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Abstract

Current genomic research is characterized by immense volume of
data, accompanied by a tremendous increase in the number of
gene-related publications. This wealth of information presents
a major data-analysis challenge. An ultimate goal is to under-
stand the complex biological interrelationships among alldiscov-
ered genes and proteins. Scanning the abundant literature available
about each gene, and plenty of human expertise are currentlyre-
quired as a step towards meeting this goal. As has been recently
noted by several research groups, automated systems for extracting
relevant information from the literature can complement existing
techniques, speed-up the analysis process, and greatly enhance our
understanding of genetic processes. We present a new approach,
based on probabilistic information retrieval, which uses the lit-
erature to establish functional relationships among geneson a
genome-wide scale. Experiments applied to documents discussing
yeast genes, and a comparison of the results to well-established
gene functions, demonstrate the effectiveness of our approach.

1 Introduction

Advances in computational and biological methods during
the last decade have remarkably changed the scale of ge-
nomic research. Sequencing machines and assembly algo-
rithms enable sequencing complete genomes within months
and even weeks. Automated gene finding methods [1, 4]
expedite the identification of tens of thousands of genes
within the sequenced DNA. Modern techniques such as
DNA microarrays allow simultaneous measurements for all
genes/proteins expressed in a living system. These meth-
ods, in turn, produce large quantities ofdata. When pro-
cessed, it can provide actualinformation about gene ex-
pression patterns; for instance, which genes are expressed
in various tissues, which ones are over/under expressed at
the onset of a disease or during a specific phase of the cell
development.

Still, the ultimate goal of conducting large-scale-biology is
to translate these large amounts ofinformationinto knowl-
edgeof the complex biological processes governing the hu-
man body. Specifically we would like to understand the
biological function of genes and proteins and the inter-
relationships between them. The hope is that once weknow
the biological roles of genes, proteins and their various in-�Corresponding author.email:hagit.shatkay@celera.com
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Center for Biotechnology Information, NLM, NIH. An earlier
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terdependencies, we could understand and prevent, at the
genomic level, undesirable processes, such as infection or
tumor development, while encouraging desirable ones, such
as normal growth and development.

The preceding era was characterized by the isolated re-
search of only a few genes or proteins at a time. Such stud-
ies produced relatively little data that could be manually an-
alyzed and turned intoknowledgethrough careful and slow
investigation. Obviously, this approach does not scale up
to meet the current interpretation needs of abundant, newly
produced data. Without suitable automated interpretation
methods the full potential of the advanced technology, as
a means to understand gene and protein function on a ge-
nomic scale, cannot be realized.

The ability to rapidly survey the published literature con-
stitutes a necessary step in this interpretation process. It is
also important fordesigningfurther large-scale experiments
while generating hypotheses about plausible relationships
among genes. Conducting a literature search about each
gene separately is a tedious task, especially given that the
genomic and proteomic literature is expanding in an un-
precedented rate. Several techniques have recently been
developed to address the need for expediting this search,
as discussed in Section 2. Such methods are typically based
on strong assumptions regarding the use of natural language
in the literature, and on the use of common gene and protein
nomenclature.

In contrast to other literature-based tools, the work pre-
sented here supports literature analysis on agenome-wide
scale, without strong assumptions about explicit terminol-
ogy and language usage. The hypothesis underlying our
approach is that the function of many genes is (separately)
described in the literature; by relating documents talking
about well understood genes to documents discussing other
genes, we can predict, detect and explain the functional re-
lationships among the many genes that are involved in ex-
periments. We do not attempt here to draw any informa-
tion from the genomic data itself. Instead, we use a large
database of abstracts, (a subset ofPubMed1), as our infor-
mation search space. Each gene is mapped to a respective
document, roughly discussing the gene’s biological func-1PubMedis maintained by NCBI/NLM and is accessible through
http://www.ncbi.nlm.nih.gov/PubMed.



tion. The literature database is then searched for documents
similar to the gene’s document, using a probabilistic search
method [13]. The resulting set of documents typically dis-
cusses the gene’s function. As an integral part the algorithm
produces an “executive summary” – a list of characteristic
content bearing terms in the set of documents – found for
each gene.

Next, we look for relationships among the genes. This we
do through search for similarities among the resultingsets
of documents. Since each set corresponds to a gene, we
can map the similar document sets back to their originating
genes and establish functional relationships among these
genes. Thus we simultaneously address three goals:� Finding functional relationships among genes, on a

genome-wide scale.� Obtaining the literature specifically relevant to the
function of these genes.� Producing a short term list characterizing the document
set. This list suggests why the genes are considered rele-
vant to each other, and what their biological function is.

The rest of the paper is organized as follows: Section 2
touches on current methods in large-scale expression anal-
ysis and surveys some of the developments in literature
use for gene analysis; Section 3 describes our approach of
searching the literature and its use for finding functional re-
lationships among genes; Section 4 presents experiments
and results over the set of well-studied yeast genes dis-
cussed by Spellmanet. al. [14]. Our results demonstrate
that automated information retrieval from the literature is a
powerful tool for determining relationships among genes,
and for assisting in both the design and the result-analysis
of further large-scale experiments.

2 Related Work
Most analysis efforts, applied to large amounts of genomic
data to date, concentrate on clustering genes, according
to their expression patterns. The idea of such methods
is to detect correlated expression patterns that may sug-
gest regulatory and possible functional relationships. Tradi-
tional methods based on hierarchical clustering [14] or self-
organizing maps [15], as well as more advanced stochas-
tic clustering techniques [2, 12], have been shown to ef-
fectively group genes by the observed expression patterns.
(See, for instance, work by Spellmanet al. [14], on func-
tional relationships in yeast genes.)

While clusters of simultaneously expressed genes often cor-
relate with common function, this well-grounded approach
has the following limitations as a stand-alone analysis tool:� Functionally-related genes may demonstrate strong

anti-correlation in their expression levels, (a gene may
be suppressedto allow another to be expressed), thus
clustered separately, blurring the existing relationship.

� Genes sharing similar expression profiles do not always
share a function; they may be involved in distinct bio-
logical processes. as demonstrated below.� Genes may play multiple roles in complex, interrelated
biological processes. The stringent assignment of genes
to single clusters by most clustering methods, poten-
tially prevents the exposure of complex interrelation-
ships among genes.� Even when similar expression levels indeed correspond
to similar functions, the functional relationships among
genes in a cluster can not be determined from the clus-
ter data alone. Explaining the formed clusters requires
a lot of additional effort.

For example, careful analysis of the expression-based clus-
ter CLB2 described by Spellmanet. al. [14] reveals genes
involved in several distinct cellular functions;CHS2, BUD8,
and IQG1 are all involved in maintenance of the cell wall,
whileACE2, ALK1, andHST3are involved in nuclear events.
Moreover, members of a common signaling pathway may
play antagonistic roles, demonstrating anti-correlated ex-
pression levels. Thus, clusters based on expression profiles
must be further analyzed, with respect to biological roles,
before reliable conclusions about their biological function
can be drawn.

In many cases, the information needed for such analysis
can be found in the published literature. The conventional
method for finding it, has been for individuals to search
through the literature, gene by gene, or rely on their own
knowledge of the biological processes. While this proce-
dure can be effective on a very small scale, it does not scale
up well to accommodate thousands of genes. Moreover, the
advancement of genome sequencing techniques is accom-
panied by an overwhelming increase in the amount of liter-
ature discussing the discovered genes. This combined abun-
dance of genes and literature, produces a major bottleneck
for interpreting and planning genome-wide experiments.

To expedite the analysis process we propose a new auto-
mated method for exposing biological relationships among
genes based on the biomedical literature. While our method
can be used as a stand-alone tool for mining the literature, it
complements the above approaches by providing literature-
based explanations to the clusters and the relationships dis-
covered directly from the expression data. We next survey
current research aimed at automating literature mining in
the context of gene analysis.

The prevailing on-line source for biomedical abstracts is
the PubMeddatabase. A typical search for relevant liter-
ature starts with abooleanquery; The user provides a term
(e.g.OLE1), or a boolean term-combination (e.g.OLE1 and
lipid). The result is the set ofall the abstracts inPubMed
satisfying the query constraints. This form of query suffers
several limitations:



1. The number of abstracts typically retrieved ispro-
hibitively large.

2. A substantial part of the retrieved abstracts areirrele-
vantto the user’s information need.

3. Many relevant abstractsmay not be retrieved. For
instance, abstracts discussingOLE1, using one of its
aliases (e.g. DNA repair protein or fatty-acid desat-
urase 1) will not be retrieved.

Problem 2 above stems mostly from the well-knownpol-
ysemyphenomenon; a word may have multiple meanings
in different contexts. For instance when looking for the
term “CD” we may retrieve all abstracts referring to “Cy-
tosine Deaminase” in which we are interested but also all
those discussing “Crohn’s Disease” which are completely
unrelated. On the other hand Problem 3, stems fromsyn-
onymy, where a single concept may be discussed in various
abstracts under different names.

The lack of uniformity in nomenclature used by authors fur-
ther aggravates the problem. For instance, a search for ab-
stracts about the geneAGP1 may not retrieve abstracts dis-
cussing this same gene under another name (e.g.YCC5).
To improve the effectiveness, efficiency and accuracy of the
navigation through the literature, several methods have been
recently suggested, partly-automating the literature scan-
ning process.

Most existing work focuses on automatedinformation ex-
traction, using curated lexica or natural language process-
ing for identifying relevant phrases and facts in text, to assist
in finding abstracts about a given gene or the relationships
between specific genes. Leek [8], whose work is the earli-
est we are aware of in this domain, suggests using hidden
Markov models (HMMs) for extracting sentences discussing
gene localization on chromosomes. Cravenet. al. [5, 10]
have continued this line of work, presenting systems for
extracting sentences discussing sub-cellular protein local-
ization, training classifiers and anHMM to identify such
sentences. Their methods require that a list of protein
names and location descriptors are provided. Rindflesch
et. al. [11], and more recently Friedmanet. al. [6], pro-
pose methods based on parsing and thesauri use to extract
facts about genes and proteins from documents. Blaschke
et. al. [3] use a similar method, for extracting information
about protein interaction from scientific text.

These methods have typically been applied to small and
limited sample sets of documents/terms. They all require
the user to specify a very accurate query in order to pro-
vide high-quality results. Most importantly, they all rely on
strong assumptions about the use of natural language, such
as terms typically used to indicate relationships, the typical
sentence structure, gene/proteins names and their format,
and the way these names are used within sentences. Such
assumptions are not readily met throughout the abundant bi-

ological literature, (see [9] for an extensive discussion), thus
limiting the scope within which these methods are effective.

A major step towards large-scale analysis was recently
taken by Jenssenet. al. [7]. Using apredefinedlist of gene
names and symbols, the authors executed a boolean search
overPubMed, finding all abstracts inPubMedmentioning
these genes. They then built a graph with the genes as
nodes, and edges connecting genes that are mentioned in
the same abstract. Weights on the edges represent the num-
ber of co-occurrences. The result is a very large network of
genes related through the literature, and abstracts justifying
each edge.

While the above is the most recent and extensive effort to-
wards using the literature on a genome-wide scale, pro-
viding an unprecedented tool for researchers, it still suf-
fers several limitations. First, as pointed out by the au-
thors, the method relies on having acomplete list of gene
names and synonyms, it can only reveal relationships that
arealreadyreported in the literature, and does not attempt
to detect new relations. Moreover, even while 60-70% of
the found relationships (based on the authors’ sample of
1000 analyzed pairs of genes) are correct in some respect,
only a few of them (less than 10%) correspond to actual
functional relationship. Another important point, pertain-
ing to microarray experiments, is that over 30% of the re-
lations detected by the system areco-expressionrelation-
ships. These relationships may stem from papers report-
ing large-scale expression experiments, which are rich in
co-occurring gene names. Researchers trying to biolog-
ically explain co-expression results in their own experi-
ments, would typically look for biological relations among
genes that are reported in the literatureindependentlyof the
mere co-expression fact. Thus, in such scenarios, a draw-
back of the above method is that it finds relations among co-
expressed genes based on their co-expression as formerly
reported in the literature, without providing an independent
way toexplainthis co-expression. The above is an artifact
of the strong reliance of the method on co-occurrence of
gene names.

As an alternative to using explicit gene names/synonyms
while searching for “relationship sentences” or co-
occurrences (known asinformation extraction), we shift our
search focus from words and sentences to complete rele-
vant abstracts. This kind of search is part of the field known
as information retrieval. Moreover, we concentrate on the
similarity-based query paradigm [16]. The user provides a
sample relevant document and obtains other documents dis-
cussing the same subject matter. This mechanism does not
depend on the choice of explicit query terms, but rather on
the contents and quality of the example document. We use
a recently developed probabilistic algorithm that, given an
example document, finds a set of documents most relevant



to it (a theme) and produces aset of termssummarizing the
contents of this document set [13]. Other similarity-based
methods for finding relevant documents do exist (see [16]
and references within). However, these methods do not pro-
vide a list of summarizing terms which make the retrieved
documents similar. The algorithm, as outlined in the next
section, forms the basis to our approach.

3 Detecting Gene Relations and Functions
through the Literature

Our approach is based on the hypothesis that many indi-
vidual genes and their function are already discussed in the
literature; A thorough analysis of the literature is a primary
step for both design of experiments and results analysis fol-
lowing them. Thus, we shift our attention from experimen-
tal data to documents.

The actual search is conducted within a large2, collection
of PubMedabstracts, covering the literature relevant to the
domain of discourse (e.g. all the abstracts inPubMeddis-
cussing yeast genes). We map each gene to a single abstract
within the collection, discussing the gene’s biological func-
tion. This abstract is treated as the gene’srepresentative,
and we call it thekernel abstractfor that gene.

Applying the theme-finding algorithm, as described in Sec-
tion 3.1 to each kernel, produces for each gene a body of
related literature (20-50 abstracts bearing a commontheme)
based on the kernel abstract representing it, along with a
list of terms that characterize the relevant literature. It is
important to note that, in contrast to other literature-based
methods, the retrieved abstracts are considered relevantnot
because they contain thesame gene nameas the one associ-
ated with the kernel abstract, but rather because they discuss
the sameissues(typically related to functionality) as those
discussed in the kernel abstract. Once a set of abstracts is re-
trieved for each gene, we use an automated method to com-
pare the abstract sets, and derive functional relationships
among genes, as described in Section 3.2.

To use the theme-finding algorithm we first have to map
the set of geneshG1; : : : ; GN i to a set of kernel abstractshK1; : : : ;KN i (see top of Figure 3). Currently, kernel ab-
stracts are obtained from the available curated literature
about yeast genes (as explained in Section 4). The qual-
ity of the kernel abstracts strongly effects the quality of the
results. Abstracts discussing experimental methods, rather
than biological function, tend to draw other abstracts de-
scribing the same experimental methods, resulting in an ab-
stract set not representative of the gene’s function. In con-
trast, kernels discussing gene biology typically lead to high
quality information about the function of related genes. The
kernel selection process may be improved using machine-2On the order of severaltens of thousandsof abstracts.
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Figure 1: Typical term distribution for theNutrition theme.

learning methods, so that each kernel abstract indeed repre-
sents the biology of its associated gene.

We next present the theme-finding algorithm for finding rel-
evant abstracts (see [13] for a complete discussion), fol-
lowed by a description of the second phase, in which rela-
tions are detected among the obtainedabstract collections.

3.1 Finding Themes

The idea underlying our algorithm is that a set of docu-
ments sharing a coherentthemecan be characterized by a
set of probability distributions. For example, documents
discussing genes responsible fornutrition during the cell-
cycle, are likely to contain terms such asfructoseor glu-
coseand unlikely to contain the termlipid, as illustrated
in Figure 1. More explicitly, our database,DB, is a set of
documents represented asM -dimensional binary vectors,
whereM is the number of distinct terms3 ft1; : : : ; tMg in
the database. The vector representation is commonly used
in information retrieval systems. A documentd is a vectorhd1; d2; : : : ; dM i, where:di = �didef=n 1 if ti 2 d ;

0 otherwise : (1)

Presence/absence of terms in documentd is viewed as a
result ofM independent Bernoulli events.

A theme, T , within the databaseDB, is a set of docu-
ments with a common subject. Documents sharing a com-
mon theme can be modeled as though they were gener-
ated through sampling from a common set of independent
Bernoulli distributions representing the theme. Thus, a
themeT , is modeled as a set of the following Bernoulli
distributions. These distributions govern the occurrence of
terms in the theme’s documents:� pTi — the probability that the termti occurs in a docu-

mentd, given thatd is a themedocument:pTi def=Pr(ti 2 djd 2 T ) :� qTi — the probability that the termti occurs in a
documentd, given thatd is an off-themedocument:qTi def=Pr(ti 2 djd =2 T ) :3Termsconsist of one or two words, excluding stop words.
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Figure 2: Stochastic Model for Generating Documentd.� DBi — the probability that the termti occurs in a doc-
umentd, given thatd is a document in the database,
regardless of its being an on-theme or an off-theme
document:DBidef=Pr(ti 2 djd 2 DB) :

The distributionDBi models the possible arbitrary usage
of terms in the language, without being strongly indicative
of the main topic discussed. (e.g. the sentence“I missed
my flight” is not particularly relevant to the topicaviation,
despite the occurrence of the termflight).

Given a themeT , each documentd has some a-priori prob-
ability, regardless of its content, to be a theme document.
This probability is denoted byPd where:Pddef=Pr(d 2 T ).
Throughout this paper, we assume this parameter to be
known and fixed for all documents, and do not attempt to
estimate it here. (In the reported experimentsPd = 0:01 for
all d 2 DB.)

The last component of our model is the Bernoulli event
representing the choice made for each termti, in each
documentd, whether it is to be generated according to
the database probability,DBi or according to the specific
on/off-theme distribution. We denote this probability, for
each termti, as�i.
Combining the above components, for a given themeT , we
obtain the following generative model for each documentd 2 DB, as depicted in Figure 2:� Decide, tossing a biased coin (OnThemein the figure)

with Pr(H) = Pd, whetherd is in themeT .� For each termti decide if ti is distributed according
to the general database distributionDBi, by tossing a
biased coin (FromDBi in the figure) withPr(H) = �i.� For each termti decide ifti 2 d by tossing one of the
following biased coins:� The database coin forti, (DB-Includei), if ti is gen-

erated according to theDB distribution.� The on-theme coin for termti, (T-Includei), whosePr(H) = pTi , if d 2 T andti is generated according
to pTi (FromDBi came uptails).� The off-theme coin forti, (NT-Includei), whosePr(H) = qTi , if d =2 T and ti is generated accord-
ing toqTi , (FromDBi came uptails).

Note that for each documentd 2 DB, weknowthe terms it
contains. Themissing informationis which documents are
themedocuments and which terms are generated from the
general distribution,DBi, as opposed to the theme-specific
ones,pTi andqTi . Using a generative model allows us to ex-
plicitly represent and address such missing information. To
support calculations within this model, we assumecondi-
tional independencebetween pairs of terms given the doc-
ument containment in the theme, as well as independence
among the hidden variables (representing themissing infor-
mationabove).

Under this framework, given a kernel document repre-
senting a gene, our task is to find a set of parametersR = ffpTi g; fqTi g; f�igg4, over all termsti in the database.
Using a probabilistic Bayesian framework, we look for the
parameters that maximize the likelihood of the documents
in the database,Pr(DBjR). These parameters are used to
find the documents that are most likely to have been gener-
ated by sampling from these distributions. The latter doc-
uments are the ones focused on the theme represented by
these distributions. In addition, we produce a set of terms
characterizing this theme. These are the terms that have a
high probability to occur in theme documents (highpTi ) and
a much lower probability to occur in documents outside the
theme (high ratiopTi =qTi ).

To estimate the Bernoulli parameters under missing infor-
mation as described above, we use an Expectation Maxi-
mization algorithm (EM). This algorithm aims to maximize
the likelihood of the database partition into theme/off-theme
documents, given the Bernoulli parameters, based on the
kernel document. The complete algorithm is described else-
where [13], and we provide its outline here.

An EM algorithm starts by initializing the model parame-
ters, (pT ; qT ; �T ), based on some prior knowledge; We ini-
tially roughly approximate the Bernoulli parameters based
on the kernel document and its comparison to the rest of the
database5. The algorithm then alternates between:� theE-stepof computing theexpected likelihood, of the

documents to be in the theme, given the current param-
eter estimates, and� theM-stepof finding new model parameters thatmax-
imize the likelihood of the database partition into
theme/off-theme documents given the parameters.

This iterative process is guaranteed, under mild conditions,
to provide monotonically increasing convergence of the
likelihoodPr(DBjR). We have proved that our algorithm4Note that estimatingDBi is straightforward since all the required
information is present in the database.5Obviously, having multiple kernels to start from for a single
theme would lead to a better initial estimate. Since obtaining infor-
mative kernels is currently hard, we make do with a single kernel.



is an instance of this family of algorithms, and follows this
same pattern.

The algorithm is executed for each of the kernel doc-
uments,hK1; : : : ;KN i, representing each of the genes,hG1; : : : ; GN i, as illustrated in the top part of Figure 3. The
result for each gene consists of:� a list of the top 50 documents discussing the same

theme as the kernel document, ordered by their degree
of relevance to the theme, and� a list of terms (keywords) constituting the theme, or-
dered by their degree of relevance to the theme.

Note that the keywords in the list arenot merely the terms
most probableto occur in the set of documents discussing
the theme, but rather those that are much more probable to
occur within this set than throughout the rest of the database.
As shown in Section 4, this output in and of itself provides
valuable support for gene analysis. Still, we further extend
it in the next phase, to assist in finding biological relations
among the genes.

3.2 Finding Functional Relations among Genes

Our primary assumption is that common relevant literature
is a strong indicator of common functionality among genes;
Genes which have similar lists of top ranking documents
associated with them, share some common biological func-
tion described in the common literature. Our task is thus
reduced to finding similarities among thesetsof documents
retrieved in the previous phase of the algorithm, and asso-
ciating with each gene all other genes that have a similar
document set.

To do this we use thePubMed identifiersassociated with the
abstracts, without examining the abstracts’ contents. For
each kernel we construct avectorcharacterizing it, based
on theabstractsdeemed relevant to it by the first phase of
the algorithm (as described in Section 3.1). Note that this
vector is different from the term-vector described in Sec-
tion 3.1, as its entries representassociated abstract identi-
fiers rather thanterms. This vector representation can be
used to rank for each kernelKi, all the other kernels by
their proximity toKi in the kernel-vector space. Since each
kernel corresponds to a gene, we can map the inter-related
kernels back to their respective genes, and obtain a set of
genes that are closely related. The method is illustrated at
the bottom part of Figure 3 and is further described in the
following paragraphs.

First, we construct the set ofPubMedIdentifiers of relevant
abstracts,Sr, as follows:
LetN be the number ofkernel abstractsused for represent-
ing genes6. We denote each kernel abstract byKi where6The number of analyzedgenesmayexceedN since the same ker-
nel abstract might discuss and represent more than a single gene.

1 � i � N .
For each kernel,Ki, letLi be the set ofPubMedidentifiers
for the50 top ranking abstracts associated withKi. For-
mally: Lidef=fIDi1 : : : IDi50g; whereIDij is thePubMediden-
tifier of thejth abstract ranked as relevant for kernelKi.
Intuitively, if two distinct genes,Gi andGj , represented by
kernelsKi andKj , have similar sets of relevantPubMed
identifiers,Li andLj , then the literature relevant to these
two genes has a lot in common. This in turn suggests that
some roles and functions (typically discussed in the litera-
ture) are shared by these two genes.

The number ofPubMedidentifiers used for comparing ab-
stract lists can be reduced by noting that identifiers occur-
ring only within a single listLi, do not contribute to the
evaluation of any other list,Lj , as similar toLi. Let ID
denote a singlePubMedidentifier andjIDj denote the total
number of identifier lists,Li, in which ID occurs. Our cal-
culations need only take into account those identifiers for
which jIDj> 1. Thus,Sr is defined to be the set ofPubMed
identifiers of all abstracts that are in the relevance list of at
least two kernels. Formally:Srdef= N[i=1Li � fID j jIDj � 1g : (2)

We denote the number ofPubMedidentifiers inSr, jSrj, byMr, and denote eachPubMedidentifier inSr asIDj where1 � j �Mr.
We can now represent each kernel abstractKi, as anMr-
dimensional vector,Videf=hv1i : : : vMri i overSr wherevji are
defined as follows:vji = �ijdef=n 1 if IDj 2 Li

0 otherwise : (3)

Each such kernel vector is then normalized.

To measure similarity between each pair of kernels, we cal-
culate thecosine coefficientbetween their respective vec-
tors. The cosine coefficient is often used in information re-
trieval to assess similarity between documents, where doc-
uments are viewed as term-vectors (see [16] and earlier ref-
erences within). We use it in anew, non-traditional way,
as our vector represents the kernels based on otherab-
stractsrather thanterms. Formally, the cosine coefficient
between two vectors,Vi; Vk, whose respective lengths arekVik; kVkk is defined as:cos(Vi; Vk)def=PMrj=1 vji � vjkkVik � kVkk :
Since the vectors are normalized, their length is1 and only
the numerator needs to be calculated.

The closerVi andVj are to each other, the closer the coef-
ficient is to1. Hence, by calculating for each kernel vector,Vi, the cosine coefficients with respect to all other kernel
vectors,Vj , we obtain for each kernel a ranking of how re-
lated it is to each of the other kernels,Kj . Recalling that
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Figure 3: Finding Documents and Terms related to Genes (top), and Setsof Related Genes (bottom).

each kernelKi corresponds in turn to a geneGi, we obtain
relationships among the respective genes. The reasoning for
the assumed relationship is given by the lists of terms asso-
ciated with the themes generated from the kernel abstracts,
and thus the reasoning behind the suggested relationships
can be easily checked.

The experiments and the results reported in the next section
demonstrate the value of our methods for retrieving relevant
abstracts and terms and for obtaining meaningful relation-
ships among genes.

4 Experiments and Results

We apply the algorithms to yeast genes, and show how our
methods indeed find relevant abstracts and provide useful
summary terms. Moreover, we also discover meaningful
relationships among the genes. We use the yeastDNA mi-
croarray testbed since the validity of our methods can only
be assessed by comparison of the results with existing sum-
maries of biological information; The SGD7 and the YPD8

databases as well as the functional analysis given by Spell-
manet. al. [14], are critical for rapid, objective evaluation
of our results.

The rest of this section describes the experimental setting
and reports the results obtained by applying our algorithm
to the data. The quality of the results was verified through
comparison to the functional groups of genes according to
Spellmanet. al. [14]. The portion of Spellman’s table rele-
vant to the results discussed here is shown in Table 1. The
table categorizes the yeast genes according to their func-
tionality (rows) and the phase in the cell-cycle in which they
are expressed (columns).

4.1 Experimental Setting

The algorithms are applied to yeast genome data, in an at-
tempt to find relevant literature and gene relations for the
genes analyzed by Spellmanet. al. [14]. The names of all7The Saccharomyces Genome Database available at
http://genome-www.stanford.edu/Saccharomyces/.8The Yeast Proteome Database, at
http://www.proteome.com/databases/index.html.

the genes used by Spellman9 were compared against the
Saccharomyces Genome Database (SGD). Out of about 800
genes found by Spellmanet. al. to be cell-cycle regulated,
only 408 genes had curatedPubMedreferences in the SGD,
and our experiments concentrate on these 408 genes.

For each of the genes, the oldest reference cited in SGD is
used as thekernel abstractcorresponding to the gene. Since
some of the closely related genes share the same reference,
we obtain 344 distinct kernel abstracts. The database used
in our experiments is a subset ofPubMed, consisting of
33,700 abstracts discussing yeast genes. It includes about
2,250 abstracts deemed relevant for our 408 target genes
by the SGD curators (about 86% of the total curated ab-
stracts as of August, 1999). From all abstracts, we elimi-
nated standard stop words, the Mesh term taggings typically
associated withPubMedentries, as well as very common or
extremely rare terms (those that occur in over10% of the
abstracts in the database or in 2 or fewer abstracts).

We applied the theme finding program, described in Sec-
tion 3.1, to the 344 kernels, searching over the database of
33,700 abstracts. For each kernel, the program outputs a
list of the top 50 related abstracts and a list of key words
describing the contents of this relevant set.

The next phase, consists of looking forrelationshipsamong
genes. For each of the kernels, the previous phase produced
a list of 50 relevant abstracts. The first step of the current
phase is to construct the set of relevant abstracts retrieved
for all the kernels, eliminating duplicates. That is, even if
an abstract is relevant to more than one kernel, it is still
included in the set of relevant abstracts only once. We then
eliminate all abstracts that are relevant to a single kernel
only, as explained in Section 3.2. We are left with a set of
3063 abstracts that are relevant to 2 or more kernel abstracts,
(this is the setSr, defined in Eq. 2).

Each kernel is represented as a 3063-dimensional vector
(Eq. 3), and the cosine coefficient is used to measure the
similarity of each kernel to all the others. Each kernel is9Available through the genome web site at Stanford,
http://genome-www.stanford.edu/cellcycle/ .



Biological G1 S G2 M M/G1
Function
Replication CDC45 ORC1 CDC47 CDC54 CDC6 CDC46
Initiation MCM2 MCM6 MCM3

Fatty Acids/ EPT1 LPP1 PSD1 AUR1 ERG3 LCB3 ERG2 ERG5 PMA1 ELO1 FAA1 FA A3
Lipids/ SUR1 SUR2 SUR4 PMA2 PMP1 FAA4 FAS1
Sterols/

Membranes
Nutrition BAT2 PHO8 AGP1 BAT1 GAP1 DIP5 FET3 FTR1 AUA1 GLK1 HXT1

MEP3 PFK1 PHO3 HXT2 HXT4 HXT7
PHO5 PHO11 PHO12
PHO84 RGT2 SUC2
SUT1 VAP1 VCX1
ZRT1

Table 1: Yeast Genes: expression during cell-cycle and functionality. (Adapted from Spellmanet. al. (1998))

then converted back to the gene(s) for which it was curated.
The genes that are grouped as similar according to our
method are compared with those grouped by functionality
in Spellman’s table (parts of which are shown in Table 1).

To quantitatively measure the validity of the keyword list
assigned to each kernel, we compare each keyword to its
associated function using a mini-thesaurus obtained from a
panel of four independent yeast experts. Each functionality
description listed in Spellman’s table (such asSecretionor
Chromatin) is associated with the terms judged most closely
related to it according to the experts. Each expert received
a list of the 22 function descriptions listed by Spellmanet
al, and a separate list of 330 alphabetically-sorted summary
terms resulting from our program. The experts assigned to
each term in the latter list, the functionality descriptors that
they judged to be most related to it; non-specific terms were
left unassigned. An example of two entries in the resulting
thesaurus is shown in Table 2.

Function Associated Terms
Chromatin chromatids, chromatin, chromosome,

sister chromatids, telomere, telomeric
Secretion acid phosphatase, coatomer, endoplasmic

endoplasmic reticulum, er, golgi apparatus
golgi complex, golgi transport, golgi, v snare

Table 2: Example of thesaurus entries associating gene
function with related terms.

For each gene, we compare its functionality according to
Spellman with the functionality assigned by the panel to
each of its key terms, counting how many of the key terms
indeed correspond to the gene’s functionality according to
Spellman and how many do not. The results are described
throughout the rest of this section.

4.2 Results

As described in Section 3.1, for each gene represented by
a kernel abstract we obtain through the similarity query
mechanism applied to the whole database:
1. A set of related abstracts.
2. A set of summarizing key terms.

In addition, from the set of related abstracts we obtain, for
each kernel, through the vector representation and the co-
sine coefficient calculation, (described in Section 3.2), a set
of related kernels. The latter kernels are mapped back to
form a set of related genes.

To assess the value of the results obtained in the first phase
we examine the set of summarizing keywords. We also
examine the lists of related genes obtained in the second
phase. The quality of the results is checked through a com-
parison with the functionality assigned to genes by Spell-
manet. al.10, shown in Table 1. Since many of the genes in
the experiment are not assigned any functionality by Spell-
man (120 out of the 344 kernels used) , we can only ver-
ify in this manner results for the ones whose functionality
was determined by Spellmanet. al. However, point-wise
manual checking of the abstracts and genes associated with
these 120 kernels not discussed by Spellman, shows that for
many kernels the results do agree with the known biology
and gene relationships.

An example of a typical successful search is shown in Ta-
ble 3. The left column lists thePubMedidentifiers for two
kernel abstracts together with the genes they stand for and
their respective functionality according to Spellmanet. al.
The second column lists, for each of the two kernels, the top
10 keywords associated with the retrieved set of abstracts,
as determined by our algorithm. The third column lists the
top genes associated with each kernel11, based on the co-
sine coefficient. The fourth column lists the function of each
gene according to Spellmanet. al, as a validity check for
our results. Since our experiment included more genes than
listed in Spellman’s table, some of the genes in the third col-
umn are not assigned functionality by Spellman. For these
genes, (marked by ‘�’ in the table), we found the function-
ality in YPD.10The gene functionality assigned by Spellmanet. al. is based on
human judgment and expertise, rather than on an automated pro-
cess.11ELO1 has only 9 genes associated with it, since there were 9
non-zero cosine coefficients associated with its kernel.



Kernel (PMID, Keywords Assoc. Function
Gene,Function) Genes

8702485 fatty acid, OLE1 (Fatty Acid, Sterol. Met.)�
ELO1 fatty, FAA4 Fatty Acid/Lipids/Sterols/Membranes

Fatty Acid/ lipids, FAA3 Fatty Acid/Lipids/Sterols/Membranes
Lipids/ acid, SUR2 Fatty Acid/Lipids/Sterols/Membranes
Sterols/ grown, FAA1 Fatty Acid/Lipids/Sterols/Membranes

Membranes medium, ERG2 Fatty Acid/Lipids/Sterols/Membranes
carbon, PSD1 Fatty Acid/Lipids/Sterols/Membranes
synthase, CYB5 (Fatty Acid, Sterol. Met.)�
strains, PGM1 (Carbohydrates Met.)�
deficient

7651133 hexose, HXT1 Nutrition
HXT7 glucose uptake, RGT2 Nutrition

Nutrition glucose conc., HXT4 Nutrition
fructose, HXT2 Nutrition
glycolytic, GLK1 Nutrition
glucose, SEO1 (Small Molecules Transport)�
sugars, PRB1 (Protein Degradation)�
uptake, AGP1 Nutrition
aerobic, ZRT1 Nutrition
utilization MIG2 (Carbohydrates Met.)�

Table 3: Example of a result obtained from two different kernel/geneusing our algorithm, compared with functionality according to
Spellman orYPD (YPD functionality denoted by�).

The table shows that except for two genes (PGM1 and
PRB1) all of the genes found for these two kernels have
a strong functional relationship to the genes represented by
the kernels, and the keywords provide a strong indication of
this biological function. (Note that the keywords are asso-
ciated as asetwith the whole kernel entry and not separated
as one keyword per associated gene.) We note that PGM1
is involved in carbohydrates metabolism which is still func-
tionally related to fatty acids metabolism. PRB1 is respon-
sible for protein degradation, which is not related to nutri-
tion. It is included in this set, since the abstract chosen for
its kernel abstract discusses regulation of the enzymePRB1p
by glucose, rather than the biological function ofPRB1p.

The results for about 100 out of the 220 kernels for which
we had the Spellman-assigned functionality, closely resem-
ble the ones demonstrated in Table 3 in the strong agree-
ment with Spellman’s cluster assignment and in the accu-
rate description as given by the keywords learned by the
similarity query algorithm.

As aquantitativemeasure, we calculated the average num-
ber of correct and incorrect keywords among the 5 top-
ranking keywords associated with each of these kernels. A
keyword occurring in a list for a specific gene (kernel), is
consideredcorrect if it appears in our thesaurus entry la-
beled by the same function as the one assigned to the gene
by Spellman. If its thesaurus entry is labeled by adifferent
function, it is consideredwrong. If it was assigned no func-
tion by our panel of experts it is considerednon-descriptive.
An average of3.27out of the 5 top ranking keywords, were
associated with thecorrect function, while only1.12 out
of the 5 were associated with the wrong function, and0.61
out of the 5 were non-descriptive. The difference between

the high rate of correct keyword assignment relative to the
wrong and the non-descriptive assignment is highly statisti-
cally significant (p� 0:005, using the two-samplet-test).

For other kernels the groups of related genes contain many
genes not assigned functionality by Spellman, which make
the results harder to validate. Another set of cases, in which
our results deviate from Spellman’s functionality grouping
of genes, are those for which the kernel abstract was not dis-
cussing the biology of the gene but rather the experimental
method used to discover it. An example of such a result is
given in Table 4.

In this case, the kernel abstract discusses the biology of the
techniqueused for studying the MCM genes, involving au-
tonomously replicating plasmids. The kernels considered
similar to it also discuss such techniques. Thus, the com-
monality unifying the resulting set of genes, is that their
curated abstracts all discuss manipulations within chromo-
somes, rather than gene biology. The keyword list (which
highly ranks the termsautonomous replicationand contains
leu2andura3), indicates that the theme underlying this set
of abstracts and genes is not based on the biological func-
tion of the genes.

We are considering approaches for automating the kernel
abstract selection, and expect them to lead to consistently
good results. The excellent experience with the 100 high-
quality kernel abstracts demonstrates that once a single in-
formative abstract is given for a gene, many other quality
abstracts about the related genes are automatically found,
accompanied by a succinct characterization of their com-
mon functionality.



Kernel (PMID, Keywords Assoc. Function
Gene,Function) Genes

6323245 ars, CDC10 Site Selection/Morphogenesis
MCM2,MCM3,MCM6 autonom. replicating, PHO3 Nutrition

Replication Init. replicating sequence, EST1 DNA Syn
autonomously, MIF2 Chromatin
minichromosomes, PHO12 Nutrition
replicating, POL2 DNA Syn.
centrometric, DHS1 DNA repair
leu2, SNQ2 *
plasmids, SMC3 Chromat. Cohes.
ura3 EXG2 Cell Wall Synt.

Table 4: Example of a result obtained from an uninformative kernel, compared with functionality according to Spellman.

5 Conclusions and Ongoing Work

The information-retrieval approach presented here has four
clear advantages:

1. It is an effective way for detecting putative relationships
among genes. These can then be verified through well-
targeted experiments.

2. It provides the relevant literature for analyzing the ex-
perimental results.

3. It generates summarizing terms explaining the discov-
ered relationships. This summary can help explain and
evaluate the relationships found by directly clustering
the expression levels.

4. It is independent of natural language usage and nomen-
clature issues, as it does not search for explicit gene
names or statements about their relationships.

We also note that our method does not use any pre-
clustering of the genes among which it is looking to find
relationships.

Thus, our method can be used both for generating hypothe-
sesprior to the experiments, and forpost-experimental in-
terpretationof the results. Given afunctionally descrip-
tive kernel abstract, our program can provide insight into
gene functional groupings, similar to that currently obtained
through laborious, manual literature surveys relying on hu-
man expertise. Obviously, our method can not ascribe
function to genes which have not yet been studied. How-
ever, by pointing out commonalities between abstracts dis-
cussing distinct genes, it can uncover functional relation-
ships among known genes which heretofore have gone un-
noticed.

The main current limitation of our technique is that of ob-
taining functionally descriptive kernel abstracts. We are
studying machine-learning methods that can assist in au-
tomating the kernel selection process. Given a good source
of kernels, we expect that utilizingmultiple kernelsfor each
gene, rather than a single kernel, would provide a better ini-
tialization to the EM algorithm and further improve the re-
sults. Another promising direction is that of extending the
vectors representation of abstracts to include gene expres-
sion values, simultaneously searching for related abstracts

and similarly expressed genes.

The methods described here complement the analysis tech-
niques currently applied to microarray data. Combining our
approach with other emerging analysis methods, can greatly
expedite the tedious task of analyzing the vast amounts of
data generated from genome-wide experiments.
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