based description for each document, and
then apply a naive Bayes classifier to these
descriptions. This approach is adapted from Duygulu
et al.’s work on image annotation [12]. Duygulu et al.
described an image using a small vocabulary of
“blobs”, which are labels assigned to the clusters of
all the segmented image regions in a collection of
images.

3.2.1. Train the classifier. Our experiments use the
triage data from TREC Genomics 2004, as described
in Section 3.3. The training data consists of
documents that have been labeled as either positive or
negative by human experts. We further label the

subfigures in the training data, as illustrated in Figure
6, and described in Step (3) below.

In our system, training documents are processed
using six steps as follows:

(1) Figure extraction. The full-text documents are
in XML format, obtained from TREC Genomics
2004. We extract captions and links to the figures
from the XML documents, and then download the
figure images themselves from the publisher’s web
site. A sample document [13] and an extracted figure
are shown in Figure 6. We use 4,000 figures in
training and testing as described in Section 3.3.

(2) Figure segmentation. As evident from Figure
6, each figure may consist of several subfigures. We
segment each figure into its subfigures. A bottom-up
segmentation approach, based on Connected
Components (CCs) analysis [14], is used for this
purpose. Sample figure segmentation results are
shown in Figure 6. Unavoidably, errors do occur
during the segmentation process.

The complexity found in figures is illustrated in
Figure 7. Usually a figure has mixed types of
subfigures and has no standard layout. Murphy et al.
discussed lack of standards in figures of scientific
publication and the difficulty of associating a sub-
figure  with  corresponding  captions  [11].
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Figure 6. MITF can rescue growth
suppression of dnTCF in melanoma
cells. (A) Colony-forming assays in two
human melanoma cell lines (501 mel
and SK-MEL-5) show rescue of clono-
genic survival in the presence of dnTCF
by wild-type MITF, whereas c-Myc is
further growth inhibitory (B) Clanogenic
survival in B16 melanoma demanstrates
suppression by dnTCF and rescue by wild-
type MITF, but not c-Myc (quantitative
results are normalized to vector control).
Experiment done in triplicate and
quantitated results are graphed. Indi-
cated with * is significant with P < 0.03
and ** significant with P = 0.01 as statis-
tically calculated using Student’s ¢ test
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Figure 7. A sample figure and corresponding captions reproduced from the article [13] shown in
Figure 6. The figure has mixed types of subfigures. There are challenges in extracting subfigures, and associating

each subfigure with corresponding captions.

(3) Subfigure classification. We classify the
subfigures using a hierarchical classification scheme
defined below and shown in Figure 8.  This
classification scheme forms the basis for creating
labels that capture image features in each figure. We
plan to refine this classification scheme in the future.
Currently, at the first level, images are classified into
Graphical and Experimental classes. For the
Experimental class, we define three subclasses:

Fluorescence ~ Microscopy, Gel, and  Other
Microscopy. The reason is that the three subclasses
are visually distinct and obtained in different
experimental settings. We manually labeled a few
hundred subfigures in each class to train a classifier
under this classification scheme’. We use two SVM
(Support Vector Machine) classifiers: one at the root

7 Appendix B provides more information about the
subclasses we define.
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Figure 8. A hierarchical image classification scheme. A sample image for each class is given. More
samples for each class are provided in Appendix B. At the first level, images are classified into Graphical and
Experimental images. Other types of images found in publications include photographs of people, pictures of mice,
etc. In our current work, we manually pre-filter the extracted subfigures to remove such Other images. At the second
level, Experimental images are classified into Fluorescence Microscopy, Gel Electrophoresis, and Other Microscopy
images. Graphical images are classified into Line Charts, Bar Charts, and Diagrams. In our experiments, Graphical
images are not classified further; we focus on classification of Experimental images into Gel, Fluorescence, and

Other Microscopy images.

level to classify the images into Graphical and
Experimental images, and the other at the second
level of the classification hierarchy to further classify
Experimental images into one of the three subclasses.
In our experiments, Graphical images are not
classified further. Thus, every subfigure is assigned
one of four class labels: Graphical, Fluorescence
Microscopy, Gel, and Other Microscopy. Examples
of subfigure classification results are shown in Figure
6.

The following image features are used by the SVM
classifiers:

e Statistics based on gray-level histograms,
including statistical moments up to three
orders, and gray-scale entropy.

e Haralick co-occurrence textures, including
contrast, energy, correlation, and Inverse
Difference Moment [15].

e  Edge direction histogram [16].

e Features based on run-length analysis of
binary images.

The image feature vectors are normalized before
classifying them with SVM classifiers and clustering
them. The first level SVM classifier was trained using
1,600 subfigures (500 Graphical and 1,100
Experimental) and the accuracy is 95% using the ten-
fold cross-validation testing method. The second
level SVM classifier was trained using 1,100
Experimental subfigures (300 Gel, 500 Fluorescence

Microscopy and 300 Other Microscopy) and the
accuracy is 93%.

(4) Subfigure clustering. Next, we perform
clustering to define fine-grained image classes
automatically. In Step (3), all the training subfigures
were classified into one of four classes. There are
about 10,000 subfigures in the training data. We felt
that for better accuracy we should partition the
classes into subclasses, as four manually defined
classes may not provide sufficient discrimination
among thousands of subfigures. We thus use
clustering for obtaining subclasses of Experimental
subfigures. Graphical images are not -clustered
further. Since the number of subfigures belonging to
the Fluorescence Microscopy class is significantly
larger than the other two classes, the Fluorescence
Microscopy subfigures are clustered into 20 clusters,
while subfigures belonging to the other two classes
are clustered into 10 clusters each. Currently, we
choose the number of clusters heuristically. Different
number of clusters could be used. In the future, we
may test how this choice affects the classification
performance.

Clustering should group together images with
similar characteristics. The choice of image features
is critical for the effectiveness of clustering. In the
current clustering, we use all the gray-level image
features used in the subfigure classification described
in step (3). More discriminant features for each class
may be used as well. Further discussion of document



image classification techniques is given in our earlier
survey paper [17]. To summarize, subfigures within
each subclass of Experimental are clustered in this
step; the clustering results are used to assign a cluster
label to each Experimental subfigure.

(5) Create an image-based feature vector of
each document. Using the classification and
clustering results from steps (3) and (4), we assign a
label to each subfigure. For example, the top left
subfigure in Figure 6 is assigned the label /7, where
F stands for Fluorescence and 17 stands for cluster
17 in the clustering of Fluorescence Microscopy
subfigures. The labels of all the subfigures in each
document are combined to create an overall
description of the document based on its image
features. Then a feature vector is extracted from the
description. The frequency of Ilabels in each
document is used as the feature vector. For example,
the description of the document shown in Figure 6 is:

graphics graphics graphics F19 graphics

graphics E2

F17 F9 F19 F16 graphics

graphics graphics graphics G6 G7

graphics G1 graphics G3 graphics

F17 GO graphics graphics graphics graphics

E7 F6 G6 E5 graphics
E1 graphics E5 G1 G4 graphics

In this description, G represents Gel, F represents
Fluorescence and E represents Other Microscopy.
The image description is created by combining the
labels of 39 subfigures, drawn from the six figures in
this specific document.

(6) Train a Naive Bayes Classifier. Given the
image-based description created in Step (5), we build
feature vectors representing each document and train
a Naive Bayes Classifier using all the training
documents. We use the MALLET toolkit for feature
vector creation and document classification [18].

3.2.2. Executing the classifier. The results of the
training phase (Section 3.2.1) are the clusters for each
of the three Experimental subclasses (Step 4) and a
classifier (Step 6). Given an input document, we
classify it using the following procedure: First, the
document goes through steps (1) - (3), the same
figure-based preprocessing as in the training phase.
Then each subfigure is assigned the cluster label of its
nearest neighbor in the training set using the results of
training Step (4). An image-based description is
created containing a list of labels of all the subfigures
in the document, similar to training Step (5). Then a
feature vector is computed and fed into the Naive
Bayes classifier from training Step (6). The classifier

labels the input document as either positive or
negative.

3.3. Experimental results

To test our method, we used the data set from the
categorization task of TREC Genomics Track 2004
(Section 2.3). In the experiments described here, we
use only full-text documents from the Journal of Cell
Biology (JCB) provided in TREC Genomics Track
2004. A summary of the training and test sets is
shown in Table 1.

Table 1. The distribution of positive and
negative documents in the training and test

data sets.
Total Positive | Negative Total
fgures
documents |documents [documents
extracted
Training
JCB 256 26 230 1881
2002)
Testing
(JCB 359 34 325 2549
2003)

The results are shown in Table 2 using the
abbreviations: TP (True Positive), FP (False
Positive), FN (False Negative) and Pos (number of
positive samples in the test data). We use the same
evaluation metrics as were used to evaluate the triage
subtask in TREC Genomics 2004. As reported by
Hersh et al. [6], the primary evaluation metric was the
normalized Utility value, calculated based on
equation (1). The constant 20 serves to weigh the
evaluation toward positive answers: the cost of
missing a relevant document is much greater than the
cost of including an irrelevant one.

20*%TP)—-FP
norm = ﬁ Q)]

As we use only a subset of the training and test
documents, our results are not directly comparable to
those obtained in the TREC2004 Triage task. All 59
of the TREC 2004 Triage runs were based on full-text
documents, including figure captions, but none used
the analysis of figure images. In contrast, our results
use only figure images, and make no use of text. As
shown in Table 2, our results are roughly comparable
to the average results in TREC 2004 runs. This is
encouraging, suggesting that a combination of figure
and text analysis may yield good results in the future.



Table 2. Classification results, using the evaluation metrics from [6]. Results from the TREC 2004
Triage runs are shown for an informal comparison. Due to the efforts involved in obtaining figure images, we only
used a fraction of the test and training documents used in the TREC Triage task. Our testing used 34 positive and
325 negative documents, whereas the TREC 2004 Triage testing used 420 positive and 5623 negative documents.

Utility Precision Recall F-score
U = (20*TP)—-FP P P 2*recall * precision
rrrrrrrr T 20%Pos TP+ FP TP+EN recall + precision
Our system 0.3074 0.2791 0.3529 0.3117
Mean of 59 runs in TREC
2004 triage subtask (from [6], 0.3303 0.1381 0.5194 0.1946
Table 6)

3.4. Future work

The current research is a preliminary exploration
of the possibility of using figures for document triage.
We believe that a refined classification scheme for
subfigures is important for improving the result.
Feature selection is also crucial to improve subfigure
classification and clustering performance. In our
future research, we will further investigate how
human curators use figures in judging whether a
document supports annotation, and how figures are
used during the annotation process. Observing how
humans handle the task is expected to suggest further
ideas on how to automate (parts of) it.

We are also interested in combining the analysis of
text, ontology, and figures for document triage and
annotation tasks.

4. Conclusion

There are abundant research opportunities for
document image analysis in support of the creation
and maintenance of biomedical digital libraries.
Figures and figure captions are information rich
portions of documents. Due to their high availability,
abstracts have been the target of most biomedical
text-mining efforts to date. However, much useful
information only exists in full-text papers. Figures
and figure captions, which are only available within
the full-text of biomedical articles, usually present
important experimental findings. Figure images often
play a key role in understanding the papers’ results.
Therefore, combining image analysis with text
analysis is expected to help resolve ambiguity and
improve the effectiveness of literature mining.
Automatic annotation of organism databases is
expected to help organism databases keep up with the
increasing number of biomedical publications.
Conversely, annotated organism databases are
important resources for literature mining in digital

libraries, as the annotated data from biological
databases can be used to train literature mining
systems to perform useful tasks [5].

There are several challenges when applying
document image analysis techniques to biomedical
literature mining. In contrast to the millions of
abstracts in PubMed, the number of full-text
documents is still limited. Easy-to-use electronic
versions (e.g. articles in XML format), with
separately accessible figures and text are available
only for some of the papers. For other cases (e.g.
articles in PDF or image format), preprocessing has
to be performed to separate text and figures and to
associate figures with figure captions. This
preprocessing is difficult and error prone. The
variability of figures (as shown in Figure 7) provides
challenging research opportunities for using figures to
support literature mining.
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Appendix A. Biomedical Digital Libraries

This appendix provides background information
about organism databases (Section A.l), document
databases (Section A.2), and standardized terms for
annotation (Section A.3). Biomedical digital libraries,
such as organism databases, protein databases or
genomics sequence databases, store biomedical
information and provide retrieval interfaces for
researchers in biomedicine. All of these databases are
constantly updated. Organism databases, such as
FlyBase and MGI, annotate genes or gene products of
specific organisms by finding evidence from the
published literature. A set of standardized terms (in
the form of controlled vocabularies or of ontologies)
is important for sharing information across different
databases and for supporting efficient information
retrieval. Examples of such standardized vocabularies
are MeSH (Medical Subject Headings) for indexing
biomedical documents and GO (Gene Ontology) for
annotation of genes and proteins.

A.1. Organism databases

We introduce here two examples of organism
databases that are referred to in the paper.

A.1.1. MGI - Mouse Genome Informatics. The
MGI (Mouse Genome Informatics) system is an
initiative ~ of  the  Jackson  Labs  (http://
www.informatics.jax.org/). It provides integrated
access to data on the genetics, genomics and biology
of the laboratory mouse. The mouse is the most
common model organism for the study of mammalian
biology and human disease. The major databases that
MGI provides include the Mouse Genome Database
(MGD), the Gene Expression Database (GXD), and
the Mouse Tumor Biology database (MTB). MGI
integrates experimental knowledge with information
derived from both literature and online sources.

One of the goals of MGI is to provide structured,
coded annotation of gene function from the biological
literature. MGI participates actively in the



B Publed

www.pubmed.gov

AUl Dathases Puiled Nudeolie

A service of the National Library of Medicine

and the National Institutes of Health

Gerome Sache amex [

Search| Publvled v for

| Clear

|’ Limits | Previenyindas T History ] Cliphoard ] Details \|

Display ! Ahstract

[A”: 1 | Reviews:g 3|

9 |shaw|20 @[ Sortby @[ Sendto v

[J1: 7 Cell Binl. 2002 Sep 16;158(6):1079-27. Epub 2002 Sep 16.

FREE full texr article at
www.jcb.org

Beta-catenin-induced melanoma growth requires the downsiream target Microphthalmia-associaied transcription faciol

Widlund HR Horsimann M4 Price FR, Cui J, Lessnick 51, Wu M He X Fisher DE.

Departrent of Pediatric Oneology, Dara-Fatber Cancer Institute, Dana 630, 44 Birmey Street, Boston, WA 02115, USA

The transcniption factor Microphthalmia-associated transcription factor (MITF) 15 a lineage-determination factor, which modulates mf
pigrmentation. MITF was recently shown to reside downstrear of the canonical Wit patheray during melanocyte differentiation fror
zebrafish ag well as in marrenalian melanocyte lineage cells. Although expression of many melanocyticipigmentation markers iz lost in
expression rermaing intact, even in unpigmented tumors, suggesting a role for MITF beyond its mle in differentiation. & significant frag
melanoras exhibit deregulation (via aberrant ruclear accuralation) of beta-catenin, leading us to exarming its role in melanoma growth
beta-catenin is a potent mediator of growth for melanoma cells in a manrer dependert on its downstream target MITF. Moreower, sup
growth by disruption of beta-catenin-T-cell transeription factor/LEF is rescued by constitutiee WITF. This rescus ocours largely thio
Thus, beta-caterdn regulation of MITF expression represents a tissue-restricted pathowray that significantly influences the growth and
notoriously treatment-resistant neoplasra.

PMID: 12235125 [Publed - indexed for MEDLINE]

Figure A.1. The result of searching an article citation from PubMed (http://www.ncbi.nlm.nih.gov/entrez/
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provides a link to the full-text article.

development and application of the Gene Ontology
(GO).

A.1.2. FlyBase - a database of the Drosophila
genome. FlyBase provides integrated access to the
fundamental genomic and genetic data of Drosophila
(fruit-fly) and related species (http://
flybase.bio.indiana.edu). The fruit-fly is one of the
most studied eukaryotic organisms and was a central
model for the human genome project.

FlyBase provides value-added, annotated genetic
and genomic data from the Drosophila literature. All
the information in FlyBase is attributed, that is,
associated with a specific bibliographic citation [19].
FlyBase, like MGI, is one of the founding members
of the GO Consortium. FlyBase annotates gene
entries with GO terms and GO evidence codes.

A.2. Document databases: PubMed

PubMed (http://www.pubmed.gov) is an on-line
service provided by the National Center for
Biotechnology Information (NCBI) at the National
Library of Medicine (NLM) (http://www.ncbi.nlm.
nih.gov). It provides access to over 15 million
citations of biomedical articles, mostly from
MEDLINE (http://www.nlm.nih.gov/pubs/factsheets/
medline.html), going back to the 1950s. PubMed
includes links to full text articles and other related
resources. Title, authors, abstract are freely available.
PubMed indexes documents by MeSH terms
(appendix A.3.1), identifiers, authors, and organisms.
PubMed ID provides a unique identifier for each
article. When an article is used as a reference in an
organism database, a PubMed ID is always provided
to link to the article. Figure A.1 shows a screen shot
from using the PubMed search engine to find the
article whose PubMed ID is 12235125. Figure A.2
shows the complete indexing information by the
National Library of Medicine associated with the
sample article shown in Figure A.1.
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Figure A.2. Keywords and abstract information available in MEDLINE for a sample PubMed
article. The article with PMID 12235125, is also shown in Figure A.1. The MeSH terms are in bold font in the

second column.

A.3. Standardized terms for annotation:
MeSH and GO

A.3.1. MeSH: Medical Subject Headings. MeSH is
the National Library of Medicine's controlled
vocabulary (http://www.nlm.nih.gov/mesh). It
consists of sets of terms organized in a hierarchical
structure, which allows searching at various levels of
specificity. Examples of MeSH hierarchical structures
are shown in Figure A.3. At the most general level of

the hierarchical structure, the headings are broad such
as "Investigative Techniques". More specific
headings are found at lower levels, such as
"Electrophoresis, Gel, Two-Dimensional" and
"Microscopy, Fluorescence." There are 22,997
descriptors in MeSH as of November 2005 and it is
constantly updated. As discussed in appendix A.2, the
MeSH thesaurus is used for indexing biomedical
articles for PubMED.
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Figure A.3. Samples of hierarchical structures of MeSH. The screen shot was taken from the National
Library of Medicine's MeSH browser (http://www.nlm.nih.gov/mesh).

A.3.2. Gene Ontology. The Gene Ontology (GO)
(http://www.geneontolgy.org) project began in 1998
as collaboration among the mouse, yeast, and fruit fly
model organism groups, and has grown to include
many other databases. As stated by the GO
consortium, their goal is to produce a structured,
precisely defined, and controlled vocabulary for
describing the roles of genes and gene products in any
organism [21]. By providing a common language for
annotations, the information in organism-specific
databases has the potential to be integrated. GO has
over 19,000 terms as of December 2005; it is actively
maintained and continually expanded.

The GO vocabularies are categorized into three
directed acyclic graphs: Cellular Component,

Molecular  Function and Biological Process,
providing hierarchical structures for describing genes
and gene products. Organism databases use GO codes
to annotate specific genes and gene products. An
example of part of the GO molecular function
hierarchy pertaining to the MGI databases is shown in
Figure A.4.

Each GO annotation assigned to a gene or a
protein must be accompanied by a document
identifier, such as a PubMed identifier, and an
evidence code. The evidence code indicates what
kind of evidence is found in the cited source to
support the association between the gene and the GO
term.
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Figure A.4. An example of the hierarchical structure of GO annotations with regard to molecular

function. Here, 762 genes in the MGI databases are annotated (once or several times) with GO code GO:0003700
(transcription factor activity); each annotation has an evidence code with reference to a publication or other source of
evidence. The screen shot was taken from the MGI's Gene Ontology browser (http://www.informatics.jax.org

/searches/GO.cgi?id=G0:0003700).



Appendix B. Examples of images in the
six classes defined in Figure 8

We show here some more examples of images for
the six classes of subfigures defined in Figure 8. Six
classes of subfigures were defined manually by
inspecting segmented subfigures from sample
documents. We inspected about 250 documents with
approximately 1,880 figures. The total number of
extracted subfigures is about 11,000. About 100
subfigures that fell outside of the six classes were pre-
filtered manually. These include pictures of mouse

and photographs of people. We chose representative
subfigures for each defined classes. Manually
defining classes is a subjective process, which relies
on knowledge of subfigures obtained from different
biological experiments. Our current classification
scheme can (and should) be refined. Figure B.l
shows the samples of Line Chart; Figure B.2 shows
the samples of Bar Chart; Figure B.3 shows the
samples of Diagram; Figure B.4 shows the samples of
Gel; Figure B.5 shows the samples of Fluorescence
Microscopy; and Figure B.6 shows the samples of
Other Microscopy.
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12370243.5.1,jpeg

saspl ]
12486109,4.5.jpeg

11927606.2.2.jpeg

12486111,3.3.jpeg

11927606.4.0.jpeq

-

-

Yo o4

11970959.4.0.jpeg

12486112.2.0.jpeg

11927606.4.1.jpeq

cBEERE

o

11970959.4.1.jpeg

-skzii

12473693.8.0.jpeq

12486112.6.0.jpeq

11927606.4.2.jpeq

maty Laysion

g []]]

e —

12370243.1.1.jpeg

12486112 .6.1.jpeq

12473693.9.0.jpeq

12499353,0.0.jpeq

s Attty Ausssid Wi 3 T

T

11940607.1.5.jpeq

12486109.1.1,jpeq

ey (% GPF)
cwrem @ P B EEN

12499353,2.0,jpeq

Figure B.2. Samples of Bar Chart

12163464, 0.0,jpeg

12163464,1.0,jpeg

11956226.5.1.jpeq

12163473.6.0,jpeg

g&@%

H

11956227.3.0.jpeg

12082085,2.3.jpeg

12177041.5.0.jpeq

12186846.0.0.jpeg

12082085.,9.1,jpeg

L The Halr Follicle

12135986.1.0.jpea

s o

12186852.6.0.jpeg

12070129.9.0.jpeq

L [

12186357.0.0.jpeg

Figure B.3. Samples of Diagram




11916980.0.2.jpeg

wrszn
Hrs - ——

11916951.0.2.jpeg

11927607.1.1.jpeg

11927608.6.1.jpeg

11916980.5.0.jpeg

11940607 .6.0.jpeg

A et

o

11916980.5.1.jpeqg

:' 5

§

HIE  ——
TSG101 -

o

11916981.0.6.jpeg

11940607 6. 1.jpeg

Uh binding

11916981.0.7.jpeg

11940607 .6.2.jpeg

11916980.5.3.jpeg

il &
TGN -
sy —

Hrs  —

11916981.0.0.jpeg

T R
- |E== #hr
e[S == s

11940607 .8.0.jpeg

11927607.0.1.jpeg

[E—

11927608.3.1.jpeg

11956228.,0.0.peg

11927607.1.0.jpeg

11927608.3.2.jpeg

11956226.0.1.jpeg

Figure B.4. Samples of Gel

11916979.1.8.jpeg

o ey casie |

11956225.0.11.jpeg

12147679.1,2.jpeg

12177041.0,3.jpeg

11916979.1.3.jpeg

11916979, 1.10.jpeg

12177041.1,4.jpeg

11916979.1.4.jpeg

=

11927606.58.0.jpeg

12147675.3.0.jpeg

12177041.1.5.jpeg

1218685425, jpeg

11916979.1.6.jpeg

11956225.0.6.jpeg

12147679.1.0.jpeq

hd

12186854.3.4,jpeg

11916979.1.7.jpeg

11956225,0,7.jpeg

12147679.1.1.jpeg

1218685441, jpeg

Figure B.5. Samples of Fluorescence Microscopy
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