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Abstract. Selecting an informative subset of SNPs, generally referred to as tag
SNPs, to genotype and analyze is considered to be an essential step toward ef-
fective disease association studies. However, while the selected informative tag
SNPs may characterize the allele information of a target genomic region, they are
not necessarily the ones directly associated with disease or with functional im-
pairment. To address this limitation, we present a first integrative SNP selection
system that simultaneously identifies SNPs that are both informative and carry
a deleterious functional effect – which in turn means that they are likely to be
directly associated with disease. We formulate the problem of selecting function-
ally informative tag SNPs as a multi-objective optimization problem and present
a heuristic algorithm for addressing it. We also present the system we developed
for assessing the functional significance of SNPs. To evaluate our system, we
compare it to other state-of-the-art SNP selection systems, which conduct both
information-based tag SNP selection and function-based SNP selection, but do
so in two separate consecutive steps. Using 14 datasets, based on disease-related
genes curated by the OMIM database, we show that our system consistently im-
proves upon current systems.

1 Introduction

Identifying single nucleotide polymorphisms1 (SNPs) that are involved in complex com-
mon diseases, such as cancer, is a major challenge in current molecular epidemiology.
Due to their genome-wide prevalence, knowledge of such SNPs is expected to be essen-
tial for unraveling the genetic etiology of human diseases, and thus, for enabling timely
diagnosis, treatment, and, ultimately, prevention of disease. However, genotyping2 and
analyzing all the SNPs on the human genome [2] is practically infeasible as the number
of SNPs is estimated at over ten million [3]. Thus, selecting a subset of SNPs that is
sufficiently informative to conduct disease-gene association but still small enough to
reduce the genotyping and analysis overhead, a process known as tag SNP selection, is
a key step toward effective association studies.

1 A single nucleotide polymorphism (SNP) is the substitution of a single nucleotide at a certain
position on the genome [1].

2 Genotyping is the biomolecular process of identifying the nucleotide of a genetic variation [1].
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A variety of measures and algorithms have been proposed for tag SNP selection, and
their utility has been empirically demonstrated by simulation studies or by association
studies. Yet, while the selected informative tag SNPs may effectively characterize the
allele information of a target genomic region, they are not necessarily the ones directly
associated with disease or with functional impairment. Given this limitation, SNPs with
deleterious functional effects have drawn recent attention [4,5]. Typically, SNPs occur-
ring in functional genomic regions are more likely to cause functional distortion and, as
such, more likely to underly disease-causing variations [2,6]. As of yet, methods for the
selection of informative tag SNPs do not take into account the functional significance of
SNPs; similarly, methods for identifying disease-related SNPs do not attempt to capture
the allele information of the complete target locus3.

The identification of informative tag SNPs and of functionally significant SNPs can
be viewed as two distinct optimization problems with possibly conflicting objectives.
Consequently, current systems that try to support both information-based tag SNP se-
lection and function-based SNP selection [7, 8] address each selection problem inde-
pendently. That is, they separately conduct tag SNP selection and function-based SNP
selection, and combine the two selected sets as a last step. A major shortcoming of such
systems is that the number of selected SNPs can be much larger than necessary. More-
over, the functional SNPs selected may not be predictive of the other SNPs in the locus,
while the predictive SNPs selected may have no relation to disease.

To address this limitation, we propose an integrative SNP selection system that si-
multaneously identifies SNPs that are both informative and carry a deleterious func-
tional effect – which in turn means that they are likely to be disease-related. We for-
mulate SNP selection as a multi-objective optimization problem, to which we refer as
functionally informative tag SNP selection. We define a single objective function, in-
corporating both allelic information and functional significance of SNPs, and present
a heuristic selection algorithm that we show, through a comparative study, to improve
upon other state-of-the-art systems. To our knowledge, the idea of combining the two
notions of SNP selection – the function-based and the information-based – into a single
optimized selection process is new, and was not attempted before.

In Sec. 2, we formulate the problem of functionally informative tag SNP selection,
and introduce the basic notations that are used throughout the paper. Section 3 describes
our functional-significance assessment process and our heuristic algorithm for selecting
functionally informative SNPs. Section 4 reports the results from a comparative study.
Section 5 summarizes our findings and outlines future directions.

2 Functionally Informative Tag SNP Selection

We are concerned with identifying a set of SNPs associated with a given disease. The
relevant target locus on the genome can be as large as a whole chromosome or as small
as a part of a gene. Disease association studies typically involve the following steps:
1) chromosome samples are obtained from cases bearing the disease and from controls
(people not bearing the disease); 2) The allele information for all the SNPs on the target

3 A locus is the chromosomal location of the target region for biomolecular experiments [1].
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locus is obtained (genotyped) from the chromosome samples; 3) a subset of SNPs that
is most associated with the disease phenotype4 is identified. However, in practice, due
to experimental cost and time, not all the SNPs on the target locus can be genotyped or
analyzed. We thus need to select a subset of at most k SNPs on the target locus (where
k is a pre-specified number) whose allele information is as informative as that of the
whole set of SNPs, while including those SNPs that are most functionally significant.
We refer to the problem as functionally informative tag SNP selection. Before we for-
mulate and address this problem, we introduce here the basic notations that are used
throughout this paper.

Suppose that our target locus contains p consecutive SNPs. Each SNP can be rep-
resented as a discrete random variable, Xj (j = 1, ..., p), whose possible values are
the 4 nucleotides, {a, g, c, t}. For each value x ∈ {a, g, c, t}, there is a probability
Pr(Xj = x) that Xj is assigned the nucleotide x. Let V ={X1, ..., Xp} denote the set
of random variables corresponding to the p SNPs. We are given a haplotype5 dataset, D,
containing the allele information of n haplotypes, each of which consists of the p SNPs
in V . The set D can be viewed as an n by p matrix; each row, Di+, in D corresponds to
the allele information of the p SNPs comprising haplotype hi, while each column, D+j ,
corresponds to the allele information of SNP Xj in each of the n haplotypes. We denote
by Dij the allele information of the jth SNP in the ith haplotype. To formally address
functional significance of SNPs, we denote by ej the functional significance score for
each SNP Xj in V , and define E = {e1, ..., ep} to be the set of scores for all the SNPs.
We further discuss how these values can be obtained in Sec. 3.1.

For a subset of SNPs, T ⊂ V , we define an objective function, f(T |D, E), to
reflect both the allele information carried by the SNPs in T about the remaining SNPs
in V −T , and the functional significance of the SNPs in T . The problem of functionally
informative tag SNP selection can then be stated as follows:

Problem : Functionally Informative Tag SNP Selection
Input : A set of SNPs, V ; A maximum number of SNPs to select, k;

A haplotype dataset, D; A set of functional significance scores, E;
Output : A set of SNPs T = argmax

T s.t. T ⊂ V & |T | ≤ k

f(T |D, E) .

That is, to select a subset of functionally informative tag SNPs, we need to find among
all possible subsets of the original SNPs in the set V , an optimal subset of SNPs, T , of
size ≤ k, based on the objective function f(T |D, E).

Our first task is to define the objective function, f(T |D, E). To do so, we first in-
troduce two simpler objective functions, denoted by f1(T |D) and f2(T |E); the former
measures the allelic information, while the latter measures the functional significance
of a SNP set T .

Definition 1. Information-based Objective. Given a set of k SNPs, T ={Xt1 , ..., Xtk
},

and a dataset D of n haplotypes, we define an information-based objective function,
f1(T |D), as:

4 A phenotype is the physical, observed manifestation of a genetic trait [1].
5 A haplotype is a set of consecutive SNPs present on one chromosome [1].
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f1(T |D) =
1
np

p∑

j=1

n∑

i=1

I(Xj , T, Di+)

where

I(Xj , T, Di+) =

{
1 : if Dij == argmax

x∈{a,g,c,t}
Pr(Xj = x |Xt1 = Dit1 , ..., Xtq = Ditk) ;

0 : otherwise .

The function I returns 1 if the allele of the jth SNP in the ith haplotype (i.e., Dij) is
correctly predicted based on the allele information of the SNPs in T . We note that, by
using the conditional probability expression, the allele of Dij is predicted as the one
that is most likely to occur given the allele information of predictive tag SNPs in T 6.
Otherwise, the function I returns 0. To summarize, the allelic information provided by
a SNP set, T , with respect to a given haplotype dataset D, is measured by the average
proportion of the correctly predicted alleles of each SNP, Xj , given the allele informa-
tion of the SNPs in T .

This information-based objective function, f1(T |D), was introduced in our previ-
ous work [9], and is based on the prediction-based tag SNP selection approach [10,11],
which aims to select a subset of SNPs (i.e., tag SNPs) that can best predict the alleles of
the remaining, unselected SNPs (i.e., tagged SNPs). This approach is appealing since:
(1) it does not require prior block partitioning [12]; (2) it tends to select a small number
of SNPs [13]; and (3)it works well even for genomic regions with low linkage disequi-
librium7 [9]. An in-depth discussion and survey of information-based tag SNP selection
approaches is given elsewhere [14, 15].

Definition 2. Function-based Objective. Given a set of k SNPs, T ⊂ V , and a set of
functional significance scores, E = {e1, ..., ep}, we define a function-based objective
function, f2(T |E) as:

f2(T |E) =

p∑
j=1

ej · IT (Xj)

p∑
j=1

ej

where
IT (Xj) =

{
1 : if Xj ∈ T ;
0 : otherwise .

In other words, the functional significance of a SNP set T is the normalized sum of the
functional significance of SNPs in T . We note that, for the vast majority of SNPs, no
experimental evidence is yet available to substantiate their functional significance [2].
We thus define and evaluate the functional significance of SNPs using a large variety of
bioinformatics tools for function-assessment. The details of our assessment procedure
are described in Sec. 3.1.

Based on the two functions defined above, we next define a single objective func-
tion, f(T |D, E), incorporating allelic information and functional significance.

6 Note that for any SNP Xtl ∈ T, I(Xtl , T, Di+) is by definition always 1.
7 Linkage disequilibrium (LD) refers to the non-random association of SNPs [1].
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Definition 3. Functionally Informative Objective Function. Given a set of k SNPs,
T ⊂ V , a haplotype dataset, D, a functional significance score set, E = {e1, ..., ep},
and a parameter value, α (0 ≤ α ≤ 1), we define a functionally informative (FI)
objective function, f(T |D, E) as:

f(T |D, E) = α · f1(T |D) + (1− α) · f2(T |E) .

The parameter α is a weighting factor, which allows us to adjust the importance of
information-based selection with respect to that of functional significance. In the work
described here, we assign an equal weight to the two criteria, that is, α = 0.5. We refer
to the value assigned by this function to the subset of SNPs T, as the FI-score of T.

To summarize, we are looking for a subset of at most k SNPs, T , that is both func-
tionally significant and likely to correctly predict the remaining SNPs in V − T . Bafna
et al. [12] have previously shown that finding k most informative tag SNPs is NP-hard.
Based on this, we take it as a conjecture that the current problem is also NP-hard,
(the proof is beyond the scope of this paper). The next section introduces a function-
assessment process and a heuristic algorithm to address the problem.

3 Models and Algorithms

Our SNP selection system involves two main steps: 1) assessing the functional signifi-
cance, ej , of SNPs and 2) selecting a set of functionally informative tag SNPs, T . These
are described next.

3.1 Assessing the Functional Significance of SNPs

Using a variety of existing, publicly available bioinformatics tools, we examine the
deleterious effects of SNPs on the molecular function of their genomic region. In par-
ticular, we focus on the following three major categories of biological function:

– Protein Coding: SNPs in protein coding regions may cause an amino acid substitu-
tion (i.e., a missense mutation) or interfere with protein translation (i.e., a nonsense
mutation).

– Splicing Regulation: SNPs in splicing regulatory regions may affect alternative
splicing or result in exon skipping or intron retention.

– Transcriptional Regulation: SNPs in transcription regulatory regions (e.g., tran-
scription factor binding sites, CpG islands, regulatory RNAs) can alter the affinity
of the binding sites, and disrupt proper gene regulation.

We assess the functional significance of SNPs based on their location and possi-
ble deleterious effects along these three functional categories. Figure 1 illustrates the
following assessment process:

For each of the three categories, a SNP is separately assigned into one of three
classes8: Class 1 indicates irrelevance to the biological function; Class 2 indicates that
the SNP is relevant to the biological function, but predicted to be benign or has no
evidence of deleterious effects; Class 3 indicates that the SNP is likely to be deleterious.

8 Thus, a SNP is assigned three class labels; one label for each of the three functional categories.
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Fig. 1. Our functional significance assessment system.

For example, SNPs outside a protein coding region are considered to be irrelevant
to protein coding, and as such are assigned to Class 1 with respect to Protein Coding.
Among the SNPs within a protein coding region, nonsense SNPs and some missense
SNPs are predicted to have deleterious effects to protein coding, and are thus assigned
to Class 3; the remaining SNPs within the protein coding region are assigned to Class
2. Similarly, the SNPs within a highly conserved splice regulatory region or transcrip-
tional regulatory region are assumed to be deleterious with respect to the corresponding
regulatory function [2], and are thus assigned to Class 3, while the SNPs within non-
conserved regulatory regions are only relevant to the respective function, and are thus
assigned to Class 2.

To make a robust assessment, we use multiple bioinformatics tools that are based on
different data, algorithms, or theory for examining each biological functional category.
The tools, PolyPhen [16], SIFT [17], SNPeffect [18], SNPs3D [19], and LS-SNP [20]
are used to examine missense SNPs; ESEfinder [21], RescueESE [22], ESRSearch [23],
and PESX [24] are used to identify the SNPs in exonic splice regions; TFSearch [25]
and Consite [26] are used to identify transcriptional regulatory SNPs in promoter re-
gions; Ensembl [27], GoldenPath [28], and HGMD [29] databases are used to identify
SNPs in other transcriptional regulatory regions (e.g., microRNA); and Ensembl [27]
database is used to identify nonsense SNPs and the SNPs in intronic splicing sites.

The classes assigned to each SNP, with respect to each functional category are de-
cided by a majority vote of the integrated tools in the category. As a result, three class
labels are assigned to each SNP, one for each of the three categories of biological func-
tion. To assign a single functional significance value to each SNP, we follow Bhatti et
al. [2], and assign the highest class tag along all three categories as the functional signif-
icance score, ej , for the SNP Xj . For example, SNP rs4963 on gene ADD1 is assigned
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to Class 3 with respect to Protein Coding, Class 1 with respect to Splicing Regulation,
and Class 1 with respect to Transcription Regulation. The functional significance score
of SNP rs4963 is thus 3 because it is highly significant for the protein coding function.

3.2 Selecting Functionally Informative Tag SNPs

Our selection algorithm takes an incremental, greedy approach. It starts with an empty
tag SNP set, T , and iteratively adds one SNP to T until a maximum number, k, of SNPs
are selected. Each greedy selection step identifies a SNP whose addition to T will result
in the maximum increase in the value of the functionally informative objective function
(FI-score) with respect to the current tagging set T .

We first explain the basis for our greedy incremental selection process. Let T (m)

denote the set of m selected SNPs after the mth iteration, where m = 0, ..., k and
T (0) = ∅. The FI-score of T (m) was defined in Def. 3 as follows:

f(T (m)|D, E) = α · f1(T
(m)|D) + (1− α) · f2(T

(m)|E)

=
p∑

j=1


α ·

(
1

np
·

n∑
i=1

I(Xj , T
(m), Di+)

)
+ (1− α) ·


 ej

p∑
l=1

el

· IT (m)(Xj)





 .

Note that the FI-score of T (m) is the weighted sum of the allelic information of T (m)

and the functional significance of T (m) for each SNP Xj (j = 1, ..., p). For simplicity,
we denote the contribution of each SNP Xj to the FI-score of T (m) as fj(T (m)|D, E),
and refer to it as the FI-score of Xj with respect to T (m). That is,

fj(T
(m)|D, E) =


α ·

(
1

np
·

n∑
i=1

I(Xj , T
(m), Di+)

)
+ (1− α) ·


 ej

p∑
l=1

el

· IT (m)(Xj)





 ,

and

f(T (m)|D, E) =
p∑

j=1

fj(T
(m)|D, E) .

In the next iteration, m + 1, we aim to select a SNP, X(m+1), whose addition to
T (m) will maximally increase the FI-score. Using the FI-score of Xj with respect to
T (m), fj(T (m)|D, E), defined above, this goal can be stated as follows:

X(m+1) = argmax
X∈ V−T (m)

p∑
j=1

(
fj(T

(m) ∪ {X}|D, E)− fj(T
(m)|D, E)

)
.

Our algorithm is outlined in Fig. 2. It starts with an empty set of tag SNPs, T ,
and computes the FI-score of each SNP with respect to the current set T . We note that
although no SNP is currently selected, our algorithm can still predict the allele informa-
tion of SNPs, and can thus lead to a different FI-score for each SNP. The reasoning is
that in this initial case where T is empty, the posterior probability, Pr(Xj |T ), shown in
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Input: a set of SNPs, V ; a maximum number of SNPs to select, k;
a haplotype dataset, D; a set of functional significance scores, E;

Output: a set of tag SNPs, T .

m ← 0.
T (m) ← ∅.
For each SNP Xj ∈ V

FIj ← fj(T
(m)|D, E).

While m < k

For each t where Xt ∈ V − T (m)

∆
(m)
t ←

p∑
j=1

(
fj(T

(m) ∪Xt|D, E)− FIj

)
.

X(m+1) ← argmax
Xt∈V−T (m)

∆
(m)
t .

T (m+1) ← T (m) ∪X(m+1).
For each Xj /∈ T (m)

FIj ← fj(T
(m+1)|D, E).

m ← m + 1.
T ← T (m).

Fig. 2. The incremental, greedy algorithm for selecting functionally informative tag SNPs.

the definition of the function I within Def. 1, is simply the prior probability, Pr(Xj).
That is, we always predict the alleles of Xj , Dij(i = 1, ..., n), as the major allele of
the SNP. This approach is taken because it maximizes the expected prediction accuracy
when no other information is given. At each subsequent iteration, the SNP that leads
to the maximum increase in the FI-score is selected and added to T . The FI-score for
each SNP is updated based on the augmented set T and used in the next iteration. This
procedure is repeated until the set T contains the pre-specified number of SNPs, k.

The time complexity of each incremental greedy selection is O((p−m)2 ·n), where
p−m is the number of SNPs that can be selected, and n is the number of haplotypes in a
dataset D. As this iteration is repeated for m = 0 to m = k− 1, the overall complexity
of our algorithm is O(k · n · p2).

4 Experiments and Results

4.1 Experimental Setting

For evaluation, we have selected 14 genes that are involved in the etiology of common
and complex diseases according to the OMIM database [30] and have disease-related
SNPs identified and recorded by the HapMap Project [31]. To identify the candidate
genes, we scanned the OMIM database for several major common and complex dis-
eases, including diabetes, cancer, hypertension, and heart disease. The retrieved genes
were then scanned to find those that have SNPs with possible deleterious functional
effects reported in the biomedical literature and also have haplotype information avail-
able from the HapMap consortium [31]. From the genes satisfying these criteria, 14
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were selected at random. Table 1 provides the genetic characteristics of the 14 genes
and their associated disease. The haplotype datasets of the 14 genes were downloaded
from the HapMap project website [31]; The genomic location of each gene, including a
10k promoter region, was used to download the phased haplotype data (HapMap public
release #20/phaseII) for the CEU population.

Table 1. Summary of 14 test datasets. Linkage disequilibrium (LD) is estimated by the multi-
allelic extension of Lewontin’s LD, D′ [32]. The number of SNPs selected by TAMAL and by
SNPSelector are shown in the right column.

# of Selected SNPs
Gene Target Disease Locus LD (D′) Total # of SNPs

TAMAL SNPSelector

ADD1 Hypertension 4p16.3 0.7718 60 16 1
BRCA2 Breast Cancer 13q12.3 0.7657 106 28 13
CMA1 Hypertension 14q11.2 0.8361 20 6 4
ELAC2 Prostate Cancer 17p11 0.8336 35 13 2
ERBB2 Prostate Cancer 17q21.1 0.8104 8 6 1
F7 Heart Disease 13q34 0.8629 13 8 5
HEXB Mental Retardation 5q13 0.7371 51 10 5
ITGB3 Heart Disease 17q21.32 0.6491 83 20 8
LEPR Diabetes 1p31 0.7048 245 46 11
LTA Heart Disease 6p21.3 0.7865 12 4 2
MSH2 Colon Cancer 2p22-p21 0.8413 51 18 4
NOS3 Alzheimer Disease 7q36 0.6183 16 7 0
PTPRJ Colon Cancer 11p11.2 0.7863 115 32 7
TP53 Colon Cancer 17p13.1 0.7154 9 5 2

We compare our system with two state-of-the-art SNP selection systems that sup-
port both tag SNP selection and function-based SNP selection: TAMAL [7] and SNPs-
elector [8]. The two systems share the same goal with our system, namely, selecting
a set of tag SNPs, with significant functional effects on the molecular function of the
genes, for association studies. However, they differ from our system in the assessment
process for the functional significance of SNPs, the integrated bioinformatics tools, and
the criteria used for selecting SNPs. Moreover, they conduct tag SNP selection and
function-based SNP selection in two separate consecutive steps, while we address it as
a single optimization problem.

As evaluation measures, we use Halperin’s prediction accuracy [11] and the FI-
score, introduced in Def. 3, (we note that the two systems to which we compare do not
provide an evaluation measure). To compare the performance of the systems using the
two measures, the SNP sets selected by each of the compared systems must include an
equal number of SNPs. However, unlike our system, TAMAL and SNPselector do not
allow the user to specify the number of selected SNPs, but rather calculate a subset of
SNPs and provide it as their output. Thus, when they do not select the same number of
SNPs for the same gene, they cannot be directly compared. Hence, for a fair compari-
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Fig. 3. The performance of our system and the compared systems for 14 gene datasets.

son, we first apply each of the compared systems to each of 14 test datasets, and then
use our system on the same dataset to select the same number of SNPs as selected by the
compared system. We then compute the two evaluation measures for the sets selected
by each of the systems, and compare the resulting scores. The number of SNPs selected
by TAMAL and SNPselector for the 14 tested genes is shown in Table 1. To ensure
robustness of the results obtained from our system, we employ 10-fold cross validation
10 times, each using a randomized 10-way split of the n haplotypes. In all cases, the
average performance is used in the comparison.

4.2 Results

Figure 3 shows the performance of our system compared with TAMAL (left) and with
SNPselector (right). The X-axis represents the 14 genes in an alphabetical order of their
names, as listed in Table 1. In Fig. 3(a) (top), the Y-axis shows Halperin’s prediction
accuracy [11], and in Fig. 3(b) the Y-axis shows the FI-score for the selected SNP set
of the corresponding gene. Our system (upper solid line with diamonds) consistently
outperforms the other two systems, TAMAL and SNPselector (lower dotted line with
rectangles) on both evaluation measures. The performance difference in all cases is sta-
tistically significant, as confirmed by the Wilcoxon rank-sum test (p-values are 1.144e-
005 and 4.7e-003 with respect to the TAMAL system and 1.7382e-005 and 5.6780e-004
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with respect to the SNPselector system.). We note that optimizing the FI-score when se-
lecting SNPs does not compromise the predictive power of the SNPs selected by our
system, that is, our selected SNPs still have a high prediction accuracy according to
Halperin’s original measure as demonstrated by Fig. 3(a).

5 Conclusions

We have presented a first integrative SNP selection system that simultaneously identi-
fies SNPs that are both highly informative in terms of providing allele information for
the target locus, and are of high functional significance. Our main contributions include
the formulation of the problem of functionally informative tag SNP selection as a multi-
objective optimization problem, presenting a heuristic selection algorithm to address the
problem, and proposing an assessment process for scoring the functional significance
of SNPs. An empirical study over a set of 14 disease-associated genes shows that our
system indeed improves upon current state-of-the-art systems. In the near future we
plan to apply a general computational approach, such as goal programming [33], for
addressing the multi-objective optimization problem of selecting functionally informa-
tive tag SNPs. We also plan to apply a probabilistic approach to assess the functional
significance of SNPs.
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