
238 Chapter 11. Parsing

On the other hand, consider the language of “centered” palindromes, as
defined by the following grammar:

〈CenPal〉 ::= ! | 0 〈CenPal〉 0 | 1 〈CenPal〉 1
The first of the two problems with 〈palindrome〉 is avoided because 〈CenPal〉
does not generate the empty string. The second problem is avoided because
there is only one production for 〈CenPal〉 whose first token is 0, and similarly
for 1.

Exercise 11.2 Code a recursive-descent parser for centered palindromes.

11.3.5 Discussion

We have seen several examples of recursive-descent parsing in practice. In
each case, it was necessary to ensure that, wherever there were several pro-
ductions for a nonterminal, it would be possible to decide which production to
choose using only the current token. In this section, we summarize the lessons
of these examples in general terms. Such rules are important not only to be
able to ensure that a recursive-descent parser is feasible, but also to verify that
a grammar is not ambiguous, for if no alternative productions are available for
expansion, the grammar must be unambiguous. It is for this reason that we
may assert that particular grammars, for example, for expressions and state-
ments, are not ambiguous, even though a general algorithm for testing ambigu-
ity of context-free grammars cannot exist.

If a context-free grammar is to be implemented using recursive descent,
it is necessary to determine, for each production, the director set of input to-
kens that will direct the parse to use that production, rather than other produc-
tions for the same nonterminal symbol. The constraint that must be satisfied if
recursive-descent parsing is to be used is that the director sets for a nontermi-
nal must be pairwise disjoint; i.e., if D and D′ are the director sets associated with
two productions for the same nonterminal symbol, D ∩ D′ = ∅. The director
sets are determined as follows.

Let 〈N〉 ::= α1 | α2 | · · · | αn be all the productions for nonterminal sym-
bol 〈N〉. The αi are strings of terminal and nonterminal symbols. The director
set associated with production 〈N〉 ::= αi then contains the following tokens:

• all initial tokens of non-empty strings derivable from αi; this set is usually
called first(αi);

• in addition, if the empty string ε is derivable from αi, all initial tokens
of nonempty strings that may follow 〈N〉 in any derivation, possibly
including the end-of-string pseudo-token EOS; this set is usually called
follow〈N〉.

Note that the definitions of first and follow are not completely symmetric; in
particular, follow is defined only for single nonterminal symbols.

11.3. Recursive Descent 239

In simple examples, such as those we have been considering, it is easy to
determine the first and follow sets “by hand.” However, for more complex
grammars, fairly sophisticated algorithms must be used to allow for mutual
dependencies between nonterminals and for nonterminals that may generate
the empty string. The details are beyond the scope of this presentation, but
they may be found in many books on compilers.

If a grammar does not satisfy this criterion, it may still be possible to use
recursive descent if common prefixes may be left factored, or if options or clo-
sure operations may be used to re-formulate the productions. The conditions
that must then be verified may be determined by expressing the use of an op-
tion or closure operation in terms of conventional context-free productions and
testing the condition stated earlier.

For example, a use of closure of the form

〈N〉 ::= · · · | α
{

β
}

may be re-expressed in conventional BNF as

〈N〉 ::= · · · | α 〈Ntail〉

〈Ntail〉 ::= 〈empty〉 | β 〈Ntail〉

〈empty〉 ::=

where 〈Ntail〉 is a new nonterminal. The conditions on the 〈Ntail〉 productions
would be that first(β) ∩ follow〈N〉 = ∅, and that β not generate a language
containing the empty string. The corresponding recognition code would have
the form

parse α;

while (t ∈ first(β))
{ parse β;

}

Exercise 11.3 Why, in the preceding discussion, would β generating the empty string
be problematic?

Similarly, use of an option of the following form

〈N〉 ::= · · · | α
[
β
]

may be re-expressed in conventional BNF as

