
ELEC 377 – Operating Systems
Lab 5 – Software Security

Lab Date: Nov 19, Nov 26 2012 Due: Nov 28, 2012

Objectives
• Compromise a server program using a standard buffer overflow

Introduction
The purpose of this lab is to examine a common security vulnerability, the stack overflow. One way of
testing the security of applications is to try and break into them in a controlled environment. Many
companies have “tiger” teams whose job it is to test the security of their own systems. In fact the
Canadian Military has the responsibility for the security of the Canadian Government’s networks.
They have both the blue team (defensive) and the red team (which actively attacks the network
trying to find security holes).

Ethics
The purpose of learning the details of attacks is twofold:

1. Understanding how attacks happen so that you will be better able to design and implement
security code.

2. Use security attacks in a controlled environment to test the security of a particular program or
application.

Occasionally when security is covered in undergraduate courses, some students not only get curious, but
decide to try out some of what is discussed. This is reasonable, as long as it is done in a controlled
manner. However, if you attempt it on a public network you will find yourself in a great deal of trouble. The
era of breaking into a company’s network and having them pay you to to fix it are long gone. Be
especially careful if you ever work with virus or worm code since it may accidentally escape from you.
The authorities will take the view that if you are work with worms and viruses, you are responsible for the
results. Be warned.

Setup and Environment
The files you need for this lab are:

Makefile - The makefile to compile the programs. When Linux downloads these files, it sometimes

removes the tabs. Each compile command must start with a tab

selfcomp.c - This is a file that can execute the exploit internally. This will be used to develop the exploit.

server The vulnerable server. This is a binary executable file. There is no source, so you will have to find

the vulnerability without looking at the code.

client.c A client you will use to compromise the server program.

There is a tutorial on the web site with much of the information you need to conduct the lab. Part of the
lab is examining core dump files. But you must tell the slackware distribution that the kernel is
allowed to create dump files. This requires that you execute the following command:
ulimit -c unlimited

Do not log in as root for this lab. It has no kernel modules to write or install. If you are using the csh shell
for some reason, then you use the command
limit coredumpsize unlimited

These commands remove the limit on the size of the core dump file that may be created. The default limit
is 0 (no dump files allowed). A dump file is created when a process encounters an error. It contains a
dump of the state of memory of the process as well as the CPU registers. When you execute the
command, core dumps are only enabled for the shell that you gave the command to. If you execute the
exploit in a different window from the above, or if you log out and log back in, the core dump file will not
be created.

For those of you that want to do this lab at home, there is no particular requirement to use the Virtual PC
environment. However, there is a restriction on which versions of Linux may be used to perform the lab.
The buffer overflow is the most common exploit, and some versions of Linux have added various types of
protection. The most common is to move the stack in memory each time a process is started.
Since the version of buffer overflow we are exploring here requires that you use an address on the stack,
this will make it difficult to execute. The version of Slackware used in the lab does not contain this
protection and thus is vulnerable to the buffer exploit. A simple way to test your version of Linux is with
the following program:
#include <stdio.h>

int main()

{

int a;

printf(“%x\n”,&a);

}

Compile and run it several times. If the address that is printed out changes, then you will have a difficult
time completing this lab on your version of Linux. In this case, we have to turn off this protection for the
approach in this lab to work. Executing the following two lines as root will fix this.
echo "kernel.randomize_va_space = 0" >> /etc/sysctl.conf

/sbin/sysctl -p /etc/sysctl.conf

You do not have to do this to the virtual machines in the lab. They already have the kernel stack offset
disabled. After the lab, you will want to comment out the line in /etc/sysctl.conf in your machine at home
to re-enable the protection.

Newer versions of linux also include stack protection in the compiler. Using the flag -fno-stackprotector
during compilation will disable the generation of the stack protection code.

The Lab
There is no Prelab for this lab, however, please read through the additional information on the website
before coming to the lab on Monday. The objective of the lab is to copy the /etc/passwd file remotely.
Despite the name of the file, it does not actually contain the passwords. Those are stored in /etc/shadow.
However, only root can access the shadow file. However the passwd file still contains interesting and
useful information to an intruder. It includes information about what account names are valid and where
they are located. This information could be sold to spammers, or could be used to formulate another more
sophisticated attack.

Start by using the selfcomp.c program to become aware of the tools. The first thing you should do is to
compile and run selfcomp.c. It should do nothing. If you look at it, it copies bytes from a global variable in
to a local buffer. Modify selfcomp.c by changing the two references to the variable compromise in the
procedure doTest to refer to the variable compromise1 and adding and removing ‘x’ characters from the
variable compromise1 until running the program causes the program to crash and dump core. Use the
command

gdb selfcomp core

to examine the core file. Do not run any of the programs under debugger supervision. This changes the
offset of the stack and will cause confusion. Use the debugger after to look at the core dump file. The
symbolic debugging will be of little use since the stack has been compromised and the program counter
points nowhere near the code of the program. However, the debugger command

info registers

will give you what you need. The two registers we are interested in are esp (the stack pointer) and eip
(the program counter). You want to adjust the number of ‘x’ characters until the contents of the program
counter is ‘WXYZ’ in hex (look it up using man ascii). You will now have two pieces of information: The
first is the length of the compromise (the length of compromise1), the second is the address of the return
address on the stack. When the function returns, it pops the return address into the program counter. The
program immediately crashes. Therefore, the stack pointer points to the byte directly above the return
address.

Write the compromise in nasm based on the tutorial on the web site. You assemble the x86 code using
the command:
nasm -l file.lst -f bin file.nasm

where file.nasm is the name of your exploit file. The list file (file.lst) shows the listing of your shell code.
The binary version is in the file with the same name as your file but with no extension. Use the command
“od -t x1 filename” to see the assembled code. Ensure that there are no null bytes (0x00) or

newlines (0x0A). Sometimes a newline may occur because of the offsets between data (12 bytes apart).
Insert an extra dummy byte or noop instruction in the appropriate place to eliminate the troublesome
value. Copy those bytes into the compromise array in selfcomp.c. You will have to pad the beginning of
the array with enough no-op instructions (0x90) so that the new return address is aligned with the existing
return address. You must also calculate the beginning address of your code based on the length of you
code and the value given to you by the debugger and insert that into the array. More information is in the
tutorial on the web site. You can then compile and execute the program. If it copies the contents of
/etc/passwd, then your exploit is working.

Once you have the compromise working in the selfcomp.c file, repeat the exercise with the client and
server program. Start the server program in one window. It takes a port number as an argument. This is a
number between 1024 and 65536. I tend to use 10000 when testing. The server program accepts a single
line of input from the network and echoes it back. In another window run the client program. This program
sends a string to the server and waits for a response. The network code has already been written for you.
As with the selfcomp.c program, add or remove ‘x’ characters to the variable compromise until the server

crashes. Run the debugger on the core generated by the server to determine the value of the stack and
the length of the compromise string. You can then copy your exploit code into client.c. Change the fprintf
call in the PutLine function to use your array of code. You will probably have to calculate the number of
padding chars and the return address in the compromise to fit the server program. You will also have to
add a newline and a null character just after the new return address. The reason is that the server uses
the gets function call which reads up to a new line character. So if you do not send a newline character,
the gets function will not return. The null character is needed so that fprintf knows when to stop sending
characters. This is also the reason you cannot have any newlines or nulls in the middle of your exploit
since then the entire exploit will not be sent or read.

One problem you may encounter has to do with the TCP/IP stack. Sometimes when a program crashes,
the kernel does not release the port. The symptoms are that when you restart the server for the next test,
the client will connect and nothing will happen. If this occurs, just kill the server (Ctrl-C) and restart with a
different port number (e.g. 10001).

Testing
Your testing should include showing both selfcomp and client retrieving the /etc/passwd file. This way you
will get partial marks if you get one, but not the other working.

Documentation
You should document as much as you can. This should include documenting how long is the string used
to compromise the server and the location of the return address on the stack. You should describe how
the attack works. You must also include the NASM source code for your compromise as well as the
source code of the selfcomp.c and client.c programs.

There is no prelab for this lab.

