ELEC 377
C Programming Tutorial

ELEC 377 - Operating Systems

Outline

e Short Introduction

e History & Memory Model of C

e Common Errors I have seen over the years

e Work through a linked list example on the board

- uses everything I talk about here.
- if time remaining....

ELEC 377 - Operating Systems

Library Books - QA 76.73 .C

e ABookonC

e Introducing C

e C for Programers

e Programs and Data Structures in C

* (Can Advanced Introduction

e (CPrimer

e (C, A Reference manual

e C Companion

e C Programming in the Berkley Unix Environment
e C Toolbox

e C Programming for Electronic Engineers

[
ELEC 377 - Operating Systems

C for Java Programmers

* In general, Java and C syntax are very similar
¢ {} for blocks
¢ if, switch, for, do...while, while statements

e BCPL -B —> C - C++ — Java

ELEC 377 - Operating Systems

Main Ditfs between C and Java

e External Declarations
e No Classes

e Values vs. Reference

e Arrays & Pointers

e Pointers to functions

e Complex Initialization
e Typedet

* Preprocessor

e Strings

ELEC 377 - Operating Systems

History
e C was derived from the language B, which in turn was
derived from the language BCPL.
e Developed concurrently with UNIX in the late 1960’s
early 1970’s
* Low level systems programming language
e Cissometimes called a high level assembler
e DPossible to write portable code in C, but very easy to
write non-portable code if you are not careful
e ANSI standard, but not all compilers conform to the
standard
¢ Vendor specific extensions
a<?b (gcc 4.92)
far int *b; (Early Compilers for MS-DOS)

ELEC 377 - Operating Systems

Memory

In the beginning, there was memory
and the memory was without form and void ...
e Memory is a sequence of bytes
0 With exception of memory reserved for OS and
for devices, all byte are the same!!
e Types are used to impose structure on memory.
Example:
int count;
This combines 4 bytes into a word and treats it as an
integer.
¢ alignment is machine dependent

ELEC 377 - Operating Systems

Types

* Scalar Types
¢ char, unsigned char
¢ int, unsigned int
¢ float, double

* Array Types
¢ 0based indexing (same as Java)
¢ no length attribute
¢ no bounds checking

ELEC 377 - Operating Systems

Types
e Structured Types

¢ struct - multiple fields of data
¢ union - multiple fields share data

e Types have a size
0 sizeof(type) -> returns size_t, which is unsigned
long
¢ sizeof(var)

ELEC 377 - Operating Systems

Exam]gle 2

#include <stdio.h>
struct point {

int x;

int y;
b

void main(int arge, char * argv(])

{

struct point p;
p.X = &;
Dy =4

}

ELEC 377 - Operating Systems

Examgle 3

#include <stdio.h>
union strange {
int x;
float y;
b

void main(int arge, char * argv(])

{

union strange c;
c.X = &;
c.y = 4.5;

)

ELEC 377 - Operating Systems

ExamEle 4

#include <stdio.h>
struct rec {
int t;
union {
int x;
float y;
Y v
};
void main(int arge, char * argv[]){
struct rec c;
c.t =0;
C.V.X = &;
c.V.y = 4.5;

ELEC 377 - Operating Systems

nges - Conversion

e Base Scalar Types auto converted

char -> unsigned char -> int -> unsigned int

int -> float -> double

use a cast “a=(int) b;”

only work for simple variables

same value, different bit patterns

bit pattern for 1.0 is different than bit pattern for 1

ST O

e Complex variables do not convert, but are
reinterpreted
¢ same bit pattern, different value
0 reinterpret the bit patterns
¢ most modern compilers generate a warning or
error

ELEC 377 - Operating Systems

Memory - Pointers

e Pointers are 4 byte (on x86) values that contain

memory addresses.

¢ char* x;
¢ struct sharedData * shared;

e Any pointer can point anywhere in memory.
- alignment restrictions (x86 vs sparc)

e Any pointer can be converted to any other pointer
- doesn’t always make sense

e Bits will be interpreted according to the new type

ELEC 377 - Operating Systems

Memory - Pointers

e Pointer arithmetic is always scaled by the size of the
type pointed to;

char * x;
int * y;
struct rectangle * allRecs;

X +=1; // adds 1 to x
y +=1; // adds4toy
allRecs +=1; // adds sizeof(struct rectangle)

ELEC 377 - Operating Systems

Memory - Pointers & Arrays

e Array name is a label in assembly language

int foo[100]
—>

foo: .blockw 100

e When you use an array name it is converted to a
pointer.

int * x;

X = f00;
foo[3] == *(foo + 3) == 3[foo];

ELEC 377 - Operating Systems

Memory - Pointers & Arrays

e Array name as a function argument is a pointer
int foo(int a[]){
| =>
int foo(int *a){

}

* Only time array matters as parameter is
multidimensional arrays for pointer arithmetic
int foo(int a[][100]){

} o~
int foo(int *a){ / / but a++ increments by 100
} /| and a[x][y] means something

ELEC 377 - Operating Systems

Reference vs Value

* Java is a reference language.
¢ scalar values: byte, char, short, int,
long, float, double
¢ non-scalar values (object instances)

are represented as pointers
class Point {

int x; p g
int y;

} q 7
Point p = new Point();
Point q = p;

p.x = 3; // therefore q.x ==

ELEC 377 - Operating Systems

Reference vs Value

e Cis avalue language.
¢ Pointer variables provide reference
semantics

struct Point { m

int x;
int y;

} q
struct Point p; X

struct Point q = p;
p.x=3;//butqx =38 y

struct Point * m = &p;
if(m->x==38) ...

ELEC 377 - Operating Systems

Arrays

e InJava, arrays are objects, and each element is a

scalar value or reference.
class Point {

int x; int y;
}
Point p[]= new Point[5];
P[R] = new Point();

P
5 X

ELEC 377 - Operating Systems

Arrazs

* In C, arrays are regions of memory
¢ no length attribute
struct Point {
int x; int y;
}
struct Point p[5];
p[R].X = 3;

pX X X X X

y (Y |y [y >y

ELEC 377 - Operating Systems

ArraXS & Pointers

e Pointers are explicit reference values

struct Point {
int x; int y;
}
struct Point *q;
q = (struct Point *) malloc(sizeof(struct Point));
qQ->x=38; (*Q.x=3;

q —>

ELEC 377 - Operating Systems

ArraXS & Pointers

e Arrays are labels for regions of memory, and can be

though of as constant pointers
struct Point {
int X; int y;
}
struct Point p[5];
struct Point *q;
q=pP; q->xisthe same as p[0].x

e
! pX X X X X

Yy Yy |y [y >y

ELEC 377 - Operating Systems

Arrays & Pointers

* pointers can be subscripted

struct Point {

int x; int y;
}
struct Point p[5];
struct Point *q = p;
q[R].x=3

9 TPy | x

ELEC 377 - Operating Systems

Pointers to functions

* in Java, you passed an object to have another function
call you back

class foo implements ActionListener{
void action(){

}
void init(){

panel.addListener(this);

}
}

ELEC 377 - Operating Systems

Pointers to functions

e in C, no object instances with methods to pass.
¢ instead we pass a pointer to a function
¢ a function name by itself is a constant pointer

int It(int X, int y) { return x<y; }

int (*H)(int,int); // f is a function with 2 int parms
// and returns int
int main(){
f=1t;
printf(“%d\n”, (*)(&,3));// prints number 1
}

ELEC 377 - Operating Systems

Pointers to functions

* brackets important!!!!

*1(2,3) -> call function named f with the parameters
& and 3 and treat the result as a pointer and
dereference the pointer

(*H)(&,3) -> use f as a pointer to a function and call
with theparameters 2 and 3

ELEC 377 - Operating Systems

C Hacking Exercise # 1

float x;
int y;

y = 3;
X = V;
printf(“%£f\n”,y);

e What is printed? why?

e How do we find out the bit pattern?
- i.e. the integer 3 is the bytes 00, 00, 00, 03
- how do we find out the bit pattern for 3.0?

ELEC 377 - Operating Systems

C Hacking Exercise # 1

float x;
int y;

y = 3;
X = V;
printf(“%£f\n”,y);

e What is printed? why? -1.992012

e How do we find out the bit pattern?
- i.e. the integer 3 is the bytes 00, 00, 00, 03
- how do we find out the bit pattern for 3.0?

ELEC 377 - Operating Systems

C Hacking Exercise # 1

#include <stdio.h>
int main(int argc, char * argv[])
{

float y;

char * x;

y = 3.0;
X = (char*)a&y;

printf("%x\n", x|
printf("%x\n", x|
printf("%x\n", x|
printf("%x\n", x|

wWwWbNPEFkO
N N S
|0 WO w0 WO

}

ELEC 377 - Operating Systems

C Hacking Exercise # 1

e y=23.0=00004040 (in hex on x86)
=40 40 00 00 (in hex on ppc)

e 3.1 =66 664640 (in hex on x86)
=40 46 66 66 (in hex on ppc)

ELEC 377 - Operating Systems

Common Syntax the semicolon

e At the global level, semi colons end all declarations
and definitions except for definitions of functions

struct x {
Int m;
Iint n;
7
void foobar(); /| declaration
int main(){ /| definition

}

ELEC 377 - Operating Systems

Declaration vs Definition

e Declaration - introduces a name and the attributes,
but does not allocate space!!

extern int x;
void foobar(int, float);

* Definition - allocates space, also introduces name
and attributes

Iint x;
void foobar(int a, float b){

}

ELEC 377 - Operating Systems

Declaration vs Definition

e Can only be one definition of an entity.
¢ some compilers allow multiple definitions as long
as they are consistent

e May be as many declarations as you want, and the
don’t even have to be consistent!!

e If the compiler doesn’t see a declaration or a definition,
the the compiler doesn’t know it!!

cc -0 producer producer.c common.c

producer.c -> producer.o (removed at end)

common.c -> common.o (removed at end)
common.o, producer.o -> producer

ELEC 377 - Operating Systems

Declaration vs Definition

e If the compiler doesn’t see a declaration or a definition,

the the compiler doesn’t know it!!

¢ For a global variable, error

¢ For a function -> compiler makes some
assumptions!!
- returns int
- each parameter is the type that you pass
- structure declarations ok as long as you don’t use
them (i.e. only pointers and no dereferencing)

structb * ¢; // no def of b, ok as long as no c->m

ELEC 377 - Operating Systems

Example

#tinclude <stdio.h>

int main(int argc, char * argv[]){
int x;
x = f00(3.0);
printf(“%d\n”,x);

j

foo.c:
float foo(float a) {
return sqrt(a);

}

ELEC 377 - Operating Systems

Example

#include <stdio.h>

float foo(float);

int main(int argc, char * argv[]){
int x;
x = f00(3.0);
printf(“%d\n”,x);

}

foo.c:
float foo(float a) {

return sqrt(a);

}

ELEC 377 - Operating Systems

Example

#tinclude <stdio.h>

int main(int argc, char * argv[]){
struct sharedData * shared;
shared -> flags[0] = 1;

J

common.h:
struct sharedData{
char flags[2];

%

ELEC 377 - Operating Systems

Example

#include <stdio.h>

#include “common.h”

int main(int argc, char * argv[]){
struct sharedData * shared;
shared -> flags[0] = 1;

J

common.h:
struct sharedData{
char flags[2];

%

ELEC 377 - Operating Systems

Name Spaces and typedef

struct x {
Int m;
Iint n;

%

struct x bar;
int x;

ELEC 377 - Operating Systems

Name Spaces and typedef

typedef struct {

Int m;

Iint n;
b
X bar; / | x is now a type name, not struct x
int x; / | now illegal

ELEC 377 - Operating Systems

Location of Declarations & Definitions

e Global

e Local
- can only be at the top of a block (i.e. { ... }
- only visible through the block

ELEC 377 - Operating Systems

Decl Loc - example

int main (int argc, char * argv){

inti=>5;
for (intj = 0; j < BAR; j++){
int b;
b=j;
int y; / / illegal
}
b =3; / | illegal
{
int i,b; /| different b, different i
1=23;
}
[[i==5

}

ELEC 377 - Operating Systems

Decl Loc - example

e pointers to functions
int x (int x) { return x + 1;}
int y (int x) { return x - 1;}

int (*f)(int);
Iint a;

f=x;

a = (*f)(4); /| not a = *(4);

t=vy;
a=("f)(4);

ELEC 377 - Operating Systems

Initialization of Complex Values

e all variables can be given initial values

intx = 3;
struct point{ int x; int y; }

struct point p = { 3,4};

struct point p[] = {
{ 4,5}, { 23,88}, {12,99}, {1,1}
};/ / pis an array 4 elements long p[0] ... p[3]

struct pointq={.y =5} // x defaults to 0

ELEC 377 - Operating Systems

Initialization of Complex Values

* language elements can be used too

struct xyzzy {
int * p; / | pointer to integer
float (*f)(int,char);

b

int a;

float b(int m, char n){ ... }

struct xyzzy var = {
& a; /| *var.p = 3 changes a
b; /] (*var.f)(3,4.5) callsb
7

ELEC 377 - Operating Systems

Adding Types

e writing struct or the complex function definitions all
the time can get tedious. Answer typedef.

struct xyzzy {
int * p; / | pointer to integer
float (*f)(int,char);

7

typedet struct xyzzy foobar

foobar x; // same as “struct xyzzy x”

ELEC 377 - Operating Systems

Adding Types

typedef int(*foobar)(int,int,char®);
int thefunc(int a, int b, char *s){ ... }
int libfunc(int,foobar); / / external definition

result = libfunc(3,thefunc);

ELEC 377 - Operating Systems

Preprocessor

* Compile Time Evaluation

#include <filename>
#include “filename”

#define Var value
#define BUFLEN 1000

#define Foo(X,)Y) (X->Y)

ELEC 377 - Operating Systems

Preprocessor

e Compile Time Evaluation
#define DEBUG

#ifdef DEBUG

#endif

cc -DDEBUG x.c

ELEC 377 - Operating Systems

Strings

e C has no built int string type like Java does
0 char arrays double as string values
¢ null value (zero byte) terminates strings

char aString[100]; // room for 99 chars (and null)

char * p = “foobar”; //constant string 7 bytes long
// variable p points to string
// string is stored in globals area
// in memory

ELEC 377 - Operating Systems

Strings

e Library routines to handle strings

#include <string.h>

char theStr[100];

strlen(theStr) == length of string in theStr

strcpy(a,b) == copy string from b to a;

strncpy(a,b,n) == copy string from b to a, at most n
bytes

#include <ctype.h>

char theStr[100]

if (isdigit(theStr[0])) // string starts with a digit

if (isalpha(theStr[0])) // string starts with a letter

ELEC 377 - Operating Systems

Some Re[erences

* Development of the C Language
http:/ /cm.bell-labs.com /cm/cs/who/dmr/
chist.html

e Various C links:
http:/ /www.lysator.liu.se/c/

e More C Links
http://www.hitmill.com/programming/chistory.htm

e More links on the web sitel!

ELEC 377 - Operating Systems

