
ELEC 377 - Operating Systems

ELEC 377
C Programming Tutorial

ELEC 377 - Operating Systems

C
Outline
• ! Short Introduction

•! History & Memory Model of C

•! Common Errors I have seen over the years

•! Work through a linked list example on the board
! - uses everything I talk about here.
! - if time remaining....

ELEC 377 - Operating Systems

C
Library Books - QA 76.73 .C
•! A Book on C
•! Introducing C
•! C for Programers
•! Programs and Data Structures in C
•! C an Advanced Introduction
•! C Primer
•! C, A Reference manual
•! C Companion
•! C Programming in the Berkley Unix Environment
•! C Toolbox
•! C Programming for Electronic Engineers
•! …

ELEC 377 - Operating Systems

C
C for Java Programmers
•! In general, Java and C syntax are very similar

◊! {} for blocks
◊! if, switch, for, do…while, while statements

•!BCPL → B → C → C++ → Java

ELEC 377 - Operating Systems

C
Main Diffs between C and Java
•!External Declarations
•!No Classes
•!Values vs. Reference
•!Arrays & Pointers
•!Pointers to functions
•!Complex Initialization
•!Typedef
•!Preprocessor
•! Strings

ELEC 377 - Operating Systems

C
History
•! C was derived from the language B, which in turn was

derived from the language BCPL.
•! Developed concurrently with UNIX in the late 1960’s

early 1970’s
•! Low level systems programming language
•! C is sometimes called a high level assembler
•! Possible to write portable code in C, but very easy to

write non-portable code if you are not careful
•! ANSI standard, but not all compilers conform to the

standard
◊! Vendor specific extensions
! a <? b ! ! (gcc 4.92)
! far int *!b;! (Early Compilers for MS-DOS)

ELEC 377 - Operating Systems

C
Memory
In the beginning, there was memory
 and the memory was without form and void …
•! Memory is a sequence of bytes
◊! With exception of memory reserved for OS and

for devices, all byte are the same!!
•! Types are used to impose structure on memory.
! Example:
! ! ! int count;
! This combines 4 bytes into a word and treats it as an

integer.
! ◊ alignment is machine dependent

ELEC 377 - Operating Systems

C
Types
•! Scalar Types
◊! char, unsigned char
◊! int, unsigned int
◊! float, double

•! Array Types
◊! 0 based indexing (same as Java)
◊! no length attribute
◊! no bounds checking

ELEC 377 - Operating Systems

C
Types
•! Structured Types
◊! struct - multiple fields of data
◊! union - multiple fields share data

•! Types have a size
◊! sizeof(type) -> returns size_t, which is unsigned

long
◊! sizeof(var)

ELEC 377 - Operating Systems

C
Example 2
#include <stdio.h>
struct point {
 int x;
 int y;
};

void main(int argc, char * argv[])
{
	 struct point p;
 p.x = 3;
 p.y = 4;
}

p

x

y

ELEC 377 - Operating Systems

C
Example 3
#include <stdio.h>
union strange {
 int x;
 float y;
};

void main(int argc, char * argv[])
{
	 union strange c;
 c.x = 3;
 c.y = 4.5;
}

cxy

ELEC 377 - Operating Systems

C
Example 4
#include <stdio.h>
struct rec {
 int t;
 union {
 int x;
 float y;
 } v;
};
void main(int argc, char * argv[]){
	 struct rec c;
 c.t = 0;
 c.v.x = 3;
 c.v.y = 4.5;
}

vxy

t

c

ELEC 377 - Operating Systems

C
Types - Conversion
•! Base Scalar Types auto converted
◊! char -> unsigned char -> int -> unsigned int
◊! int -> float -> double
◊! use a cast “a = (int) b;”
◊! only work for simple variables
◊! same value, different bit patterns
◊! bit pattern for 1.0 is different than bit pattern for 1

•! Complex variables do not convert, but are
reinterpreted
◊! same bit pattern, different value
◊! reinterpret the bit patterns
◊! most modern compilers generate a warning or

error

ELEC 377 - Operating Systems

C
Memory - Pointers
•! Pointers are 4 byte (on x86) values that contain

memory addresses.
◊! char * x;
◊! struct sharedData * shared;

•! Any pointer can point anywhere in memory.
! - alignment restrictions (x86 vs sparc)

•! Any pointer can be converted to any other pointer
! - doesn’t always make sense

•! Bits will be interpreted according to the new type

ELEC 377 - Operating Systems

C
Memory - Pointers
•! Pointer arithmetic is always scaled by the size of the

type pointed to;

! char * x;
 ! int * y;
! struct rectangle * allRecs;

! x += 1;!! ! // adds 1 to x
! y += 1;!! ! // adds 4 to y
! allRecs += 1;! // adds sizeof(struct rectangle)

ELEC 377 - Operating Systems

C
Memory - Pointers & Arrays
•! Array name is a label in assembly language

! int foo[100]
! =>
! foo: .blockw 100

•! When you use an array name it is converted to a
pointer.

! int * x;
! x = foo;
! foo[3] == *(foo + 3) == 3[foo];
-- illustration only, don’t do this in the lab!!!!!

ELEC 377 - Operating Systems

C
Memory - Pointers & Arrays
•! Array name as a function argument is a pointer
! int foo(int a[]){
 } =>
! int foo(int *a){
 }

•! Only time array matters as parameter is
multidimensional arrays for pointer arithmetic

! int foo(int a[][100]){
 } ~~>
! int foo(int *a){ // but a++ increments by 100
 }! ! ! ! // and a[x][y] means something

ELEC 377 - Operating Systems

C
Reference vs Value
•! Java is a reference language.

◊! scalar values: byte, char, short, int,
long, float, double

◊! non-scalar values (object instances)
are represented as pointers

class Point {
 int x;
 int y;
}
Point p = new Point();
Point q = p;
p.x = 3; // therefore q.x == 3

x

y

p

q

ELEC 377 - Operating Systems

C
Reference vs Value
•!C is a value language.

◊! Pointer variables provide reference
semantics

struct Point {
 int x;
 int y;
}
struct Point p;
struct Point q = p;
p.x = 3; // but q.x != 3
struct Point * m = &p;
if (m -> x == 3) …

x

y

p

m

x

y

q

ELEC 377 - Operating Systems

C
Arrays
•! In Java, arrays are objects, and each element is a

scalar value or reference.
class Point {
 int x; int y;
}
Point p[]= new Point[5];
p[2] = new Point();

x

y

p

5

ELEC 377 - Operating Systems

C
Arrays
•! In C, arrays are regions of memory

◊! no length attribute
struct Point {
 int x; int y;
}
struct Point p[5];
p[2].x = 3;

p x
y

x
y

x
y

x
y

x
y

ELEC 377 - Operating Systems

C
Arrays & Pointers
•!Pointers are explicit reference values

struct Point {
 int x; int y;
}
struct Point *q;
q = (struct Point *) malloc(sizeof(struct Point));
q -> x = 3; (*q).x = 3;

q
x
y

ELEC 377 - Operating Systems

C
Arrays & Pointers
•!Arrays are labels for regions of memory, and can be

though of as constant pointers
struct Point {
 int x; int y;
}
struct Point p[5];
struct Point *q;
q = p; q -> x is the same as p[0].x

q p x
y

x
y

x
y

x
y

x
y

ELEC 377 - Operating Systems

C
Arrays & Pointers
•!pointers can be subscripted

struct Point {
 int x; int y;
}
struct Point p[5];
struct Point *q = p;
q[2].x = 3

q p x
y

x
y

x
y

x
y

x
y

ELEC 377 - Operating Systems

C
Pointers to functions
•! in Java, you passed an object to have another function

call you back

class foo implements ActionListener{
 void action(){
 …
 }
 void init(){
 …
 panel.addListener(this);
 }
}

ELEC 377 - Operating Systems

C
Pointers to functions
•! in C, no object instances with methods to pass.

◊! instead we pass a pointer to a function
◊! a function name by itself is a constant pointer

int lt(int x, int y) { return x < y; }

int (*f)(int,int); // f is a function with 2 int parms
 // and returns int
int main(){
 f = lt;
 printf(“%d\n”, (*f)(2,3)); // prints number 1
}

ELEC 377 - Operating Systems

C
Pointers to functions
•! brackets important!!!!

*f(2,3) -> call function named f with the parameters
2 and 3 and treat the result as a pointer and
dereference the pointer

(*f)(2,3) -> use f as a pointer to a function and call
with theparameters 2 and 3

ELEC 377 - Operating Systems

C
C Hacking Exercise # 1
float x;
int y;

y = 3;
x = y;
printf(“%f\n”,y);

•! What is printed? why?

•! How do we find out the bit pattern?
! - i.e. the integer 3 is the bytes 00, 00, 00, 03
! - how do we find out the bit pattern for 3.0?

ELEC 377 - Operating Systems

C
C Hacking Exercise # 1
float x;
int y;

y = 3;
x = y;
printf(“%f\n”,y);

•! What is printed? why? -1.992012

•! How do we find out the bit pattern?
! - i.e. the integer 3 is the bytes 00, 00, 00, 03
! - how do we find out the bit pattern for 3.0?

ELEC 377 - Operating Systems

C
C Hacking Exercise # 1
#include <stdio.h>
int main(int argc, char * argv[])
{
 float y;
 char * x;

 y = 3.0;

 x = (char*)&y;

 printf("%x\n",x[0]);
 printf("%x\n",x[1]);
 printf("%x\n",x[2]);
 printf("%x\n",x[3]);
}

ELEC 377 - Operating Systems

C
C Hacking Exercise # 1

•! y = 3.0 = 00 00 40 40 (in hex on x86)
! ! ! ! = 40 40 00 00 (in hex on ppc)

•! 3.1 = 66 66 46 40 (in hex on x86)
 = 40 46 66 66 (in hex on ppc)

ELEC 377 - Operating Systems

C
Common Syntax the semicolon

•! At the global level, semi colons end all declarations
and definitions except for definitions of functions

struct x {
! int m;
! int n;
};

void foobar();! ! // declaration
int main(){! ! ! // definition
! …
}

ELEC 377 - Operating Systems

C
Declaration vs Definition
•! Declaration - introduces a name and the attributes,

but does not allocate space!!

extern int x;
void foobar(int,float);

•! Definition - allocates space, also introduces name
and attributes

int x;
void foobar(int a, float b){
! …
}

ELEC 377 - Operating Systems

C
•! Can only be one definition of an entity.
◊! some compilers allow multiple definitions as long

as they are consistent

•! May be as many declarations as you want, and the
don’t even have to be consistent!!

•! If the compiler doesn’t see a declaration or a definition,
the the compiler doesn’t know it!!

! cc -o producer producer.c common.c
! producer.c -> producer.o ! (removed at end)
! common.c -> common.o! (removed at end)
! ! common.o, producer.o -> producer

Declaration vs Definition

ELEC 377 - Operating Systems

C
•! If the compiler doesn’t see a declaration or a definition,

the the compiler doesn’t know it!!
◊! For a global variable, error
◊! For a function -> compiler makes some

assumptions!!
! - returns int
! - each parameter is the type that you pass
! - structure declarations ok as long as you don’t use

them (i.e. only pointers and no dereferencing)

! struct b * c; // no def of b, ok as long as no c->m

Declaration vs Definition

ELEC 377 - Operating Systems

C
#include <stdio.h>

int main(int argc, char * argv[]){
 int x;
 x = foo(3.0);
 printf(“%d\n”,x);
}

foo.c:
! float foo(float a) {
 return sqrt(a);
 }

Example

ELEC 377 - Operating Systems

C
#include <stdio.h>
float foo(float);
int main(int argc, char * argv[]){
 int x;
 x = foo(3.0);
 printf(“%d\n”,x);
}

foo.c:
! float foo(float a) {
 return sqrt(a);
 }

Example

ELEC 377 - Operating Systems

C
#include <stdio.h>

int main(int argc, char * argv[]){
 struct sharedData * shared;
! shared -> flags[0] = 1;
}

common.h:
! struct sharedData{
! ! ! char flags[2];
! ! ! …
! };

Example

ELEC 377 - Operating Systems

C
#include <stdio.h>
#include “common.h”
int main(int argc, char * argv[]){
 struct sharedData * shared;
! shared -> flags[0] = 1;
}

common.h:
! struct sharedData{
! ! ! char flags[2];
! ! ! …
! };

Example

ELEC 377 - Operating Systems

C
Name Spaces and typedef

struct x {
! int m;
! int n;
};

struct x bar;
int x;

ELEC 377 - Operating Systems

C
Name Spaces and typedef

typedef struct {
! int m;
! int n;
} x;

x bar;! ! // x is now a type name, not struct x
int x; ! ! // now illegal

ELEC 377 - Operating Systems

C
Location of Declarations & Definitions

•! Global
•! Local
! - can only be at the top of a block (i.e. { … }
! - only visible through the block

ELEC 377 - Operating Systems

C
Decl Loc - example
int main (int argc, char * argv){
! int i = 5;
! for (int j = 0; j < BAR; j++){
 int b;
! ! b = j;
 int y;! ! // illegal
 }
 b = 3;! ! ! // illegal
 {
 int i,b;!! ! // different b, different i
! i = 3;
 }
 // i == 5
}

ELEC 377 - Operating Systems

C
Decl Loc - example
• pointers to functions

int x (int x) { return x + 1;}
int y (int x) { return x - 1;}

int (*f)(int);
int a;

f = x;
a = (*f)(4);!! ! ! // not a = *f(4);

f = y;
a = (*f)(4);

ELEC 377 - Operating Systems

C
Initialization of Complex Values
•! all variables can be given initial values

int x = 3;

struct point{ int x; int y; }

struct point p = { 3,4};

struct point p[] = {
 { 4,5}, { 23,88}, {12,99}, {1,1}
};// p is an array 4 elements long p[0] … p[3]

struct point q = { .y = 5 } // x defaults to 0

ELEC 377 - Operating Systems

C
Initialization of Complex Values
•! language elements can be used too

struct xyzzy {
 int * p; // pointer to integer
 float (*f)(int,char);
};
int a;
float b(int m, char n){ … }

struct xyzzy var = {
 & a; // *var.p = 3 changes a
! b;! ! ! ! ! ! // (*var.f)(3,4.5) calls b
};

ELEC 377 - Operating Systems

C
Adding Types
•!writing struct or the complex function definitions all

the time can get tedious. Answer typedef.

struct xyzzy {
 int * p; // pointer to integer
 float (*f)(int,char);
};

typedef struct xyzzy foobar

foobar x; // same as “struct xyzzy x”

ELEC 377 - Operating Systems

C
Adding Types

typedef int(*foobar)(int,int,char*);

int thefunc(int a, int b, char *s){ … }

int libfunc(int,foobar); // external definition

 result = libfunc(3,thefunc);

ELEC 377 - Operating Systems

C
Preprocessor
•!Compile Time Evaluation

#include <filename>
#include “filename”

#define Var value
#define BUFLEN 1000

#define Foo(X,Y)	 (X -> Y)

ELEC 377 - Operating Systems

C
Preprocessor
•!Compile Time Evaluation

#define DEBUG

#ifdef DEBUG
…………
#else
…………
#endif

cc -DDEBUG x.c

ELEC 377 - Operating Systems

C
Strings
•!C has no built int string type like Java does

◊! char arrays double as string values
◊! null value (zero byte) terminates strings

char aString[100]; // room for 99 chars (and null)

char * p = “foobar”; // constant string 7 bytes long
	 	 	 	 	 // variable p points to string

	 	 	 	 	 	 // string is stored in globals area
	 	 	 	 	 	 // in memory

ELEC 377 - Operating Systems

C
•!Library routines to handle strings

#include <string.h>
char theStr[100];
strlen(theStr) == length of string in theStr
strcpy(a,b) == copy string from b to a;
strncpy(a,b,n) == copy string from b to a, at most n

bytes
#include <ctype.h>
char theStr[100]
if (isdigit(theStr[0])) // string starts with a digit
if (isalpha(theStr[0])) // string starts with a letter

Strings

ELEC 377 - Operating Systems

C
Some References
•! Development of the C Language
! http://cm.bell-labs.com/cm/cs/who/dmr/

chist.html

•! Various C links:
! http://www.lysator.liu.se/c/

•! More C Links
! http://www.hitmill.com/programming/chistory.htm

• More links on the web site!!

