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Abstract terdependencies, we could understand and prevent, at the

Current genomic research is characterized by immense wbaim genomic level, undesirable processes, such as infection or

data, accompanied by a tremendous increase in the number ofumor development, while encouraging desirable ones, such
gene-related publications. This wealth of informationsergs as normal growth and development.

a major data-analysis challenge. An ultimate goal is to unde Th di h terized by the isolated
stand the complex biological interrelationships amonglizitov- € preceding era was characterized Dy the isolated re-

ered genes and proteins. Scanning the abundant literamitatze search of only a few genes or proteins at a time. Such stud-
about each gene, and plenty of human expertise are curmently  ies produced relatively little data that could be manually an-
quired as a step towards meeting this goal. As has been hecent alyzed and turned intknowledgehrough careful and slow
noted by several research groups, automated systemsfac&g  jyyestigation. Obviously, this approach does not scale up

relevant information from the literature can complemeristixg t tth tint tati ds of abundant I
techniques, speed-up the analysis process, and greadpenbur 0 meet the current interpretation needs of abundant, hewly

understanding Of genetic processes_ We present a new abproa produced data WIthOUt SUItab|e automated |nterpretat|0n
based on probabilistic information retrieval, which usks lit- methods the full potential of the advanced technology, as
erature to establish functional relationships among gemea a means to understand gene and protein function on a ge-
genome-wide scal&xperiments applied to documents discussing nomic scale. cannot be realized.

yeast genes, and a comparison of the results to well-estteili '

gene functions, demonstrate the effectiveness of our appro The ability to rapidly survey the published literature con-
) stitutes a necessary step in this interpretation process. It is
1 Introduction also important fodesigningurther large-scale experiments

Advances in computational and biological methods during while generating hypotheses about plausible relationships
the last decade have remarkably changed the scale of ge2MONg genes. Conducting a literature search about each
nomic research. Sequencing machines and assembly alggdene separately is a tedious task, especially given that the
rithms enable sequencing complete genomes within monthggenomic and proteomic literature is expanding in an un-
and even weeks. Automated gene finding methods [1, 4]precedented rate. Several techniques have recently been
expedite the identification of tens of thousands of genesdeveloped to address the need for expediting this search,
within the sequenced DNA. Modern techniques such asaS discussed in Section 2. Such methods are typically based
DNA microarrays allow simultaneous measurements for all 0N strong assumptions regarding the use of natural language
genes/proteins expressed in a living system. These methin the literature, and on the use of common gene and protein
ods, in turn, produce large quantitiesdsta. When pro- ~ nomenclature.

cessed, it can provide actuformationabout gene ex- In contrast to other literature-based tools, the work pre-
pression patterns; for instance, which genes are expressegented here supports literature analysis areaome-wide

in various tissues, which ones are over/under expressed a§cale without strong assumptions about explicit terminol-
the onset of a disease or during a specific phase of the celbgy and language usage. The hypothesis underlying our

development. approach is that the function of many genes is (separately)
Still, the ultimate goal of conducting large-scale-biology is described in the literature; by relating documents talking
to translate these large amountsdfbrmationinto knowl- about well understood genes to documents discussing other

edgeof the complex biological processes governing the hu- 9enes, we can predict, detect and explain the functional re-
man body. Specifically we would like to understand the lationships among the many genes that are involved in ex-
biological function of genes and proteins and the inter- Periments. We do not attempt here to draw any informa-
relationships between them. The hope is that onckveey  tion from the genomic data itself. Instead, we use a large
the biological roles of genes, proteins and their various in- database of abstracts, (a subsePobMed), as our infor-
mation search space. Each gene is mapped to a respective
*Corresponding author.emdihgi t . shat kay@el era. com document, roughly discussing the gene’s biological func-
This work was done while all the authors were at the National —_
Center for Biotechnology Information, NLM, NIH.  An earlier 'PubMedis maintained by NCBI/NLM and is accessible through
version appeared in the ISMB2000 conference. http://www.ncbi.nlm.nih.gov/PubMed.



tion. The literature database is then searched for documents e Genes sharing similar expression profiles do not always
similar to the gene’s document, using a probabilistic search ~ share a function; they may be involved in distinct bio-
method [13]. The resulting set of documents typically dis- logical processes. as demonstrated below.

cusses the gene’s function. As an integral part the algorithm e Genes may play multiple roles in complex, interrelated
produces an “executive summary” — a list of characteristic biological processes. The stringent assignment of genes
content bearing terms in the set of documents — found for  to single clusters by most clustering methods, poten-
each gene. tially prevents the exposure of complex interrelation-

Next, we look for relationships among the genes. Thiswe  SNiPS among genes. _ _

do through search for similarities among the resultets e Evenwhen similar expression levels indeed correspond
of documents. Since each set corresponds to a gene, we to S|m|lgr functions, the functional relz?monshlps among
can map the similar document sets back to their originating ~ 9enes in a cluster can not be determined from the clus-
genes and establish functional relationships among these t€r data alone. Explaining the formed clusters requires
genes. Thus we simultaneously address three goals: a lot of additional effort.

e Finding functional relationships among genes, on a For example, careful analysis of the expression-based clus-

genome-wide scale. ter CLB2 described by Spellmaet al. [14] reveals genes
e Obtaining the literature specifically relevant to the involved in several distinct cellular functionsHs2, BUD§
function of these genes. andIQG1 are all involved in maintenance of the cell wall,

e Producing a short term list characterizing the documentwhile ACE2, ALK1, andHST3are involved in nuclear events.
set. This list suggests why the genes are considered reloreover, members of a common signaling pathway may

vant to each other, and what their biological function is. play antagonistic roles, demonstrating anti-correlated ex-
pression levels. Thus, clusters based on expression profiles

The rest of the paper is organized as follows: Section 2 . ) :
. : must be further analyzed, with respect to biological roles,
touches on current methods in large-scale expression anal:

ysis and surveys some of the developments in Iiteraturebefore reliable conclusions about their biological function
use for gene analysis; Section 3 describes our approach ofan be drawn.

searching the literature and its use for finding functional re- In many cases, the information needed for such analysis
lationships among genes; Section 4 presents experimentsan be found in the published literature. The conventional
and results over the set of well-studied yeast genes dis-method for finding it, has been for individuals to search
cussed by Spellmaet al. [14]. Our results demonstrate through the literature, gene by gene, or rely on their own
that automated information retrieval from the literature is a knowledge of the biological processes. While this proce-
powerful tool for determining relationships among genes, dure can be effective on a very small scale, it does not scale
and for assisting in both the design and the result-analysisup well to accommodate thousands of genes. Moreover, the

of further large-scale experiments. advancement of genome sequencing techniques is accom-
panied by an overwhelming increase in the amount of liter-
2 Related Work ature discussing the discovered genes. This combined abun-

Most analysis efforts, applied to large amounts of genomic dance of genes and literature, produces a major bottleneck
data to date, concentrate on clustering genes, accordindor interpreting and planning genome-wide experiments.

to their expression patterns. The idea of such methodsTO expedite the analysis process we propose a new auto-

IS to det?Ct correlc;";\ted ggrrt:ssmp palttelrn§ th?]t. ma_yl/_ Sg.g'mated method for exposing biological relationships among
gestregulatory and possible functional relationships. Tra I'genes based on the biomedical literature. While our method

tional methods based on hierarchical clustering [14] or self- can be used as a stand-alone tool for mining the literature, it

organizing maps [15], as well as more advanced StOChaS'complements the above approaches by providing literature-

]E'C Flusltermg techmquss t[hZ' 15)]' havs been shown tt(t) ef- based explanations to the clusters and the relationships dis-
ectively group genes Dy the observed expression patiemsy ,q e directly from the expression data. We next survey

(_See, for |r_1$tan9e, yvork by Spelimanal. [14], on func- current research aimed at automating literature mining in
tional relationships in yeast genes.) the context of gene analysis.

While clusters of simultaneously expressed genes often COr-r
relate with common function, this well-grounded approach
has the following limitations as a stand-alone analysis tool:

he prevailing on-line source for biomedical abstracts is
the PubMeddatabase. A typical search for relevant liter-
ature starts with &dooleanquery; The user provides a term
e Functionally-related genes may demonstrate strong(e.g.OLE1), or a boolean term-combination (e@.e1 and
anti-correlation in their expression levels, (a gene may lipid). The result is the set d@ll the abstracts ifPubMed
be suppressedo allow another to be expressed), thus satisfying the query constraints. This form of query suffers
clustered separately, blurring the existing relationship. several limitations:



1. The number of abstracts typically retrieved gso- ological literature, (see [9] for an extensive discussion), thus

hibitively large limiting the scope within which these methods are effective.
2. A substantial part of the retrieved abstracts iense- A major step towards large-scale analysis was recently
vantto the user’s information need. taken by Jensseat al. [7]. Using apredefinedist of gene

3. Many relevant abstractsay not be retrieved For names and symbols, the authors executed a boolean search
instance, abstracts discussingel, using one of its  overPubMed finding all abstracts ifPubMedmentioning
aliases (e.g.DNA repair protein or fatty-acid desat-  these genes. They then built a graph with the genes as
urase J will not be retrieved. nodes, and edges connecting genes that are mentioned in

Problem 2 above stems mostly from the well-knopai- the same abstract. Weights on the edges represent the num-
ysemyphenomenon; a word may have multiple meanings ber of co-occurrences. The result is a very large network of
in different contexts. For instance when looking for the genes related through the literature, and abstracts justifying
term “CD” we may retrieve all abstracts referring to “Cy- €ach edge.

tosine Deaminase” in which we are interested but also all while the above is the most recent and extensive effort to-
those discussing “Crohn’s Disease” which are completely wards using the literature on a genome-wide scale, pro-
unrelated. On the other hand Problem 3, stems fsgm  viding an unprecedented tool for researchers, it still suf-
onymy where a single concept may be discussed in variousfers several limitations. First, as pointed out by the au-
abstracts under different names. thors, the method relies on havingcamplete list of gene

The lack of uniformity in nomenclature used by authors fur- Names and synonymis can only reveal relationships that
ther aggravates the problem. For instance, a search for abarealreadyreported in the literature, and does not attempt
stracts about the gemesP1 may not retrieve abstracts dis- 10 detect new relations. Moreover, even while 60476f
cussing this same gene under another name (eag5). the found relationships (based on the authors’ sample of
To improve the effectiveness, efficiency and accuracy of the 1000 analyzed pairs of genes) are correct in some respect,
navigation through the literature, several methods have beerPnly a few of them (less than }) correspond to actual

recently suggested, partly-automating the literature scan-functional relationship. Another important point, pertain-
ning process. ing to microarray experiments, is that over3@f the re-

lations detected by the system ar@-expressionelation-
ships. These relationships may stem from papers report-
ing large-scale expression experiments, which are rich in

Most existing work focuses on automatedormation ex-
traction, using curated lexica or natural language process-

o CO-0ECUTIG Gene names. Researchers 1yng 0 il
9 9 9 P ically explain co-expression results in their own experi-

between specific genes. !_eek [8]3 whose work 'S the garll- ments, would typically look for biological relations among
est we are aware of in this domain, suggests using hidden

Mark del f tracti i di .~ ~'genes that are reported in the literatimdependentlpf the
arkovmode .S'GMMS) or extracting sentences discussing o o co-expression fact. Thus, in such scenarios, a draw-
gene localization on chromosomes. Craetral. [5, 10]

have continued this line of work, presenting systems for back of the above method is that_it findsrelatiqns among co-

. . L i expressed genes based on their co-expression as formerly
.extr.actlng §gntences q_|scu35|ng sub-cellglar protem Iocal'reported in the literature, without providing an independent
Ization, training gIaSS|f|ers and MM 0 |dent|fy such . way toexplainthis co-expression. The above is an artifact
sentences. Their methods require that a list of protein

. . . . of the strong reliance of the method on co-occurrence of
names and location descriptors are provided. Rindflesch
. gene names.
et al. [11], and more recently Friedmaet. al. [6], pro- _ _ o
pose methods based on parsing and thesauri use to extraéS an alternative to using explicit gene names/synonyms
facts about genes and proteins from documents. Blaschkevhile searching for “relationship sentences” or co-

et al. [3] use a similar method, for extracting information occurrences (known asformation extractiol, we shift our
about protein interaction from scientific text. search focus from words and sentences to complete rele-

vant abstracts. This kind of search is part of the field known
asinformation retrieval Moreover, we concentrate on the
similarity-based query paradigm [16]. The user provides a

" sample relevant document and obtains other documents dis-
ussing the same subject matter. This mechanism does not

strong assumptions about the use of natural language, SUCﬁepend on the choice of explicit query terms, but rather on

as terms typically used to indicate relationships, the typical the contents and quality of the example document. We use

sentence structure, gene/proteins names and their formatz&recently developed probabilistic algorithm that, given an

and the way these names are used within sentences. Sup ample document, finds a set of documents most relevant
assumptions are not readily met throughout the abundant bi-

These methods have typically been applied to small and
limited sample sets of documents/terms. They all require
the user to specify a very accurate query in order to pro
vide high-quality results. Most importantly, they all rely on



to it (a themg and produces set of termsummarizing the Pr(Term)

contents of this document set [13]. Other similarity-based 1
methods for finding relevant documents do exist (see [16] g:
and references within). However, these methods do not pro- 07
vide a list of summarizing terms which make the retrieved gg
documents similar. The algorithm, as outlined in the next 04
section, forms the basis to our approach. g;
0.1
3 Detecting Gene Relations and Functions 0 Term

acid fatty fructose glucose  glycolytic lipid

through the Literature Figure 1: Typical term distribution for thé&utrition theme.

Our approach is based on the hypothesis that many indi-
vidual genes and their function are already discussed in thﬁearning methods, so that each kernel abstract indeed repre-
literature; A thorough analysis of the literature is a primary gants the biology of its associated gene.

step for both design of experiments and results analysis fol- e ) o
lowing them. Thus, we shift our attention from experimen- We next present the theme-finding algorithm for finding rel-
tal data to documents. evant abstracts (see [13] for a complete discussion), fol-

lowed by a description of the second phase, in which rela-

The actual search is conducted within a I&gmllection o1 are detected among the obtaiastract collections

of PubMedabstracts, covering the literature relevant to the
domain of discoursee(g. allthe abstracts ifPubMeddis- 3.1 Finding Themes

cussing yeast genes). We map each gene to a single abstra%e idea underlying our algorithm is that a set of docu-

within the collection, discussing the gene’s biological func- ents sharing a coheretitemecan be characterized by a
tion. This abstract is treated as the gemejsresentative  set of probability distributions. For example, documents
and we call it thekernel abstracfor that gene. discussing genes responsible fartrition during the cell-

. . ) ) ) cycle, are likely to contain terms such factoseor glu-
Applying the theme-finding algorithm, as described in Sec- coseand unlikely to contain the tertipid, as illustrated
tion 3.1 to each kernel, produces for each gene a body ofin Figure 1. More explicitly, our databaseB, is a set of
related literature (20-50 abstracts bearing a comthem¢ documents represented as-dimensional binary vectors,

based on the kernel abstract representing it, along with awhereM is the number of distinct teriig ¢y, ..., ta} in

list of terms that characterize the relevant literature. It is the database. The vector representation is commonly used

important to note that, in contrast to other literature-based information retrieval systems. A documens a vector
(di, do, ..., du), where:

methods, the retrieved abstracts are considered relseant
because they contain tsame gene nanas the one associ- g - (sd_d:ef{ 1 iftied, (1)
ated with the kernel abstract, but rather because they discuss ' ' 0 otherwise.

the samassuegtypically related to functionality) as those ) L
Presence/absence of terms in documérd viewed as a

discussed in the kernel abstract. Once a set of abstracts is re- o1/ ind q i
trieved for each gene, we use an automated method to com €SUlt 0f} independent Bernoulli events.
pare the abstract sets, and derive functional relationshipsA theme T', within the databaséB, is a set of docu-

among genes, as described in Section 3.2. ments with a common subject. Documents sharing a com-

To use the theme-finding algorithm we first have to map MoN theme can be modeled as though they were gener-
the set of geneG, ..., Gy) to a set of kernel abstracts ated through sampling from a common set of independent

(K.,..., Kx) (see top of Figure 3). Currently, kernel ab- Bernoulli distributions representing the theme. Thus, a

stracts are obtained from the available curated IiteraturethemeT_' is modeled as a S?t of the following Bernoulli
about yeast genes (as explained in Section 4). The qua|_d|str|bl_Jt|ons. Thes'e distributions govern the occurrence of
ity of the kernel abstracts strongly effects the quality of the (€"M$ in the theme’s documents:

results. Abstracts discussing experimental methods, rather
than biological function, tend to draw other abstracts de- mentd, given thatd is athemedocument:
scribing the same experimental methods, resulting in an ab- T 4 e dld e T

stract set not representative of the gene’s function. In con- pi=Pr(ti €ddeT) .

trast, kernels discussing gene biology typically lead to high e ¢/ — the probability that the ternt; occurs in a
quality information about the function of related genes. The documentd, given thatd is an off-themedocument:
kernel selection process may be improved using machine- qZTd:efpr(ti €ddg¢T) .

e p — the probability that the termy occurs in a docu-

20n the order of severagns of thousandsf abstracts. 3Termsconsist of one or two words, excluding stop words.
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Figure 2: Stochastic Model for Generating Documeint

e DB; — the probability that the tern} occurs in a doc-
umentd, given thatd is a document in the database,

Note that for each documedte DB, we knowthe terms it
contains. Themissing informations which documents are
themedocuments and which terms are generated from the
general distributionDB;, as opposed to the theme-specific
onesp; andg! . Using a generative model allows us to ex-
plicitly represent and address such missing information. To
support calculations within this model, we assucoadi-
tional independencbetween pairs of terms given the doc-
ument containment in the theme, as well as independence
among the hidden variables (representingttigsing infor-
mationabove).

Under this framework, given a kernel document repre-
senting a gene, our task is to find a set of parameters

regardless of its being an on-theme or an off-theme R = {{p!'}, {q]}, {\:}}*, over all termg; in the database.

documentDB;£'Pr(t; € d|d € DB) .

The distributionDB; models the possible arbitrary usage
of terms in the language, without being strongly indicative
of the main topic discussed. (e.g. the sentetaaissed
my flight” is not particularly relevant to the topaviation,
despite the occurrence of the tefinght).

Given a themd’, each document has some a-priori prob-

ability, regardless of its content, to be a theme document.

This probability is denoted b¥, Where:Pdd:EfPr(d eT).

Using a probabilistic Bayesian framework, we look for the
parameters that maximize the likelihood of the documents
in the databasePr(DB|R). These parameters are used to
find the documents that are most likely to have been gener-
ated by sampling from these distributions. The latter doc-
uments are the ones focused on the theme represented by
these distributions. In addition, we produce a set of terms
characterizing this theme. These are the terms that have a
high probability to occur in theme documents (hjgh and

a much lower probability to occur in documents outside the

Throughout this paper, we assume this parameter to béheme (high ratioy] /q}").

known and fixed for all documents, and do not attempt to
estimate it here. (In the reported experimenis= 0.01 for
alld € DB.)

The last component of our model is the Bernoulli event
representing the choice made for each tesmin each
documentd, whether it is to be generated according to
the database probability)B; or according to the specific
on/off-theme distribution. We denote this probability, for
each ternt;, as\;.

Combining the above components, for a given th@mee
obtain the following generative model for each document
d € DB, as depicted in Figure 2:

e Decide, tossing a biased coi®iiThemen the figure)
with Pr(H) = P4, whetherd is in themeT'.

For each term; decide ift; is distributed according
to the general database distributib;, by tossing a
biased coinEromDB; in the figure) withPr(H) = A;.
For each termt; decide ift; € d by tossing one of the
following biased coins:

o The database coin faf, (DB-Include), if ¢; is gen-
erated according to theB distribution.

o The on-theme coin for tery, (T-Include), whose
Pr(H) = p!',if d € T andt; is generated according
to p! (FromDB; came ugails).

o The off-theme coin fort;, (NT-Includg), whose
Pr(H) = qf, if d ¢ T andt; is generated accord-
ing tog!, (FromDB; came ugails).

To estimate the Bernoulli parameters under missing infor-
mation as described above, we use an Expectation Maxi-
mization algorithm (EM). This algorithm aims to maximize
the likelihood of the database partition into theme/off-theme
documents, given the Bernoulli parameters, based on the
kernel document. The complete algorithm is described else-
where [13], and we provide its outline here.

An EM algorithm starts by initializing the model parame-
ters, p”, ¢q7, AT), based on some prior knowledge; We ini-
tially roughly approximate the Bernoulli parameters based
on the kernel document and its comparison to the rest of the
database The algorithm then alternates between:

¢ theE-stepof computing theexpected likelihoodf the
documents to be in the theme, given the current param-
eter estimates, and

¢ theM-stepof finding new model parameters thatix-
imize the likelihood of the database partition into
theme/off-theme documents given the parameters.

This iterative process is guaranteed, under mild conditions,
to provide monotonically increasing convergence of the
likelihood Pr(DB|R). We have proved that our algorithm

“Note that estimatindB; is straightforward since all the required
information is present in the database.

SObviously, having multiple kernels to start from for a sig|
theme would lead to a better initial estimate. Since obtajimfor-
mative kernels is currently hard, we make do with a single&er



is an instance of this family of algorithms, and follows this 1 <i < N.
same pattern. For each kernelk;, let L, be the set oPubMedidentifiers

The algorithm is executed for each of the kernel doc- TOF the30 dte?p ranking abstracts associated with  For-

uments, (K1, ..., Ky), representing each of the genes, mally: Li={IDj ...1Dj,}, wherelDj is thePubMediden-
(Gy,..., Gn), as illustrated in the top part of Figure 3. The tifier of thej*" abstract ranked as relevant for keragl

result for each gene consists of: Intuitively, if two distinct genes(; andG,;, represented by
e a I|St of the top 50 documents discussing the same kernelSKz' and K], ha.Ve Similar sets Of releVamJbMed

theme as the kernel document, ordered by their degreédentiﬁers,[/i and L], then the literature relevant to these

of relevance to the theme, and two genes has a lot in common. This in turn suggests that
e a list of terms (keywords) constituting the theme, or- some roles and functions (typically discussed in the litera-
dered by their degree of relevance to the theme. ture) are shared by these two genes.

; ; The number oPubMedidentifiers used for comparing ab-
Note that the keywords in the list anet merely the terms stract lists can be reduced by noting that identifiers occur-

most probabléo occur in the set of documents discussing ring only within a single listZ;, do not contribute to the
the theme, but rather those that are much more probable tevaluation of any other listf.;, as similar toL;. LetID

occur within this set than throughout the rest of the databaséenote a singl®ubMedidentifier and/ID| denote the total
As shown in Section 4, this output in and of itself provides number of identifier lists;, in whichID occurs. Our cal-

; ; culations need only take into account those identifiers for
valuable support for gene analysis. Still, we further extend which|ID|> 1. Thus,S, is defined to be the set BlubMed

itin the next phase, to assist in finding biological relations jyentifiers of all abstracts that are in the relevance list of at

among the genes. least two kernels. Formally:
N

3.2 Finding Functional Relations among Genes SJ’:“U Li—{ID | ID| <1} . @)
=1

Our primary assumption is that common relevant literature o

is a strong indicator of common functionality among genes; Ve denote the number BubMeddentifiersinS,., | S|, by
Genes which have similar lists of top ranking documents #/r» and denote eadubMedidentifier in S, asID” where
associated with them, share some common biological func-1 <J < M.

tion described in the common literature. Our task is thus We can now represent each kernel abstéggtas ani,.-
reduced to finding similarities among thetsof documents  dimensional vector/;£(v! .. .0}y overS, wherev! are
retrieved in the previous phase of the algorithm, and asso-defined as follows:

ciating with each gene all other genes that have a similar ; df( 1 fID € L;

document set. Vi = 6”:{ 0 otherwise. )

To do this we use theubMed identifierassociated with the
abstracts, without examining the abstracts’ contents. For
each kernel we construct\ector characterizing it, based ~To measure similarity between each pair of kernels, we cal-
on theabstractsdeemed relevant to it by the first phase of culate thecosine coefficienbetween their respective vec-
the algorithm (as described in Section 3.1). Note that this tors. The cosine coefficient is often used in information re-
vector is different from the term-vector described in Sec- trieval to assess similarity between documents, where doc-
tion 3.1, as its entries represagsociated abstract identi- uments are viewed as term-vectors (see [16] and earlier ref-
fiers rather tharterms This vector representation can be €rences within). We use it in @ew, non-traditional way
used to rank for each kerndl;, all the other kernels by ~ @s our vector represents the kernels based on ather
their proximity toK; in the kernel-vector space. Since each stractsrather tharterms Forma”y, the cosine coefficient
kernel corresponds to a gene, we can map the inter-relatedpetween two vectorsy;, Vi, whose respective lengths are
kernels back to their respective genes, and obtain a set oflVill. [ Vx| is defined as:

genes that are closely related. The method is illustrated at defzf‘”;l vl vl

the bottom part of Figure 3 and is further described in the cos(Vi, Vk)zm

following paragraphs. :

Each such kernel vector is then normalized.

Since the vectors are normalized, their length &nd only
First, we construct the set 8ubMedldentifiers of relevant  the numerator needs to be calculated.

abstractsS,., as follows:
Let N be the number dfernel abstractsised for represent-
ing gene8. We denote each kernel abstract Ky where

The closerV; andV; are to each other, the closer the coef-
ficientis tol. Hence, by calculating for each kernel vector,
Vi, the cosine coefficients with respect to all other kernel

The number of analyzegenesnayexceedV since the same ker- ~ Vectors,V;, we obtain for each kernel a ranking of how re-
nel abstract might discuss and represent more than a siegie g lated it is to each of the other kernels,;. Recalling that
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Figure 3: Finding Documents and Terms related to Genes (top), ancbSBeslated Genes (bottom).

each kerneK; correspondsin turn to a gei&, we obtain the genes used by Spellnfawere compared against the
relationships among the respective genes. The reasoning foBaccharomyces Genome Database (SGD). Out of about 800
the assumed relationship is given by the lists of terms asso-genes found by Spellmagt. al. to be cell-cycle regulated,
ciated with the themes generated from the kernel abstractspnly 408 genes had curat®dibMedreferences in the SGD,
and thus the reasoning behind the suggested relationshipand our experiments concentrate on these 408 genes.

can be easily checked. For each of the genes, the oldest reference cited in SGD is

The experiments and the results reported in the next sectiorused as thkernel abstractorresponding to the gene. Since
demonstrate the value of our methods for retrieving relevantsome of the closely related genes share the same reference,
abstracts and terms and for obtaining meaningful relation-we obtain 344 distinct kernel abstracts. The database used
ships among genes. in our experiments is a subset BlibMed consisting of
33,700 abstracts discussing yeast genes. It includes about
2,250 abstracts deemed relevant for our 408 target genes
We apply the algorithms to yeast genes, and show how ourby the SGD curators (about 86% of the total curated ab-
methods indeed find relevant abstracts and provide usefubtracts as of August, 1999). From all abstracts, we elimi-
summary terms. Moreover, we also discover meaningful nated standard stop words, the Mesh term taggings typically
relationships among the genes. We use the yeastmi- associated witfPubMedentries, as well as very common or
croarray testbed since the validity of our methods can only extremely rare terms (those that occur in ovey of the

be assessed by comparison of the results with existing sumabstracts in the database or in 2 or fewer abstracts).

maries of biological information; The SGand the YPD We applied the theme finding program, described in Sec-
databases as well as the functional analysis given by Spellyio 3.1, to the 344 kernels, searching over the database of
manet. al.[14], are critical for rapid, objective evaluation 33,700 abstracts. For each kernel, the program outputs a
of our results. list of the top 50 related abstracts and a list of key words
The rest of this section describes the experimental settingdescribing the contents of this relevant set.

and reports the results obtained by applying our algorithm e next phase, consists of looking fefationshipsamong
to the d?.ta. The quallty_of the results was verified thrpugh genes. For each of the kernels, the previous phase produced
comparison to the functional groups of genes according 0 jis of 50 relevant abstracts. The first step of the current

Spellmaret al. [14]. The portion of Spellman’s table rele-  yhase is to construct the set of relevant abstracts retrieved
vant to the results discussed here is shown in Table 1. The ) the kernels, eliminating duplicates. That is, even if

table categorizes the yeast genes according to their funcyp gpstract is relevant to more than one kernel, it is still
tionality (rows) and the phase in the cell-cycle inwhich they jncjyded in the set of relevant abstracts only once. We then
are expressed (columns). eliminate all abstracts that are relevant to a single kernel
only, as explained in Section 3.2. We are left with a set of
3063 abstracts that are relevant to 2 or more kernel abstracts,
The algorithms are applied to yeast genome data, in an at{this is the sefS,., defined in Eq. 2).

tempt to find relevant literature and gene relations for the Each kernel is represented as a 3063-dimensional vector
genes analyzed by Spellman al. [14]. The names of all (Eqg. 3), and the cosine coefficient is used to measure the

similarity of each kernel to all the others. Each kernel is

4 Experiments and Results

4.1 Experimental Setting

"The Saccharomyces Genome Database available at
http://genome-www.stanford.edu/Saccharomyces/ -
8The Yeast Proteome Database, at 9Available through the genome web site at Stanford,
http://www.proteome.com/databases/index.html http://genome-www.stanford.edu/cellcycle/ .



Biological | G1 S| G2 M M/G1

Function

Replication | CDC45 ORC1 CDC47 CDC54 CDC6 CDC46
Initiation MCM2 MCM6 MCM3

Fatty Acids/ | EPT1 LPP1 PSD1 AUR1 ERG3 LCB3| ERG2 ERG5 PMAL1 ELO1 FAA1 FA A3

Lipids/ SUR1 SUR2 SUR4 PMA2 PMP1 FAA4 FAS1

Sterols/

Membranes
Nutrition BAT2 PHOS8 AGP1 BAT1 GAP1 | DIP5FET3FTR1 AUAL1 GLK1 HXT1

MEP3 PFK1 PHO3 HXT2 HXT4 HXT7
PHOS5 PHO11 PHO17
PHO84 RGT2 SUC2
SUT1 VAP1 VCX1
ZRT1

Table 1. Yeast Genes: expression during cell-cycle and functipngidapted from Spellmaat. al. (1998))

then converted back to the gene(s) for which it was curated.In addition, from the set of related abstracts we obtain, for

The genes that are grouped as similar according to oureach kernel, through the vector representation and the co-
method are compared with those grouped by functionality sine coefficient calculation, (described in Section 3.2), a set
in Spellman’s table (parts of which are shown in Table 1). of related kernels. The latter kernels are mapped back to

To quantitatively measure the validity of the keyword list form a set of related genes.

assigned to each kernel, we compare each keyword to itsTo assess the value of the results obtained in the first phase
associated function using a mini-thesaurus obtained from awe examine the set of summarizing keywords. We also
panel of four independent yeast experts. Each functionalityexamine the lists of related genes obtained in the second
description listed in Spellman’s table (suchSecretioror phase. The quality of the results is checked through a com-
Chromatin) is associated with the terms judged most closely parison with the functionality assigned to genes by Spell-
related to it according to the experts. Each expert receivedmanet. al'®, shown in Table 1. Since many of the genes in

a list of the 22 function descriptions listed by Spellnetn  the experiment are not assigned any functionality by Spell-
al, and a separate list of 330 alphabetically-sorted summaryman (120 out of the 344 kernels used) , we can only ver-
terms resulting from our program. The experts assigned toify in this manner results for the ones whose functionality
each term in the latter list, the functionality descriptors that was determined by Spellmat al. However, point-wise
they judged to be most related to it; non-specific terms were manual checking of the abstracts and genes associated with
left unassigned. An example of two entries in the resulting these 120 kernels not discussed by Spellman, shows that for
thesaurus is shown in Table 2. many kernels the results do agree with the known biology
and gene relationships.

Function | Associated Terms . . .
Chromatin| chromatids, chromatin, chromosome, An example of a typical successful search is shown in Ta-
sister chromatids, telomere, telomeric ble 3. The left column lists thBubMedidentifiers for two
Secretion | acid phosphatase, coatomer, endoplasmic kernel abstracts together with the genes they stand for and
endoplasmic reticulum, er, golgi apparatus their respective functionality according to Spellmetnal.
golgi complex, golgi transport, golgi, v snafe The second column lists, for each of the two kernels, the top

Table 2: Example of thesaurus entries associating gene10 keywords associated with the retrieved set of abstracts,
function with related terms. as determined by our algorithm. The third column lists the

] ) ] ] top genes associated with each kerffgbased on the co-
For each gene, we compare its functionality according 10 sine coefficient. The fourth column lists the function of each
Spellma_n with the functionz_ility assigned by the panel to gene according to Spellmaet al, as a validity check for
each of its key terms, counting how many of the key terms o results. Since our experiment included more genes than
indeed correspond to the gene’s functionality according 10 jisted in Spellman’s table, some of the genes in the third col-
Spellman and how many do not. The results are described,mn are not assigned functionality by Spellman. For these
throughout the rest of this section. genes, (marked by* in the table), we found the function-

4.2 Results ality in YPD.

As described in Section 3.1, for each gene representedby

a kernel abstract we obtain through the similarity query '°The gene functionality assigned by Spellneinal.is based on

mechanism applied to the whole database: human judgment and expertise, rather than on an automated pr
cess.

1. Asetof related abstracts. ELO1 has only 9 genes associated with it, since there were 9
2. A set of summarizing key terms. non-zero cosine coefficients associated with its kernel.



Kernel (PMID, | Keywords Assoc. Function
Gene,Function) Genes
8702485 fatty acid, OLE1l (Fatty Acid, Sterol. Met))
ELO1 fatty, FAA4 | Fatty Acid/Lipids/Sterols/Membranes
Fatty Acid/ lipids, FAA3 | Fatty Acid/Lipids/Sterols/Membranes
Lipids/ acid, SUR2 | Fatty Acid/Lipids/Sterols/Membranes
Sterols/ grown, FAA1l | Fatty Acid/Lipids/Sterols/Membranes
Membranes medium, ERG2 | Fatty Acid/Lipids/Sterols/Membranes
carbon, PSD1 | Fatty Acid/Lipids/Sterols/Membranes
synthase, CYB5 (Fatty Acid, Sterol. Met))
strains, PGM1 (Carbohydrates Met:)
deficient
7651133 hexose, HXT1 Nutrition
HXT7 glucose uptake| RGT2 Nutrition
Nutrition glucose conc., | HXT4 Nutrition
fructose, HXT2 Nutrition
glycolytic, GLK1 Nutrition
glucose, SEO1 (Small Molecules Transport)
sugars, PRB1 (Protein Degradatiori)
uptake, AGP1 Nutrition
aerobic, ZRT1 Nutrition
utilization MIG2 (Carbohydrates Met:)

Table 3: Example of a result obtained from two different kernel/geiseng our algorithm, compared with functionality accogliio
Spellman orypPD (YPD functionality denoted by).

The table shows that except for two genes (PGM1 andthe high rate of correct keyword assignment relative to the
PRB1) all of the genes found for these two kernels have wrong and the non-descriptive assignment is highly statisti-
a strong functional relationship to the genes represented bycally significant f < 0.005, using the two-sampletest).

the kernels, and the keywords provide a strong indication of £, oiher kernels the groups of related genes contain many

th|s biological funct|on. (Note that the keywords are asso- genes not assigned functionality by Spellman, which make
ciated as setwith the whole kernel entry and not separated g reqyits harder to validate. Another set of cases, in which

as one keyword per associated gene.) We note that PGMY,  veqits deviate from Spellman’s functionality grouping

is involved in carbohydrates metabolism which is still func- - ¢ genes, are those for which the kernel abstract was not dis-
tionally related to fatty acids metabolism. PRB1 is respon- cussing the biology of the gene but rather the experimental

sible for protein degradation, which is not related to nutri- na1had used to discover it. An example of such a result is
tion. Itis included in this set, since the abstract chosen forgiven in Table 4

its kernel abstract discusses regulation of the enzyRed p ) ) _

by glucose, rather than the biological functiorrafalp. In this case, the kernel abstract discusses the biology of the
. techniqueused for studying the MCM genes, involving au-

The results for about 100 out of the 220 kernels for which

) ‘ ) tonomously replicating plasmids. The kernels considered
we had the Spellman-assigned functionality, closely resem-gjnjjar to it also discuss such techniques. Thus, the com-
ble the ones demonstrated in Tab'e 3 in the s_trong agree'monality unifying the resulting set of genes, is that their
ment with Spellman’s cluster assignment and in the accu-

=F : curated abstracts all discuss manipulations within chromo-
rate description as given by the keywords learned by the g, meq rather than gene biology. The keyword list (which
similarity query algorithm.

highly ranks the termautonomous replicatioand contains

As aquantitativemeasure, we calculated the average num- leu2andura3), indicates that the theme underlying this set
ber of correct and incorrect keywords among the 5 top- of abstracts and genes is not based on the biological func-
ranking keywords associated with each of these kernels. Ation of the genes.

keyword occurring in a list for a specific gene (kernel), is \ye are considering approaches for automating the kernel
considereccorrectif it appears in our thesaurus entry la- 5pqract selection, and expect them to lead to consistently
beled by the same function as the one as&gned_ to the 9€NGood results. The excellent experience with the 100 high-
by SPe”ma_”- If Its thesaurus entry is Iabe_led byigerent quality kernel abstracts demonstrates that once a single in-
function, it is consideredrong If it was assigned no func- ¢\ ative abstract is given for a gene, many other quality

tion by our panel of experts it is considemeoh-descriptive  5pqiracts about the related genes are automatically found,
An average 08.27out of the 5 top ranking keywords, were  5..omnanied by a succinct characterization of their com-
associated with theorrect function, while only1.12 out mon functionality.

of the 5 were associated with the wrong function, argil
out of the 5 were non-descriptive. The difference between



Kernel (PMID, Keywords Assoc. Function
Gene,Function) Genes
6323245 ars, CDC10 | Site Selection/Morphogenesis
MCM2,MCM3,MCM6 autonom. replicating] PHO3 Nutrition

Replication Init. replicating sequence| EST1 DNA Syn
autonomously, MIF2 Chromatin
minichromosomes, PHO12 Nutrition
replicating, POL2 DNA Syn.
centrometric, DHS1 DNA repair
leu2, SNQ2 *
plasmids, SMC3 Chromat. Cohes.
ura3 EXG2 Cell Wall Synt.

Table 4. Example of a result obtained from an uninformative kernetpared with functionality according to Spellman.

5 Conclusions and Ongoing Work and similarly expressed genes.
The information-retrieval approach presented here has four! "€ methods described here complement the analysis tech-
clear advantages: niques currently applied to microarray data. Combining our

approach with other emerging analysis methods, can greatly

1. Itis an effective way for detecting putative relationships gy hedite the tedious task of analyzing the vast amounts of
among genes. These can then be verified through well- 454 generated from genome-wide experiments.
targeted experiments.

2. It provides the relevant literature for analyzing the ex- Acknowledgments
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