
Elec. 377 - Operating Systems
Lab 3 - Process Communication

Lab Dates: Oct 22/29, 2012, Due: Nov 1, 2012

Objectives
• Implement the Bakery algorithm for the critical section problem, allowing

communication between user level processes using shared memory.
• Learn about separate compilation and common code used between multiple

programs.

Introduction
In this lab we will not be programming inside of the kernel. Instead we will be using the
virtual memory capabilities of Linux to map a single frame of physical memory into
multiple processes virtual address space.

Most modern operating systems have shared memory capability. A process requests
shared memory with a key, and then other processes may access the same shared
memory given permission and the key. The same memory is mapped into each of the
processes’ address space, but it may not be mapped in at the same location in memory.
So, the start of the shared memory may be at location 0x000c4628 in one process and
the location 0x000c472c in another process.

Synchronization
You will implement the Bakery algorithm to implement synchronization between two
processes. You will write both a producer program that copies its standard input one
byte at a time into a shared buffer and a consumer that retrieves a single character at a
time from the buffer and writes it to the standard output. Your svn repository contains 6
files to start with:

1. Makefile The makefile to build the system
2. meminit.c This will compile to meminit You do not need to modify this file. Once

compiled, running it will create the shared memory segment (200 bytes) and
initialize its null values. It must be run between each test to reinitialize the shared
memory segment.

3. producer.c This is the skeleton code for the producer. It contains the code to
convert the command line to access the shared memory segment and map it into
memory.

4. consumer.c This is the same as the producer, but for the consumer. It has the
same code to convert the command line and to map the shared memory
segment into memory.

5. common.h This will contain the definitions of the struct declaration used to
impose structure on the shared memory. The size of the data structure must be
less than, or equal to, the size of the shared segment (200 bytes). It is included
(using the #include directive) into both producer.c and consumer.c and into
common.c Keep the buffer small (say 5 bytes) to assist you in your testing (see
below)

6. common.c This file contains the skeletons for the getMutex and releaseMutex
routines. You will implement the entry and exit code for the critical section in
these two routines.

Rather than trying to map Linux PIDs, we will just assign the pids by passing an
argument on the command line. The producer should contain a loop that reads each
character (using getchar()) until it reaches the end of file (getchar() returns EOF). Since
the solution uses busy waiting and does not put a process to sleep, you will have to use
an inner loop that requests access to the critical section (using getMutex) then checks
to see if there is room in the queue. If there is, it adds the character to the queue. It
then releases the mutex. The inner loop is controlled by a flag that is set whenever the
producer succeeds in adding a byte to the buffer. Remember that the EOF condition is
an integer, not a character. So you will have to add a flag to the buffer that the producer
can set to indicate that the end of the data has been reached.

Like the producer, the consumer will transfer a single character at a time from the queue
to the output. It must also use nested loops, with a flag to indicate when it has
successfully retrieved a byte from the buffer.

Prelab
For the prelab you should provide an outline of your approach. You should hand in your
general algorithms for the producer and consumer, and for the getMutex and
releaseMutex routines. While C code is not required (you should use pseudo code), you
should rewrite the Bakery algorithm by filling in the routines getMutex and releaseMutex
in common.c and using the global variable sharedPtr.

Testing
Unlike previous labs, you have no oracle (an independent program that generates the
right answers) with which to compare your results. Instead you will have to show the
input for the producers and the output of the consumers to show that all of the values
that are written to the shared buffer by each producer are in fact read once, and only
once, by one of the consumers.
For testing, you can use multiple windows in X windows, or multiple consoles (ALTF# to
switch) to run the producer and consumer at the same time. You will have to devise a
set of test data that will show each byte is transferred a single time in the proper order
from the producers to the consumers. In your implementation, limit the buffer to 5 bytes
to ensure that a single producer cannot fill the buffer and exit in a single time slice.

