
Appendix A

Programming Language Reference

This appendix is a compact description of the extended subset of C used for the
examples in this book. It is not a complete description of C, much less of C++,
which is an extended (some might say overextended) version of C for object-
oriented programming. The C++ features (class, public, private) are used
only in Part B. For complete descriptions and more explanation than we have
room for here, see the Additional Reading.

A.1 Lexical Conventions

A.1.1 Comments

A comment in C is introduced by the characters /* and terminated by */.
In C++ (and in many implementations of C), a comment may also be intro-
duced by the characters //, and this kind of comment is terminated by the next
end-of-line. Comments do not occur within strings or character literals.

A.1.2 White Space

Blanks, tabs, new-lines, form-feeds, and comments are known as white space.

A.1.3 Preprocessing

Before a compiler translates source code to executable code, a preprocessor per-
forms macro expansion and file inclusion, under the control of lines beginning
with a # character (possibly after some white space), as follows.

A control line of the form

define I X

where I is an identifier (Section A.1.5) and X is arbitrary text, causes the pre-
processor to replace subsequent occurrences of the identifier with X. Leading
and terminating white space are stripped from X.

259

260 Appendix A. Programming Language Reference

A control line of the form

define I(I0, I1, . . . , In−1) X

where I and the Ij are identifiers and there is no white space between I and the
formal-parameter list, causes the processor to replace subsequent occurrences
of I(X0, X1, . . . , Xn−1) by X, but with occurrences of the macro parameters Ij

in X replaced by the corresponding macro arguments Xj. Leading and termi-
nating white space are stripped from X and from the arguments Xj.

The programs in this book assume the following macro definitions:

define ASSERT(P)

define FACT(P)

define INVAR(P)

Because the macro bodies are null, calls of these macros are essentially com-
ments.

A control line of the form

include <file name>

causes the replacement of that line by the contents of the named file, which is
searched for in a sequence of implementation-determined system directories. It
is conventional to include the “headers” for standard libraries using this form.

A control line of the form

include "file name"

causes the replacement of that line by the contents of the named file, which
is searched for in a sequence of implementation-determined user directories,
starting with the directory containing the source file. Included files are also
preprocessed.

A control line of the form

ifndef I

causes the preprocessor to exclude all program text until the following # endif

line if the macro I is not defined. For example, the macro __cplusplus is de-
fined if the processor is a C++ processor and is undefined if it is only a C pro-
cessor, and so this facility may be used as in Program 3 in the Introduction to
exclude a redundant definition of a bool type if C++ is in use.

If it is necessary to extend a control “line” over to an additional line, the
last character in the line should be a backslash \ with the new-line character
immediately following; the backslash and the new-line character are deleted.

A.2. Basic Types and Constants 261

A.1.4 Tokens

After preprocessing, a program consists of a sequence of tokens. There are
six classes of tokens: identifiers, keywords, constants, string literals, operators,
and other separators. White space is ignored, except that some white space is
needed to separate otherwise adjacent identifiers, keywords, and constants.

A.1.5 Identifiers

An identifier is a sequence of letters, digits, or the underscore character (_). The
first character must be a letter or underscore. Uppercase and lowercase letters
are different. It is conventional to reserve identifiers whose first character is an
underscore for use by standard libraries.

A.1.6 Keywords

The following identifiers are reserved for use as keywords in C:

auto do goto signed unsigned

break double if sizeof void

case else int static volatile

char enum long struct while

const extern register switch

continue float return typedef

default for short union

The following are additional keywords in C++:

and const cast namespace public typename

and eq delete new reinterpret cast using

asm dynamic cast not static cast virtual

bitand explicit not eq template wchar t

bitor export operator this xor

bool false or throw xor eq

catch friend or eq true

class inline private try

compl mutable protected typeid

In particular, class, private, and public are not reserved in C and bool,
false, and true are reserved in C++.

A.2 Basic Types and Constants

The basic data types used in this book and typical constants are given in the
following table:

262 Appendix A. Programming Language Reference

bool false true

char 'a' 'A' · · · '\n' '\\' '\'' '\0'

int · · · -2 -1 0 1 2 · · ·
float 0. .1 3.14159 -1e2 6.625e-34 · · ·

The character designated by \0 is termed the null character (the NUL in the ascii
character set). The character set actually used is implementation dependent.
Type bool is predefined in C++, but it may be explicitly defined in C by the
following declaration of an enumerated type (Section A.5):

typedef enum {false, true} bool;

Values of types char and bool are represented by small integer values, and the
representations are not necessarily unique; for example, false is represented
by 0, but any nonzero integer value will be taken as equivalent to true by bool

operations. This means that the idiom B == true may be inappropriate for
some bool expressions B. It is not illegal in C to apply int operations to char

or enum variables, or even to bool operands, or vice versa; the programs in this
book generally avoid such idioms.

Only finite ranges of values are representable by variables of type int

or char. The standard limits library defines the following implementation-
dependent constants:

CHAR_MAX maximum value of type char

CHAR_MIN minimum value of type char

INT_MAX maximum value of type int

INT_MIN minimum value of type int

There are also constants defining the properties of float values, but we will
not describe these.

Values of type int are automatically converted to type float if necessary,
but there may be round-off errors if an exact representation is not possible. If
necessary, values of type float are converted to type int by discarding any
fraction.

An attempt to compute an int value that is too large to be represented
is illegal. This is called an overflow. The effect of an int overflow is not de-
fined; many implementations simply ignore them, allowing garbage results to
be produced. Type int may be replaced by long int (or just long), or even
long long int in some implementations, to obtain a larger range of repre-
sentable integers; similarly, type float may be replaced by double, or even
long double in some implementations, to obtain greater precision or range.

A.3. Strings 263

A.3 Strings

A string constant consists of a sequence of characters (possibly none) enclosed
in double-quote marks: ". . .". Adjacent string constants are concatenated into
a single string. After such concatenation, a null character is appended to the
string to act as the string terminator. The escape sequences \n and \" for new-
line and double-quote characters, respectively, must be used if these characters
are to be components of a string constant. A string is considered to be an array
with char components. It is illegal to attempt to modify the representation of
a string constant.

A.4 Variable Declarations

The basic form of a variable declaration is as follows:

• a type specifier: one of char, int, float, a defined type name (such as
bool), an enumerated or structure type (Section A.5), or a class name
(Section A.11), followed by

• one or more identifiers separated by commas and

• terminated with a semicolon (;) .

A declared variable may optionally be followed by = and an initializer expres-
sion that is assignment compatible with the variable; the variable is initialized
to the value of the expression. If the type specifier is preceded by the qualifier
const, the initial value may not subsequently be modified. If there is no explicit
initializer, the initial value of a declared variable is unpredictable (i.e., garbage).

If a declared identifier is immediately followed by [K], where K is a con-
stant expression (Section A.6.4), the identifier is defined to be an array whose
size is determined by the value of K; the size must be positive. Some imple-
mentations of C allow the size expression K to be an arbitrary (not necessarily
constant) int expression. The array declarator may be optionally followed by =

and a list of constant expressions enclosed in braces and separated by commas:
{K0, K1, . . . , Kn−1}. The list may also be terminated by a comma, if desired:
{K0, K1, . . . , Kn−1, }. A char array may also be initialized by providing a string
initializer of the form " . . . ". The number of initializers or the length of the
string (plus 1 for the terminating null) must be ≤K if a size expression K is
specified, but the size expression may be omitted if an initializer list or string
is supplied.

An n-dimensional array for n > 1 (i.e., an array of arrays) is declared by
using n array specifiers [K0][K1] · · · [Kn−1], optionally followed by = and a
brace-enclosed and comma-separated (and possibly comma-terminated) list of
constant initializer expressions. If an initializer list is provided, the first size
specifier K0 may be omitted; however, if K0 is provided, the initializer list must

264 Appendix A. Programming Language Reference

have length ≤ the total number of components. Sublists may be enclosed by
braces to indicate rows.

If a declared identifier is immediately preceded by *, the identifier is a pointer
variable. In this book, this idiom is used only in Chapter 12 for file descriptors,
as in the following:

FILE *f = tmpfile();

A.5 Enumerated and Structure Types, Defined Type Names

Enumerated types, structure types, and defined type names, as described next,
may be used as type specifiers in declarations.

The construct enum{I0,I1, . . . ,In−1} (where the Ij are identifiers) defines
an enumerated type; each identifier Ij is thereby defined to be a constant with
int value j. A variable declared to be of the enumerated type should only be
assigned one of the enumerated values, but not every compiler enforces this.

The construct struct{D0 D1 · · · Dn−1} (where each Dj is a variable declara-
tion) defines a structure type. Each variable declared to be of the structure type
will have n components (called members or fields), as specified in the declara-
tions. The variable declarations Dj may not have initializers, not even constant
expressions; however, a list of up to n initializing constant expressions may be
provided in the declaration of a struct variable.

A declaration of the form typedef T I; (where T is a type and I is an
identifier) defines I to be a new name for type T. A variable declared with
a type-name specifier is considered to be of the type T given in the typedef

declaration.

A.6 Expressions

The basic expression forms are constants, variables, function calls, operations,
and parenthesized expressions.

A.6.1 Variable Expressions

An expression is considered to be a variable (known as an l-value expression in
the C literature) if it is either

• an identifier declared to be a variable or

• of the form V[E] (where V is an array) or

• of the form V.I (where V is a structure or class object and I is one of its
member variable names) or

• a parenthesized variable (V).

A.6. Expressions 265

It is illegal for the value of the subscript expression E to be outside the range
determined by the size of the array when it was created; however, many im-
plementations do not check this and the effects are unpredictable.

A.6.2 Function Calls

A function call normally consists of the identifier or class-object field selection
(see Section A.11) designating the function, followed by a parenthesized (but
possibly empty) list of argument expressions, separated by commas. The num-
ber of arguments must match the number expected by the function, and the
corresponding types must be compatible. Function definitions are discussed in
Section A.9.

A.6.3 Operations

The arithmetic operators are + and - and, with higher priority, *, /, and the
remainder operator % (which should only be used on positive integers). Integer
division discards any remainder. If all operands have type int, so does the
result; otherwise, the operand values are converted to float and the result has
type float.

The relational operators are <, <=, >, and >=, and, with lower priority, the
equality operators == and !=. These operators all have lower priority than the
arithmetic operators.

In C, assignment operations may be used as subexpressions; the programs
in this book do not use this idiom. You will not get an error message if by
accident you use = instead of == in an expression.

The bool operators are ! for negation, && for conjunction (i.e., and), and,
with lower priority, || for disjunction (i.e., or). The latter two are evaluated
“sequentially,” so that the second operand is not evaluated if the value of the
first operand determines the result. All these operations treat 0 as equivalent
to false and any nonzero value as equivalent to true.

The sizeof operator yields the number of bytes required to store an object
of the type of its operand, which may be either an expression or a parenthe-
sized type. Note that, when s is an array parameter, sizeof(s) in the function
is the size of an array reference (pointer), not the size of the actual array argu-
ment.

The address-of prefix operator & is needed to pass simple-variable argu-
ments to functions by reference. In this book, this operator is used only for
calls of the scanf function for formatted input (Section A.10). There is an in-
verse prefix operator for dereferencing (*), but it is not used in this book.

There are a number of operators that “shift” bit strings (<< and >>) or ap-
ply bool operations such as negation (~), conjunction (&), disjunction (|), and

266 Appendix A. Programming Language Reference

Table A.1 Precedence and Associativity of Operators

() [] . left
prefix operators: ! ~ + - sizeof & * right
* / % left
+ - left
<< >> left
< <= > >= left
== != left
& left
^ left
| left
&& left
|| left
? : right

exclusive-or (^) “bitwise” to bit strings. In this book, these are used only in the
very stylized way described in Section 6.4.

Finally, there is the following ternary (three-operand) conditional-expression
operator:

B ? E0 : E1

where B normally has type bool. It is equivalent to
{

E0, if B != false

E1, if B == false

Only one of E0 or E1 is evaluated. This operator associates to the right and has
the lowest priority of all the operators we have discussed.

Table A.1 gives the operators (in order of precedence) and their associativ-
ity.

A.6.4 Constant Expressions

In certain contexts, expressions must be evaluated during compilation; these
are termed constant expressions. They must not contain function calls, vari-
ables, array-subscripting operations, or structure-member selections, except in
operands of the sizeof operator.

A.7 Some Library Functions

In this section, we briefly describe a selection of standard-library functions that
return values and do not have side effects.

A.7. Some Library Functions 267

A.7.1 Mathematical Functions

Table A.2 summarizes the most useful “mathematical” functions available in
the math library.

Table A.2 Mathematical Functions

int abs(int i) absolute value of an int

float fabs(float x) absolute value of a float

int ceil(float x) smallest int not less than x

int floor(float x) largest int not greater than x

float sqrt(float x)
√
x, x≥ 0

float log(float x) ln(x), x> 0
float log10(float x) log10(x), x> 0

A.7.2 Character Functions

Values c of type char may be classified by using the bool functions from the
ctype library given in Table A.3. Also, the char functions toupper(c) and
tolower(c) convert the case of c if it is a letter and return their argument un-
changed if c is not a letter.

Table A.3 Character-Set Classification Functions

bool isalpha(char c) letter
bool isdigit(char c) decimal digit
bool isupper(char c) uppercase letter
bool islower(char c) lowercase letter
bool iscntrl(char c) control character
bool isprint(char c) printing character
bool isgraph(char c) printing character except space
bool ispunct(char c) printing character except space or letter or digit
bool isspace(char c) space, form-feed, new-line, carriage return, tab

A.7.3 String Functions

The following is a selection of functions on strings defined in the string or
stdlib libraries:

• int strlen(const char[] s): length of string s, not including the ter-
minating null (which must be present);

268 Appendix A. Programming Language Reference

• int strcmp(const char[] s, const char[] t): negative, 0, or posi-
tive according to whether s<t, s==t, or s>t, respectively;

• int strncmp(const char[] s, const char[] t, int n): same as
strcmp, but compares at most n characters;

• int atoi(const char[] s): converts string s to int;

• float atof(const char[] s): converts string s to float;

• int strspn(const char s[], const char t[]): returns the length of
the longest prefix of s consisting of characters in t;

• int strcspn(const char s[], const char t[]): returns the length of
the longest prefix of s consisting of characters not in t.

A.8 Statements

Statements are executed for their effects and do not yield values.

A.8.1 Basic Statements

An assignment statement consists of an assignment, followed by a semicolon,
where an assignment is one of the following forms:

• V = E where V is a variable expression and E is an expression whose
value is convertible if necessary to the type of the variable;

• V op=E (where op is a suitable operator), which is equivalent to V =V op E
except that the variable is only evaluated once;

• V++ , which is equivalent to V += 1 ;

• V-- , which is equivalent to V -= 1 .

Structures are assignable, but arrays (as a whole), including strings, are not
assignable.

Assignments are actually expressions in C, but we do not use this idiom
in this book. We have had to describe assignments (without the terminat-
ing semicolon) because they are used in the control section of the for loop
(Section A.8.2).

A function call (Section A.6.2), followed by a semicolon is a statement. If the
return type of the function is not void, the value returned is simply discarded.

The null statement consists of a semicolon by itself; it has no effect but may
be used wherever a statement is needed syntactically.

A statement of the form goto I (where I is an identifier) transfers control
to the statement labeled by identifier I (followed by a colon :) in the same
function body. This feature is used in this book only in Exercise 8.4.

A.8. Statements 269

The break; and return E; (or, for a void function, just return;) statements
may be used to exit loops and function bodies, respectively. In this book, we
use these features only in very restricted ways.

A.8.2 Control Structures

A compound statement or block statement has the general form

{ D0 D1 · · ·Dn−1 C0 C1 · · ·Cm−1 }

where the Di are declarations and the Cj are statements. The identifiers de-
clared in a Di have the rest of the block as their scope. The same identifier may
not be declared more than once in the declarations of a block except that label
identifiers and the member names for each struct type are considered to in-
habit “name spaces” separate from the name space of identifiers for variables,
functions, type names, and enum constants. Identifiers may be redeclared in
nested blocks. Initializations in the declarations are performed each time the
block is executed. The body of a function definition must be a block; however,
in standard C a block may not itself contain a function definition. The trivial
block {} has no effect and may be used wherever a statement is required.

The if statement forms are as follows:

• if (B) C

• if (B) C0 else C1

where B is a bool expression and C, C0, and C1 are statements. In combina-
tions of the form if (B0) if (B1)C0 elseC1, the else matches the immediately
preceding unmatched if in the same block.

There is also a switch form, which is normally used as follows:

switch (N)
{ case K0:

C0
break;

...
case Ki:

Ci
break;

...
default:

Cn
}

where N is an integer-valued expression, the Ki are constant integer-valued
expressions with distinct values, and the Ci are (sequences of) statements. Ex-
pression N is evaluated, and control transfers to the Ci that is labeled by a

270 Appendix A. Programming Language Reference

constant expression with the same value (or to the default-labeled statement
if none of the constants have that value). After execution of Ci, control is trans-
ferred by the terminating break to the end of the switch statement. If the break
is omitted, however, control “falls through” to Ci+1; usually, this would not be
what the programmer intends. Also, any of the Ci may have several case labels:

case Ki0:
case Ki1:
...
case Ki(m−1):

Ci
break;

The most basic form of iteration statement or loop has the following form:

while (B) C

where normally B is an expression of type bool and C is a statement (possibly,
but not necessarily, a compound statement). The expression is evaluated before
each execution of C; the loop terminates when the expression value has become
equal to false, possibly before statement C is executed at all.

The for loop form

for (A0; B; A1) C

is equivalent to

A0; while (B){C A1;}

Here, A0 and A1 are assignments (i.e., assignment statements without termi-
nating semicolons), B is normally an expression of type bool, and C is a state-
ment. Any (or all) of A0, B, or A1 (but not the separating semicolons) may be
omitted; if B is omitted, the condition is taken to be true.

The most common uses of the for form of loop are in the following
“counting-up” and “counting-down” loops:

for (V=N0;V<N1;V++) C

for (V=N0;V>N1;V--) C

where V is a declared int variable and N0 and N1 are int expressions.
The following do-while form of loop is used when a loop condition is to be

evaluated after each execution of the loop body (but not before the first execu-
tion):

do C while (B);

A.9. Function Definitions 271

where C is a statement (usually a block) and B is normally a bool expression.
The break; statement may be used to exit from inside a loop. In this book,

only the following special case is used:

for(;;)
{ D

C0
if (B) break;
C1

}

where D is a declaration sequence (possibly empty), B is a bool expression,
and C0 and C1 are statement sequences.

A.9 Function Definitions

Here is the basic form of a function definition:

T I(T0 I0, T1 I1, . . . ,Tn−1 In−1) C

where T (the return type) and the Tj (formal-parameter types) are types, I (the
function name) and the Ij (the formal parameters) are identifiers, and C (the
body) is a block. The formal parameters are considered to be defined in the
block. If the function is intended to be used as a statement, the return type
T should be void. The formal-parameter list may be either empty (n = 0) or
void to indicate that the function does not require arguments; the enclosing
parentheses are always required. A function may return a structure but may
not return an array.

If the function is expected to return a value, the function body should be
terminated by a statement of the form return E;, where E is an expression. In
fact, return statements may be used anywhere in the function body, but this
idiom is not used in this book, except in Exercise 8.4.

Parameter passing for simple variables is “by value”; that is, the value of an
argument (actual parameter) is copied to a new local variable before the body is
executed; assignments to the formal parameter do not affect the corresponding
actual parameter.

If a formal-parameter identifier is immediately followed by an array speci-
fier ([K] or []), the address of the array is passed to the function; assignments
to (components of) the formal parameter then affect the corresponding argu-
ment array. An array parameter may be preceded by the qualifier const; this
qualification indicates that the array components will not be modified by the
function. Multidimensional array parameters are treated in a similar manner.

If a formal-parameter identifier is immediately preceded by *, the corre-
sponding argument must be a pointer, such as a file descriptor. The only other

272 Appendix A. Programming Language Reference

use of this idiom in this book is the standard scanf function (Section A.10);
arguments of scanf must normally be prefixed by the & (address-of) operator.

Functions may be called recursively. If one function must call another func-
tion that has not yet been defined (perhaps because the two functions are mu-
tually recursive), it is necessary to “declare” the called function, without defin-
ing it. A function declaration consists of a function header (type, name, formal-
parameter list), followed by a semicolon (rather than a block). Examples of
such declarations may be found in Programs 11.2 and 11.3.

A.10 More Library Functions

The library functions described in this section have side effects; some also re-
turn a value, though often the returned value is simply discarded.

A.10.1 Input and Output

The stdio library defines a type FILE of file descriptors. The identifiers stdin,
stdout, and stderr are defined to be pointers to the file descriptors for the
standard input, output, and error streams, respectively. Temporary files are
created by calling the following function:

FILE *tmpfile(void)

which returns a pointer to the file descriptor, as in the following initialized
variable declaration:

FILE *f = tmpfile();

Here are the basic input and output functions:

• int getc(FILE *f): returns the int code for the next character in the
file f or EOF (end-of-file) if there are no more characters to input;

• int getchar(void): equivalent to getc(stdin);

• int putc(char c, FILE *f): appends c to file f and returns EOF if this
fails;

• int putchar(char c): equivalent to putc(c, stdout);

• int ungetc(char c, FILE *f): pushes c back into file f and returns
EOF if this fails;

• void rewind(FILE *f): resets the position of file f (not stdin, stdout,
or stderr) to its first component;

• void fgets(char s[], int n, FILE *f): reads at most the next n-1

characters from f into s, up to and including a new-line; the string is
then terminated by a null.

A.10. More Library Functions 273

The constant EOF is defined by the stdio library; this is not a char value, which
explains why the return types for these functions are int rather than char.
Only one call of ungetc is allowed before the next read from that file. The
character pushed back into the file need not be the same as the one previously
read.

Formatted input and output are provided by the following functions:

• int scanf(const char fmt[], ...)

• void printf(const char fmt[], ...)

• void fprintf(FILE *f, const char fmt[], ...)

Here, f points to a file, and fmt is a format string that may contain conversion
specifications to control conversions to or from the remaining arguments, as fol-
lows:

%c char

%i int

%g float

%s char []

For scanf, initial white space (including new-lines) is skipped for each
conversion-specification item (except c). The input stream is then read up to
the next white space and matched against the format item; however, if a num-
ber appears between the % and the control character in the conversion specifi-
cation, it is used as the maximum width of the field read. It is a good idea to
specify a maximum field width for string input to preclude buffer overflows.
A string read using the s control character does not have to be quoted. Any re-
maining arguments of scanf should be prefixed by the “address of” operator &
if they are simple (nonarray) variables. Other characters in the format string
(i.e., those not escaped by %) must match the characters found in the input
stream. Scanning of the input continues until the format string is exhausted or
a match fails. The int returned by a call of scanf is the number of items suc-
cessfully matched and assigned (or EOF if there isn’t enough input); the value
returned should always be checked to verify that the input was well formed,
as in the following example:

if (scanf("%i,%i,%i", &a, &b, &c) != 3) error("input failure");

For printf and fprintf, a number used between the % and the control char-
acter is used as the minimum field width. A string argument is output up to the
terminating null character. Other characters in the format string (including
escape sequences such as \n) are output directly to the output stream with-
out conversion. The function fprintf is similar but doesn’t assume stdout

(the standard output stream) as the default; we use this function to send error

274 Appendix A. Programming Language Reference

messages to the stderr stream, such as in the definition of function error on
page 7.

Note that a call of the form printf(str) or fprintf(f, str) may have un-
expected results if string str happens to contain the % character. The following
are safe alternatives: printf("%s", str) and fprintf(f, "%s", str) .

A.10.2 More String Functions

The following function defined in the string library is normally executed for
its effect.

void strncat(char s[], const char t[], int n): copies at most n

characters from t to s starting at the terminating null of s; then s is
padded if necessary with a single null.

The two string arguments should be distinct. There are standard functions in C
to just copy (rather than concatenate) strings; unfortunately, they are unsafe or
inefficient. The following function

void strlcpy(char s[], const char t[], int n)
/* copies at most n characters from t to s,

up to and including the terminating null
*/
{ s[0] = '\0'; strncat(s, t, n); }

is efficient and safe, provided n is smaller than the size of array s.

A.10.3 Miscellaneous Functions

The function

int rand(void)

in the stdlib library returns a pseudo-random int in the range 0 to RAND_MAX.
The function

void exit(int status)

in stdlib aborts program execution, returning control to the system environ-
ment. The status argument is interpreted in a system-dependent way, but
EXIT_FAILURE indicates unsuccessful termination and EXIT_SUCCESS or 0 indi-
cate successful termination.

The assert library provides a function or macro

void assert(bool p)

that aborts execution with an error message if p evaluates to false.

A.11. Classes 275

A.11 Classes

Here is the typical form of a class declaration in C++:

class I
{ private: D0 D1 · · · Dn−1

public: D′
0 D′

1 · · · D′
m−1

};

where I is an identifier (the class name), and the Di and D′
j are declarations and

function definitions. Note the terminating semicolon.
For any object V of type I and any I ′j declared in a public part of the class

declaration, member I ′j is accessible using the notation V.I ′j ; however, a private
member Ii is accessible only inside the class declaration. According to the C++
standard, non-static variables declared in a class declaration may not have
initializers, not even constant expressions. Class objects may be initialized by
defining a (parameterless) constructor function with the same function name
as the class; no return type should be specified for the constructor function.
The constructor function for a class is automatically called for each class object
created.

A.12 Program Structure

A complete program unit (after preprocessing) consists of a sequence of dec-
larations and function definitions, including the definition of a function called
main, which is the function that is, in effect, called by the system to start exe-
cution. The scope of identifiers declared at the program level is the rest of the
program. Function main returns an int to the environment as a status indi-
cation; the interpretation is implementation dependent, but 0 conventionally
indicates normal termination.

It is possible to separately compile program units; this capability is not re-
ally needed for the relatively small programs discussed here, but some of the
associated features, such as use of the static qualifier and header files, are
described in Section 5.4.

A.13 Grammar

This section presents a context-free grammar for the language described in this
appendix. The notation is Backus-Naur formalism (BNF); it is explained in
Section 10.1. Note that true, false, bool, class, private, and public are
treated as identifiers in C and as keywords in C++. The following metavariables
are not defined here: 〈identifier〉, 〈constant〉, and 〈string-literal〉. The grammar is
actually ambiguous (Section 10.4); it is explained on page 237 how the nested-
if ambiguity is resolved.

276 Appendix A. Programming Language Reference

A.13.1 Expressions

〈primary-expression〉 ::= 〈identifier〉
| 〈constant〉
| 〈string-literal〉
| (〈expression〉)

〈postfix-expression〉 ::= 〈primary-expression〉
| 〈postfix-expression〉 [〈expression〉]
| 〈postfix-expression〉 ()
| 〈postfix-expression〉 (〈expression-list〉)
| 〈postfix-expression〉 . 〈identifier〉

〈expression-list〉 ::= 〈expression〉
| 〈expression-list〉 , 〈expression〉

〈unary-expression〉 ::= 〈postfix-expression〉
| 〈unary-operator〉 〈unary-expression〉
| sizeof 〈unary-expression〉
| sizeof (〈type-name〉)

〈unary-operator〉 ::= & | * | + | - | ~ | !

〈multiplicative-expression〉 ::= 〈unary-expression〉
| 〈multiplicative-expression〉 * 〈unary-expression〉
| 〈multiplicative-expression〉 / 〈unary-expression〉
| 〈multiplicative-expression〉 % 〈unary-expression〉

〈additive-expression〉 ::= 〈multiplicative-expression〉
| 〈additive-expression〉 + 〈multiplicative-expression〉
| 〈additive-expression〉 - 〈multiplicative-expression〉

〈shift-expression〉 ::= 〈additive-expression〉
| 〈shift-expression〉 << 〈additive-expression〉
| 〈shift-expression〉 >> 〈additive-expression〉

〈relational-expression〉 ::= 〈shift-expression〉
| 〈relational-expression〉 < 〈shift-expression〉
| 〈relational-expression〉 > 〈shift-expression〉
| 〈relational-expression〉 <= 〈shift-expression〉
| 〈relational-expression〉 >= 〈shift-expression〉

〈equality-expression〉 ::= 〈relational-expression〉
| 〈equality-expression〉 == 〈relational-expression〉
| 〈equality-expression〉 != 〈relational-expression〉

〈and-expression〉 ::= 〈equality-expression〉
| 〈and-expression〉 & 〈equality-expression〉

A.13. Grammar 277

〈exclusive-or-expression〉 ::= 〈and-expression〉
| 〈exclusive-or-expression〉 ^ 〈and-expression〉

〈inclusive-or-expression〉 ::= 〈exclusive-or-expression〉
| 〈inclusive-or-expression〉 | 〈exclusive-or-expression〉

〈logical-and-expression〉 ::= 〈inclusive-or-expression〉
| 〈logical-and-expression〉 && 〈inclusive-or-expression〉

〈logical-or-expression〉 ::= 〈logical-and-expression〉
| 〈logical-or-expression〉 || 〈logical-and-expression〉

〈expression〉 ::= 〈logical-or-expression〉
| 〈logical-or-expression〉 ? 〈expression〉 : 〈expression〉

〈constant-expression〉 ::= 〈expression〉

A.13.2 Statements

〈statement〉 ::= 〈labeled-statement〉
| 〈compound-statement〉
| 〈assign-statement〉
| 〈selection-statement〉
| 〈iteration-statement〉
| 〈jump-statement〉

〈labeled-statement〉 ::= 〈identifier〉 : 〈statement〉
| case 〈constant-expression〉 : 〈statement〉
| default : 〈statement〉

〈compound-statement〉 ::= { }

| { 〈statement-list〉 }
| { 〈declaration-list〉 }
| { 〈declaration-list〉 〈statement-list〉 }

〈declaration-list〉 ::= 〈block-declaration〉
| 〈declaration-list〉 〈block-declaration〉

〈statement-list〉 ::= 〈statement〉
| 〈statement-list〉 〈statement〉

〈assign-statement〉 ::= ;

| 〈assignment〉 ;

〈assignment〉 ::= 〈postfix-expression〉 〈assignment-operator〉 〈expression〉
| 〈postfix-expression〉 ++
| 〈postfix-expression〉 --

〈assignment-operator〉 ::= = | *= | /= | %= | += | -= | <<= | >>= | &= | |= | ^=

278 Appendix A. Programming Language Reference

〈selection-statement〉 ::= if (〈expression〉) 〈statement〉
| if (〈expression〉) 〈statement〉 else 〈statement〉
| switch (〈expression〉) 〈statement〉

〈iteration-statement〉 ::= while (〈expression〉) 〈statement〉
| do 〈statement〉 while (〈expression〉) ;
| for (〈assign-statement〉 ;) 〈statement〉
| for (〈assign-statement〉 〈expression〉 ;) 〈statement〉
| for (〈assign-statement〉 〈expression〉 ; 〈assignment〉) 〈statement〉

〈jump-statement〉 ::= goto 〈identifier〉 ;
| break ;

| return ;

| return 〈expression〉 ;

A.13.3 Declarations

〈declaration〉 ::= 〈function-definition〉
| 〈block-declaration〉

〈function-definition〉 ::= 〈declaration-specifiers〉 〈declarator〉 〈compound-statement〉
| 〈declarator〉 〈compound-statement〉

〈block-declaration〉 ::= 〈declaration-specifiers〉 ;
| 〈declaration-specifiers〉 〈init-declarator-list〉 ;

〈init-declarator-list〉 ::= 〈init-declarator〉
| 〈init-declarator-list〉 , 〈init-declarator〉

〈init-declarator〉 ::= 〈declarator〉
| 〈declarator〉 = 〈initializer〉

〈initializer〉 ::= 〈expression〉
| { 〈initializer-list〉 }
| { 〈initializer-list〉 , }

〈initializer-list〉 ::= 〈initializer〉
| 〈initializer-list〉 , 〈initializer〉

〈declaration-specifiers〉 ::= 〈declaration-specifier〉
| 〈declaration-specifier〉 〈declaration-specifiers〉

〈declaration-specifier〉 ::= const

| static

| typedef

| 〈type-specifier〉

A.13. Grammar 279

〈type-specifier〉 ::= void

| char

| short

| int

| long

| float

| double

| unsigned

| enum { 〈identifier-list〉 }
| struct { 〈member-declaration-list〉 }
| class 〈identifier〉 { 〈member-declaration-list〉 }
| 〈type-name〉

〈identifier-list〉 ::= 〈identifier〉
| 〈identifier-list〉 , 〈identifier〉

〈member-declaration-list〉 ::= 〈member-declaration〉
| 〈member-declaration-list〉 〈member-declaration〉
| private : 〈member-declaration-list〉
| public : 〈member-declaration-list〉

〈member-declaration〉 ::= 〈declaration-specifiers〉 〈member-declarator-list〉 ;
| 〈function-definition〉
| 〈function-definition〉 ;

〈member-declarator-list〉 ::= 〈declarator〉
| 〈member-declarator-list〉 , 〈declarator〉

〈declarator〉 ::= * 〈direct-declarator〉
| 〈direct-declarator〉

〈direct-declarator〉 ::= 〈identifier〉
| (〈declarator〉)
| 〈direct-declarator〉 [〈constant-expression〉]
| 〈direct-declarator〉 []
| 〈direct-declarator〉 (〈parameter-list〉)
| 〈direct-declarator〉 ()

〈parameter-list〉 ::= 〈parameter-declaration〉
| 〈parameter-list〉 , 〈parameter-declaration〉

〈parameter-declaration〉 ::= 〈declaration-specifiers〉 〈declarator〉
| 〈declaration-specifiers〉 〈abstract-declarator〉
| 〈declaration-specifiers〉

〈type-name〉 ::= 〈declaration-specifiers〉
| 〈declaration-specifiers〉 〈abstract-declarator〉

280 Appendix A. Programming Language Reference

〈abstract-declarator〉 ::= *

| 〈direct-abstract-declarator〉
| * 〈direct-abstract-declarator〉

〈direct-abstract-declarator〉 ::= (〈abstract-declarator〉)
| []

| [〈constant-expression〉]
| 〈direct-abstract-declarator〉 []
| 〈direct-abstract-declarator〉 [〈constant-expression〉]
| ()

| (〈parameter-list〉)
| 〈direct-abstract-declarator〉 ()
| 〈direct-abstract-declarator〉 (〈parameter-list〉)

A.13.4 Programs
〈program〉 ::= 〈declaration〉

| 〈program〉 〈declaration〉

A.14 Additional Reading

The C programming language as of 1988 is described in detail in [KR88]. On-
line textbooks are available here:

http://www.eskimo.com/~scs/cclass/index.html

http://www.strath.ac.uk/CC/Courses/NewCcourse/ccourse.html

The standard C libraries are described in detail here:

http://secure.dinkumware.com/htm_cl/index.html

A “rationale” for the 1989 ANSI C standard may be found here:

http://www.lysator.liu.se/c/rat/title.html

A context-free grammar for all of C may be found here:

http://www.lysator.liu.se/c/ANSI-C-grammar-y.html

The lexical aspects are specified by (extended) regular expressions here:

http://www.lysator.liu.se/c/ANSI-C-grammar-l.html

A detailed description of C++ as of 1997 and discussions of programming style
in C++ may be found in [Str97].

References

[KR88] B. W. Kernighan and D. M. Ritchie. The C Programming Language, 2nd edition.
Prentice Hall, 1988.

[Str97] B. Stroustrup. The C++ Programming Language, 3rd edition. Addison-Wesley,
1997.

