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Abstract
This paper compares the performance of classification and regression
trees (CART), multivariate adaptive regression splines (MARS), and
a Gaussian mixture regressor (GMR) method in predicting breast can-
cer recurrence time in patients that have undergone cancer excision.
It is shown that the GMR-based algorithm demonstrates an improved
performance compared to CART and MARS. Moreover, GMR perfor-
mance is comparable to that of a baseline predictor with the advantage
of performing automatic feature selection and model optimization.
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1 Introduction

Despite much scientific research and public awareness,
breast cancer continues to be the most common cancer
among Canadian women. According to the Canadian Can-
cer Society, in 2005, an estimated 21,600 women were diag-
nosed with breast cancer and approximately 5,300 died of
it [1]. Ultimately, one in 9 women is expected to develop
breast cancer during her lifetime; one in 27 will die of it.
The odds of surviving breast cancer are typically improved
by early detection [2]. In turn, the choice of appropriate
treatment following surgery is largely influenced by prog-
nosis – the predicted outcome of the disease. Therefore,
improving prognostic prediction is an important task.

In traditional medical practice, the most reliable predic-
tive measure is the extent to which cancer is present in the
lymph nodes [2]. This measure requires the surgical re-
moval of the nodes, leaving the patient susceptible to infec-
tion. Recent studies have shown that alternative measures,
obtained directly from the tumor mass, provide useful cues
for predicting breast cancer recurrence [3]. For each pa-
tient, 30 cellular features are extracted from digital images
of cells taken from the tumor (e.g., area, radius, smoothness
of cell nuclei); predictors are built based on these features.
As a baseline for our study, we use the predictor described
in reference [2]. To the best of our knowledge, this pre-
dictor exemplifies the state-of-the-art; it is based on linear
programming (LP) and takes into account five manually
chosen features.

In this paper we examine three alternative predictors.
Two are classic algorithms, namely, classification and re-
gression trees (CART) [4] and multivariate adaptive regres-
sion splines (MARS) [5]. The third is an extended version of
an algorithm based on Gaussian mixture regressors (GMR)
[6]. These algorithms are chosen as they have the major
advantage of performing automatic feature selection and
model optimization. We compare their performance on a

publicly available set of records from the Wisconsin Prog-
nosis Breast Cancer Database [7]. Our results demonstrate
that GMR significantly reduces the error in the predicted
recurrence time compared with the other algorithms. More-
over, GMR achieves performance comparable to the base-
line [2], still relying only on information that is easily attain-
able without invasive removal of lymph nodes, but having
the additional advantage of automatic feature selection.

2 Candidate Prognosis Predictors

Classification and regression trees (CART) and multi-
variate adaptive regression splines (MARS) are widely used
in machine learning applications for bioinformatics. For the
sake of completeness we briefly introduce them. More de-
tails are available in the literature ([4] and [5]). Gaussian
mixture regressors, on the other hand, are less popular and
are described here in more detail. The description below
will focus on the algorithms’ ability to perform automatic
feature selection and model optimization.

Classic Algorithms
CART is based on a binary-tree structure, in which each

parent node is split into two children nodes according to a
simple yes/no question about the value of a predictor vari-
able [4]. A notion of variable-importance is introduced in
CART by means of a purity function. A split is selected
such that the data in the child node is “purer” than the
data in the parent node. A node is recursively split un-
til a decrease in the impurity function reaches a certain
threshold. Feature importance rankings are determined by
summing the decrease in impurity produced in the remain-
ing nodes if the split were attained at that specific feature.
Scores reflect the contribution each predictor variable has
on predicting recurrence times. The feature used to split
the root node receives 100% importance.

On the other hand, MARS is constructed as a weighted
sum of basis functions, or more specifically, truncated spline
functions [5]. Variable importance scores are found by mea-
suring the effects the variable has in fitting the data by
dropping it from the model. The most important variable is
the one that, when omitted, degrades the model fitness the
most. In both CART and MARS, feature variables receive
an importance score ranging from 0% to 100%. Features
that receive a 0% importance rating are discarded.

Gaussian Mixture Regressors
Gaussian mixture regressors (GMR), as proposed by

Ghahramani and Jordan [8], do not perform automatic fea-



ture selection. Earlier attempts of using GMR made use
of CART or MARS as feature selection tools [9]. Here, the
GMR-based algorithm [6] is extended to perform sequential
feature selection. In the sequel, we define Gaussian mixture
models (GMM) and GMRs, and then provide details of our
feature selection extension.

Let u be a K-dimensional vector. A Gaussian mix-
ture density is a weighted sum of M component den-
sities, p(u|λ) =

∑M
i=1 αibi(u), where αi are the mixture

weights (αi ≥ 0, i = 1, . . . , M , and
∑M

i=1 αi = 1), and
bi(u) are K-variate Gaussian densities with mean vec-
tor µi and covariance matrix Σi. The parameter list,
λ={λ1, . . . , λM}, defines a particular Gaussian mixture
density, where λi = {µi, Σi, αi}. GMM parameters are
commonly estimated via the EM algorithm [10]. We use
the k-means algorithm to initialize the model parameters.

GMM-based regressors (GMR) rely on modelling the
joint density of the predictor variable vector (x) with the
target variable (y), i.e., u = [y,x]. The mean vector and
the covariance matrix of the ith GMM component become:

µi = (µy
i , µx

i ) and Σi =
(

Σyy
i Σyx

i

Σxy
i Σxx

i

)
, respectively.

Given the GMM parameters, the minimum mean-square-
error regression function f̂ is the conditional expectation of
the target variable, given the predictor variables [8]:

f̂(x) = E[y|x] =
M∑

i=1

hi(x)[µy
i + Σyx

i (Σxx
i )−1(x− µx

i )]. (1)

The function f̂ above is a weighted sum of linear models,
with weights hi(x) representing the probability that the ith

GMM component generated the vector x and given by

hi(x) =

αi

|Σxx
i |1/2

e

(
− 1

2 (x−µx
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i )

)

M∑
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αk

|Σxx
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e

(
− 1
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k)T (Σxx
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) . (2)

If GMM covariance matrices are restricted to be diagonal,
Eq. (1) simplifies to

f̂(x) =
M∑

i=1

hi(x)µy
i . (3)

The primary objective in feature selection and model op-
timization is to find, among n candidate feature variables,
a subset of variables x = {x1, . . . , xm}, m < n, and a map-
ping f̂(x), such that f̂ approximates the target variable y.
The GMR-based algorithm performs feature selection while
progressively constructing f̂ using formulas (1) or (3).

The algorithm starts with an empty feature set, S. Fea-
tures from a candidate feature set are added to S progres-
sively. To determine which candidate feature to add, the
algorithm tentatively adds to the current feature set one

feature that is not already in it, forming an augmented
feature set. The joint density of the target variable and
the augmented feature set is modelled with a GMM, with
model parameters λ = (α, µ, Σ) estimated using the EM
algorithm. The accuracy of the GMR using λ is then calcu-
lated. The above steps are repeated for every candidate fea-
ture and corresponding GMM. The candidate feature that
produces the least regression error is admitted and added
into the feature set S. The algorithm stops selecting fea-
tures either when it reaches a pre-determined threshold for
the training ratio (ratio between the number of parameters
that have to be estimated during the training phase and
the total number of records in the training set) or when the
desired (pre-specified) number of features has been selected.

Using the notation “EM” to stand here for the GMM pa-
rameter estimation via the EM algorithm, f̂k for the map-
ping function with k variables, I for the feature indices, and
assuming D is the desired number of features, the algorithm
is summarized as follows:

Initialization: Let I = {1, . . . , n}, S = ∅, k = 1;
Step 1: λi ← EM(y, S ∪ {xi}), ∀i ∈ I;
Step 2: ik ← arg min

i∈I

∑
j(yj − f̂k(S ∪ {xi}|λi))2;

Step 3: I ← I − {ik}, S ← S ∪ {xik
}, k ← k + 1.

Go to step 1 if k < D, else stop.

This algorithm description has focused on hard-decision
search, where only a single feature variable, which mini-
mized the estimation error, was kept. With a linear increase
in computational complexity, the algorithm is extended to
perform N -candidate soft-decision sequential search, where
at each iteration N features are kept as candidates. In this
extended version, at each iteration, the N features that
assume the top-N ranks in minimizing the estimation er-
ror are kept as candidates. A tradeoff between complexity
and performance can be adjusted by tuning the parameter
N . If the ultimate goal is to find D features out of n can-
didate features, then N candidates are kept in iterations
i = 1, 2, . . . , D−1. At iteration i = 1, the algorithm selects
the N best features out of the n available candidates. At
iterations 1 < i < D the N best ranked feature combina-
tions, out of the N(n− i+1) possible feature combinations,
are kept. Finally, at iteration i = D, the single best fea-
ture is kept. This last best feature and its ancestor features
constitute the set of features selected by the search process.

3 Experiments and Results

The experiments described here use the Wisconsin Prog-
nosis Breast Cancer (WPBC) Database [7]. The database is
comprised of 253 records from malignant patients for which
follow-up data was available. Features are extracted by a
program called Xcyt [3] and depend on the analysis of cel-
lular images. Ten features are computed for each cell nu-
cleus: area, radius, perimeter, symmetry, number and size
of concavities, fractal dimension of the boundary, compact-
ness, smoothness, and texture. A complete description of



the features can be found in reference [3]. The mean value,
extreme value (e.g., biggest size, most irregular shape), and
standard deviation of each of these cellular features are
computed for each image, resulting in a total of 30 real-
valued features. Moreover, two traditional features, tumor
size and number of involved lymph nodes are added to the
feature set, resulting in a total of 32 features per record.

For a subset of the patients, cancer recurs and the time-
to-recur (TTR) is recorded. For some patients, only the
time of their last checkup, or disease free survival time
(DFS) is available. Since DFS is assumed to be a lower
bound of TTR, all available cases are used [2]. TTR pre-
diction is regarded as a function estimation problem, where
a mapping between cellular features and expected recur-
rence time is found. It is now clear why feature selection is
such an important step in TTR prediction. The number of
features is relatively large (32) compared to the available
number of training records (253). In this situation, over-
fitting is most likely, and using a subset of the features is
expected to lead to better generalization capability.

The approach taken by Mangasarian et al. [2], which we
use as a baseline, was to remove features, one-by-one, re-
train the model and test on a tuning set. The five features
which showed the best performance on the tuning set were
used to train the final model. In the sequel, CART, MARS
and GMR are tested as possible predictors of TTR. Such
algorithms may be preferred over the baseline as feature se-
lection and model optimization is performed iteratively and
automatically. This is invaluable when additional features
need to be tested and user supervision is limited.

Experimental Setting
We apply CART, MARS and GMR to the task of pre-

dicting breast cancer recurrence time. Performance is as-
sessed by the average absolute error, measured in months,
between predicted recurrence times and actual TTR. Fol-
lowing the baseline, we set the number of features to five.
To maintain an adequate training ratio we restrict the num-
ber of Gaussian components to M ≤ 4 and use the diagonal
covariance GMR. Ten-fold cross validation is used in the
performance evaluation. The WPBC database is randomly
divided into 10 data sets of almost equal size. Training and
testing is performed in 10 trials, where, in each trial, one
of the data sets serves as a test set and the remaining 9 are
combined to serve as a training set. Each data set serves as
a test set only once. The ten resulting errors are averaged
to obtain the overall expected error. Note that Mangasar-
ian et al [2] did not use this procedure, but rather used a
leave-one-out cross validation, which is less robust [11].

Results
Table I shows the absolute error, given in months, pro-

duced by CART and MARS, and the reduction in er-
ror attained with three versions of GMR: GMR-1 uses
hard-decision search, GMR-2 uses 2-candidate soft-decision
search, and GMR-2P is similar to GMR-2, but built on pre-
processed data, as described in the sequel. The reduction in

prediction error, also given in months, is reported relative
to CART and MARS in columns “Reduction GMR-i” (for
GMR version “i”). As can be seen, CART and MARS have
similar performance figures for most cross validation trials,
with MARS achieving somewhat better accuracy. More-
over, all three GMR schemes outperform both CART and
MARS. An average reduction in prediction error of approx-
imately 7 months and 5.5 months (15-20% reduction) can
be attained relative to CART and MARS, respectively. The
differences shown in Table I are highly statistically signifi-
cant (p < 0.05) according to the 2-sample t-test.

Note that an average error reduction of 5.8% is achieved
by GMR-2 relative to GMR-1. This exemplifies the trade-
off between complexity and accuracy inherent in the N -
candidate soft-decision search capability of the proposed
algorithm. The data pre-processing of GMR-2P is similar
to that of the baseline – data is scaled to have mean 0 and
a variance of 1, and principal components analysis is per-
formed to decorrelate the features. Since training data is
limited, GMR is restricted to a small number of diagonal co-
variance Gaussian components; this restriction can degrade
performance if selected features are highly correlated.

The top five features selected by the algorithms, includ-
ing the baseline, can be seen in Table II. As mentioned
previously, the most predictive feature in traditional med-
ical practice is the extent to which cancer is present in the
lymph nodes. This requires a microscopic examination of
the lymph nodes, that in turn must be surgically removed
from the patient. This invasive procedure leaves the pa-
tient more susceptible to infection and lymphedema, a se-
vere swelling of the arm [2]. It is, therefore, desirable that
the algorithms depend only on cellular features and not
on the number of lymph nodes. To this end, GMR-1 and
GMR-2P are preferred over GMR-2.

Comparing GMR-2 with GMR-2P, it can be seen from
Tables I and II that the advantage of data pre-processing
is not in the performance gain, but in the fact that the
updated model depends only on easily attainable cellular
features, an extremely desirable outcome. We note that
most of the features selected by GMR-2P are gleaned from
those selected by MARS, GMR-1 and GMR-2. Finally, to
compare against the baseline, a leave-one-out test is per-
formed and an average error of approximately 26 months is
attained. This performance is comparable to that achieved
by the baseline (24 months) [2] with the proposed algorithm
having the advantage of performing automatic feature se-
lection and model optimization.

4 Conclusions

We have investigated the use of three data mining algo-
rithms to predict breast cancer recurrence times. It is noted
that the GMR-based algorithm, extended to perform N -
candidate soft-decision feature selection, outperforms clas-
sic algorithms such as CART and MARS. Diagonal covari-
ance matrix GMRs, built on five cellular features, achieve
an average 10-fold cross validation error of 27.91 months



TABLE I

Absolute prediction errors, given in months, for the candidate algorithms. Column “Reduction GMR-i” shows the reduction

in prediction error, also given in months, by using GMR version “i,” relative to CART and MARS.

Cross Reduction GMR-1 Reduction GMR-2 Reduction GMR-2P

Validation
CART MARS

CART MARS CART MARS CART MARS

Trial 1 33.34 33.02 3.27 2.95 5.2 4.88 7.85 7.53

Trial 2 33.83 32.88 2.16 1.21 4.9 3.95 4.73 3.78

Trial 3 35.96 35.65 7.03 6.72 7.72 7.41 6.68 6.37

Trial 4 37.87 36.81 4.61 3.55 7.45 6.39 3.91 2.85

Trial 5 39.34 37.94 3.17 1.77 4.38 2.98 7.98 6.58

Trial 6 37.37 38.25 5.47 6.35 5.47 6.35 4.81 5.69

Trial 7 34.48 32.49 6.53 4.54 6.95 4.96 9.42 7.43

Trial 8 33.96 34.81 6.65 7.50 8.87 9.72 8.10 8.95

Trial 9 30.70 27.29 5.01 1.60 5.64 2.23 6.74 3.33

Trial 10 31.08 24.35 5.98 -0.75 10.39 3.66 8.62 1.89

Average 34.79 33.35 4.99 3.54 6.70 5.25 6.88 5.44

TABLE II

Top five features selected by each prognosis prediction algorithm.

Top Features CART MARS GMR-1 GMR-2 GMR-2P Baseline

Average Compactness X
Average Fractal Dimension X X X X

Average Perimeter X X
Average Radius X X X X
Average Texture X X
Average Area X X

Average Concavity X
Extreme Smoothness X
Extreme Compactness X

Extreme Fractal Dimension X X
Extreme Symmetry X X X
Extreme Texture X X

Extreme Perimeter X
Extreme Area X

Standard Deviation of Perimeter X
Standard Deviation of Symmetry X

Number of Lymph Nodes X

and an average leave-one-out error of approximately 26
months. It is thus shown that GMR prediction capability
is comparable to that of the baseline, with the advantage
of performing automatic feature selection and model opti-
mization. We emphasize that, similar to the baseline, our
algorithm depends only on cellular features. Thus, the rou-
tine and potentially hazardous removal of lymph nodes can
be avoided.
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