
Introduction

A detailed statement of what users (or clients or customers) of a program or
program fragment expect it to do and what the implementers or developers of
the code expect of its environment is called a specification for that code. Some-
times the user and developer of the code might happen to be the same person
wearing different hats; however, it is best to think of them as independent,
possibly with conflicting interests.

If the code being specified is sufficiently complex, several programmers
might be involved in writing it and several other programmers might be in-
volved in writing a program to use the code fragment. Furthermore, there
might be several different implementations of a specification, and several dif-
ferent applications that use the implementations. A specification is essentially
a contract among all these developers and users, stating exactly what must be
agreed about the observable effects of executing the code and the environment
in which it will be executing, and no more. The expectations of the users be-
come obligations on the developers, and vice versa.

Normally, details of how the computational task is to be carried out would
not be in a specification: the users shouldn’t care, and implementers might then
be prevented from using other implementation techniques. Similarly, a speci-
fication would normally not contain details of how applications are to use the
code: the developers shouldn’t care, and this might preclude other applications
of the code being specified. To summarize, the specification for a program frag-
ment should specify what it and its environment are expected to do but as little
as possible about how or why.

The use of specifications is standard practice in every manufacturing and
engineering field. For example, if you were considering the purchase of a par-
ticular model of printer for use with your home computer, you might want
to obtain from the manufacturer or dealer its “technical specifications”; this
document would include the following kinds of information:

• speed (pages per minute);
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• resolution (dots per inch);

• memory (MB);

• input language (PCL, Postscript, etc.);

• duty cycle (maximum number of pages per month);

• power requirements (voltage and frequency ranges);

• power consumption (watts);

• operating systems supported;

• operating environment (acceptable temperature and humidity ranges);

• dimensions and weight;

and so on. Notice that some of these items impose obligations on the printer,
whereas others impose obligations on the user of the printer.

In software engineering, the term formal methods is often used to describe
development and validation techniques that are based on the use of logical
and mathematical formalisms in specifications. Ideally, it should be possible
to construct a software component systematically from its specification and to
verify its compliance with the specification. This is not substantially different
from any other branch of engineering, where it would be considered unpro-
fessional not to use appropriate applied mathematics, such as circuit theory
or statics. But in the relatively new field of software development, it is often
claimed that using mathematical formalisms is unnecessary or impractical.

Unfortunately, conventional development methods are failing. Over 30%
of enterprise software projects are canceled without being completed; 30% of
the projects that are completed end up costing 150% to 200% of their original
budget. Fewer than 10% of software projects in large companies are completed
on-time and on-budget.

Defect rates in typical commercial software have been estimated at 10 to
17 per 1,000 lines of code. Studies at the University of Wisconsin have shown
that over 40% of popular application programs on Windows operating systems
may be made to crash or hang indefinitely simply by supplying them with
randomly generated input data. Comparable failure rates have been observed
for basic system utilities in some commercial unix–like operating systems.∗

Developers and software vendors claim that eliminating software defects is
impossible and that “bugs” are in any case only minor inconveniences; how-
ever, no one who has lost hours of work to a crashing word processor or has
had to re-install their operating system is likely to agree. In some situations,

∗The lowest failure rates were achieved by the open-source GNU utilities used on Linux sys-
tems.
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defective programs are actually dangerous. A computer-controlled radiation-
therapy device called the Therac-25 was involved in at least six incidents be-
tween 1985 and 1987 in which massive overdoses of radiation caused death
or serious injury; the incidents have been attributed to software faults, exacer-
bated by inadequate system design, testing, and management procedures.

Even when software defects don’t have such serious consequences, they are
often very costly. Researchers at The Standish Group International estimate
that software defects cost American companies about $100 billion annually in
lost productivity and repairs. Here are some of the more spectacular failures of
recent years.

• In 1990, the entire AT&T telephone network collapsed for nine hours be-
cause of a single programming error.

• In 1994, an error in the floating-point division algorithm implemented on
Pentium processors cost Intel over $200 million.

• In 1996, the maiden flight of the Ariane 5 space launcher ended in an ex-
plosion about 37 seconds after lift-off because an input conversion func-
tion, which had been used successfully with Ariane 4, could not cope with
the larger values produced by the new version; the resulting unantici-
pated exception was handled by aborting execution of the inertial guid-
ance code. The cost of this incident has been reported as being in the
range of half a billion dollars. Ironically, the outputs of the conversion
function were only being used for logging purposes and weren’t needed
for the actual flight.

• In 1999, an operating-system defect corrupted information in a crucial
database, which caused the eBay.com web site to be inoperative for
22 hours.

Are you able to write code that correctly solves a simple programming prob-
lem? Try the following small exercise, using any programming language.

Exercise 1 Suppose A is an array of integers (but possibly with duplicated values) and
that n is a nonnegative integer; write code to determine the number nDist of distinct
values in A in the subscript range from 0 to n-1, inclusive. For example, if n= 6 and the
first six components of A are 45, 13, -15, 13, 13, and 45, respectively, nDist should be
set to 3.

Your code is not allowed to change n or A. The code should not be obviously ineffi-
cient; however, you may assume that n is sufficiently small that it is not worthwhile to
sort (a copy of) the array segment initially.

Did you get the logic right before testing your code on a computer? Does
your solution work correctly if n = 1? If n = 0? If all components of the array
segment are the same? If all are different? Would you be willing to fly on an
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airplane that is to be controlled by a program that uses your code? We will
return to this programming problem in Section 3.6.

As consumers, managers, professional bodies, and regulatory agencies be-
come more aware of the costs, dangers, and liabilities of poor-quality software,
they will begin to demand that the software that they purchase or are respon-
sible for be as reliable as other artifacts. Programmers will then have to be-
come more professional than most commercial programmers are now. To keep
their jobs, maintain their professional standing, and avoid malpractice suits,
they will have to take responsibility for the quality of their products. It is in-
creasingly a requirement on software for safety-critical systems such as air-
craft, nuclear power-plant control, and medical equipment that it be supplied
with detailed specifications, supported by formal or independent assessments
of compliance.

Are you ready for a world in which you might have to take responsibility
for the quality of a program? Consider the following amusing examples of this.

• In 1999, Ambrosia Software of Rochester, N.Y., announced that if any
of their forthcoming software products subsequently required a bug-fix,
their marketing manager would eat real insects at a trade show.∗

• The government of China ordered the executive officers of the national
airline to be on overnight flights on their airplanes on the night of De-
cember 31, 1999.

The program used to control the NASA space shuttles is a significant ex-
ample of software whose development has been based on specifications and
formal methods. A single defect in this program might result in the deaths of
six astronauts and the loss of a multibillion dollar piece of equipment. It comes
as no surprise that the group responsible for producing and maintaining this
software have been obsessed with the correctness of their code.

As of March 1997, the program was some 420,000 lines long. The specifi-
cations for all parts of the program filled some 40,000 pages. To implement
a change in the navigation software involving less than 2% of the code, some
2,500 pages of specifications were produced before a single line of the code was
changed.

Their approach has been outstandingly successful. The developers found
85% of all coding errors before formal testing began, and 99.9% before delivery
of the program to NASA. Only one defect has been discovered in each of the
last three versions. In the last 11 versions of the program, the total defect count
is only 17, an average of fewer than 0.004 defects per 1,000 lines of code.

It might be thought that this is an exceptional case whose success could
not be approached in the “real world” of commercial software. But there are

∗The press release did not say what would happen to the programmer responsible for the error.
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commercially successful software houses that use the best available practices
and regularly achieve defect rates of 0.03 to 0.05 per 1,000 lines of code. There
is no technical or financial reason why at least this level of quality should not
be demanded of all commercial and mission-critical software.

This book is an introduction to the use of software specifications. It de-
scribes basic formalisms suitable for specifying three kinds of code and practi-
cal techniques for systematic construction and verification of program compo-
nents.

A small fragment of the C programming language is used for almost all the
examples; some features of the class notation from C++, an object-oriented ex-
tension of C, are used to support information hiding in Part B. For the sake of
readability and portability, a number of programming idioms that are specific
to C (such as pointer arithmetic) will be avoided. If you have written programs
in any similar language (Java, Pascal, Modula, Ada, Turing, etc.), you will
have few difficulties reading the programs or constructing comparable pro-
grams.

Program 1

# include <stdio.h>
int main(void)
{ printf("Hello, world!\n");

return 0;
}

The traditional first example of a C program is shown as Program 1. The
effect of the program is to output the following line:

Hello, world!

The first line of the program has the effect of including the “header” file for the
stdio (standard input-output) library, allowing the program to use the printf
function defined in that library. The next line contains the “declarator” (head-
ing) for a function (procedure, method) main, which is always called by the op-
erating system to initiate program execution. The formal-parameter list (void)
indicates that the function takes an empty argument list.

In C, a function-definition body is always a block (compound statement),
which is a sequence of declarations and statements enclosed in curly braces
{ . . . }. The printf line is a call to a function that is defined in the stdio library
and that may be used for formatted output. In this case, the argument con-
sists of the literal string Hello, world!, terminated by the escape sequence \n,
which generates suitable end-of-line control characters. The string is enclosed
in double quotes, and the function call itself is terminated by a semicolon. The
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Program 2

/* Test code to determine the number of distinct values in A[0:n-1] */

# include "specdef.i"

int main(void)
{
# define max 256 /* maximum number of entries, > 0 */

typedef int Entry; /* type of entries, use == for equality */
int n; /* number of entries */
Entry A[max]; /* A[0:n-1] are the entries */
int nDist; /* number of distinct entries in A[0:n-1] */

printf("Enter n: ");
if (scanf("%i", &n) != 1) error("input failure");
if (n<0) error("n must be non-negative");
if (n > max) error("n must be <= max");
if (n>0)
{ int i;

printf("Enter components of A[0:n-1], ");
printf("separated by white space:\n");
for (i=0; i<n; i++)

if (scanf("%i", &A[i]) != 1) error("input failure");
}

ASSERT( 0 <= n <= max )

# include "mysolution.i"

ASSERT( nDist == |A[0:n-1]| )

printf("Number of distinct components in A[0:n-1] is ");
printf("%i\n", nDist);
return 0;

}

last line of the function body returns the value zero to the environment as an
indication of successful completion.

Program 2 on page 6 is more useful; it may be used to test C solutions to
Exercise 1 on page 3.

The first line is a comment describing what the program is for; in C, com-
ments are bracketed by the character sequences /* and */. The following
include line has the effect of including the file specdef.i, which is listed here
as Program 3. Note the use of double quotes " . . . " rather than angle brackets
< . . . > to enclose the file name; this is to make the search for file specdef.i start
in the current user folder/directory (rather than in system libraries).

The code in specdef.i includes headers for all the libraries likely to be
used for ordinary programs and defines various types, macros, and functions
assumed in the program examples in this book. Our programs will always assume
these headers and definitions, even if they are not shown explicitly. The type defini-



Introduction 7

Program 3

/* specdef.i: headers and definitions for "Specifying Software" */

# include <stdlib.h>
# include <stdio.h>
# include <math.h>
# include <ctype.h>
# include <limits.h>
# include <string.h>

# ifndef __cplusplus
typedef enum {false, true} bool; /* not needed for C++ */
# endif

/* null macros: */
# define ASSERT(P)
# define FACT(P)
# define INVAR(P)

void error(char msg[]) /* abort with stderr message msg */
{ fprintf(stderr, "Error: %s.\n", msg);

exit(EXIT_FAILURE);
}

tion introduces an “enumerated” type bool of the two truth values, false and
true; the compiler preprocessor is instructed to exclude this definition if the
code is being processed by a C++ processor because the extended language
predefines a bool type. The “null” macros ASSERT(P), FACT(P), and INVAR(P)

allow for the use of special comment forms in programs; this usage will be
explained in detail in subsequent chapters. The error function uses function
fprintf to print out its error-message argument msg to the error stream and
then aborts program execution by calling the exit function, using the constant
EXIT_FAILURE as an indication of unsuccessful termination.

The body of the main function

• defines various constants and variables and the type name Entry;

• reads and verifies values for n and array components A[0] to A[n-1] us-
ing the scanf function from stdio (note the use of the ampersand “ad-
dress” operator & on the input variables);

• executes the code found in a separate file mysolution.i, which has been
included into the program by the preprocessor; and

• outputs the result.

The ASSERT lines are macro calls; these are essentially comments because
the corresponding macro-definition body is empty. The significance of such
“assertions” will be explained later.
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Note the use of == in one of the assertions. Value equality tests are written
this way in C programs; the = operator is used for the assignment operation.
But when programs are discussed in the text, the usual = symbol for mathe-
matical equality will often be used, and similarly for other relational operators,
such as 6= and ≤.

Appendix A gives a compact reference manual for the programming lan-
guage used in this book.

Additional Reading

The Therac-25 incidents are discussed in [LT93, Lev95, Neu95]. The Ariane
incident is discussed in [JM97, Nus97]. The University of Wisconsin studies
referred to are described in [MK+95, FM00]. The NASA space-shuttle control
program is discussed in [Fis96]. The Usenet news group comp.risks carries
discussions of errors and security loopholes in computer software.

Traditional attitudes to formal methods are criticized in [Hal90, BH95,
LG97]. Real-world use of formal methods is described in [JS90, Hay92, Lin94,
GCR94, CGR95, Har95, HB95, CW96, HB99, KH+00]. An overview of formal
methods and introductions to a variety of formal specification languages may
be found in [Win90]. Many additional bibliographical references on formal
methods may be found here:

http://www.comlab.ox.ac.uk/archive/formal-methods/pubs.html

References

[BH95] J. P. Bowen and M. G. Hinchey. Seven more myths of formal methods. IEEE
Software, 12(4):34–41, 1995.

[CGR95] D. Craigen, S. Gerhart, and T. Ralston. Formal methods reality check:
Industrial usage. IEEE Transactions Software Engineering, 21(2):90–8, 1995.

[CW96] E. M. Clarke and J. M. Wing. Formal methods: State of the art and future
directions. ACM Computing Surveys, 28(4):626–43, 1996.

[Fis96] C. Fishman. They write the right stuff. Fast Company, 6:95–9 and 104–6,
December 1996. Available here:
http://www.fastcompany.com/online/06/writestuff.html.

[FM00] J. E. Forrester and B. P. Miller. An empirical study of the robustness of
Windows NT applications using random testing. In Proc. 4th USENIX
Windows Systems Symposium, Seattle, August 2000. Available here:
ftp://grilled.cs.wisc.edu/technical_papers.

[GCR94] S. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods in
critical systems. IEEE Software, 11(1):21–8, 1994.

[Hal90] J. A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11–19, 1990.
[Har95] J. M. Hart. Experience with logical code analysis in software maintenance.

Software Practice and Experience, 25(11):1243–62, November 1995.



Introduction 9

[Hay92] I. Hayes. Specification Case Studies. Prentice Hall International, 1992.
[HB95] M. G. Hinchey and J. P. Bowen, editors. Applications of Formal Methods.

Prentice Hall International, 1995.
[HB99] M. G. Hinchey and J. P. Bowen, editors. Industrial-Strength Formal Methods

in Practice. Springer Verlag, 1999.
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