ELEC 377 – Operating Systems

Week 10 – Class 2

Last Class

• Finished Distributed Systems

Security

- Security
 - ◊ impossible in practice
 - ◊ accidental violations (easy to protect)
 - ◊ malicious (harder)
 - Reading of data (info theft)
 - Modification of data
 - Destruction of data
 - Denial of service
 - ◊ Cost tradeoffs

Security Levels

- Physical
 - ◊ bios on PC
- Human
 - ◊ social engineering
- Network
 - ◊ packet interception, denial of service
- OS
 - ◊ only level OS has control over
 - first two are outside of OS control but necessary
 - hardware protection for OS
 - harder to add security than design for it

System Threats

- Denial of Service
 - Oisable the service
 - ◊ password timeouts
 - hetwork based
 - smurf attack
 - zombie attack (combined with worms)
 - oversize ICMP packet
 - Xmas Tree Packets
- Key Loggers
 - ◊ software (permission to install?)
 - ◊ hardware (physical security)

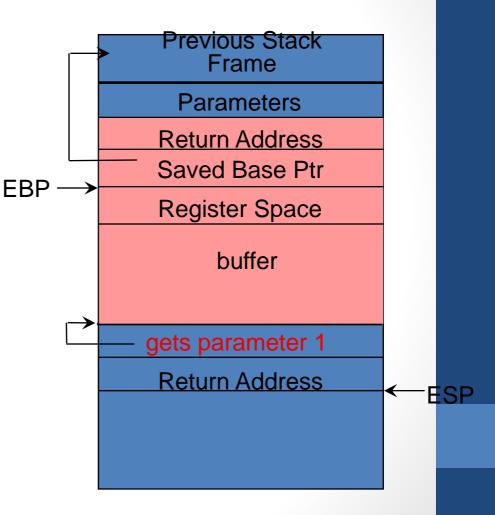
Human Security

- Social Engineering (manipulating people)
 - ♦ Kevin Mitnick
 - ◊ Password reset on banking/credit card
- Can be more elaborate (Patch update attack)...
- phishing
 - ◊ fake email from bank/PayPal/Microsoft
 - ♦ Nigerian 411/Lotto win
 - Harvard/UC Berkely Study
 23% did not look at addr/status bar, sec indicators
 68% ignored certificate warnings
 90% were fooled by good phishing websites
 no correlation with age, sex, previous exp, comp
 experience

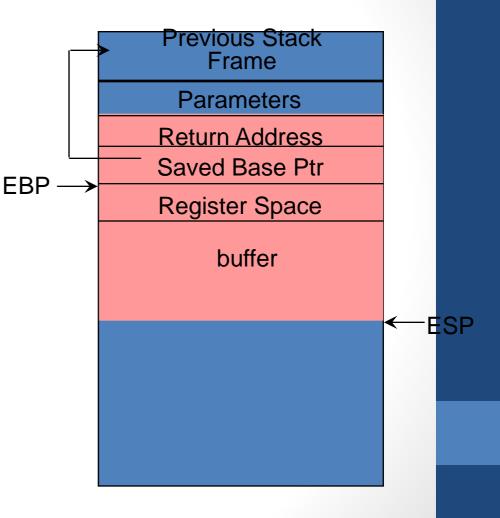
Human Security

- Baiting
 ♦ Free Screen Savers
- Quid pro quo
 - Calling back from Tech Support
- Fake Services
 - ◊ physical mail victim
 - ◊ "new" telephone banking number (1800...)
 - ◊ play back recorded prompts, record acct/pin numbers

Buffer Overflow

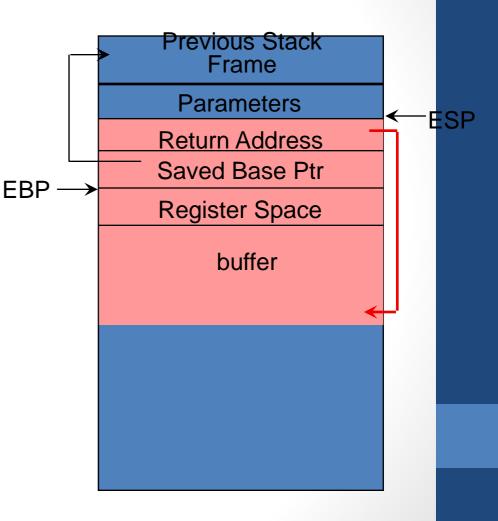

```
Check the size of the buffer on the stack?
 ◊ offset is unsigned
 while (offset > (unsigned)charsRd) {
   char buffer[1024];
   int charsSkpd;
   charsSkpd = offset - charsRd;
   if (charsSkpd > 1024)
    cbSkip = 1024;
   if (!Read(buffer, charsSkpd))
                   break;
    charsRd += charsSkpd;
  ł
```

Buffer Overflow


- Check the size of the buffer on the stack?
 - ◊ subtraction is unsigned
 - If stmt comparison is signed
 - \diamond offset > 2^31, then failure
 - file needs only be a bit longer than 1024 chars!!
 small file
 - ◊ should have used seek!!
 - seek changes the file read position

```
char * GetLine(){
    char buffer[130];
    gets(buffer);
    checkChars(buffer); // only A-Z0-9
```

getLine: push ebp mov ebp,esp sub esp,152 lea eax,-152(ebp) pushl eax call gets add esp,4 lea eax,-152(ebp) pushl eax call checkChars add esp,4 leave ret

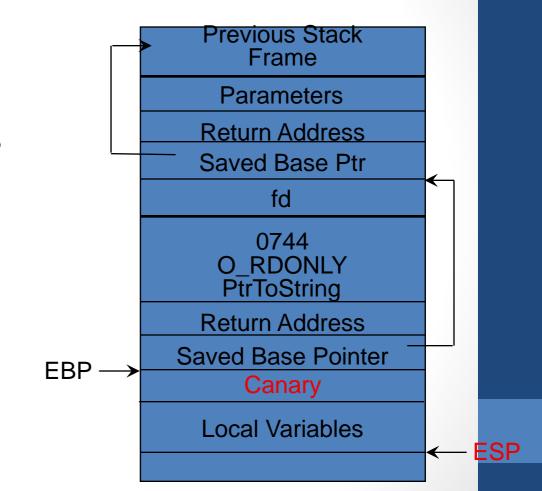

getLine: push ebp mov ebp,esp sub esp,152 lea eax,-152(ebp) pushl eax call gets add esp,4 lea eax,-152(ebp) pushl eax call checkChars add esp,4 leave ret

getLine: push ebp mov ebp,esp sub esp,152 lea eax,-152(ebp) pushl eax call gets add esp,4 lea eax,-152(ebp) pushl eax call checkChars add esp,4 leave ret

Previous Stack Frame Parameters ESP **Return Address** Saved Base Ptr EBP -**Register Space** buffer

getLine: push ebp mov ebp,esp sub esp,152 lea eax,-152(ebp) pushl eax call gets add esp,4 lea eax,-152(ebp) pushl eax call checkChars add esp,4 leave ret

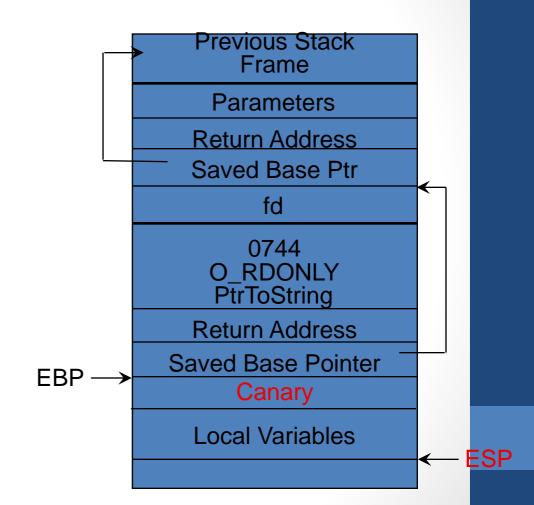
Canary Value


- Protection against Stack Overflow
 - Random value put on stack before local variables
 - ◊ check before return
 - If not the same, then has been modified by a stack overflow attack!!
- Compiler generated protection

 OS provides random value.
 read into global value during process startup.

Canary Values

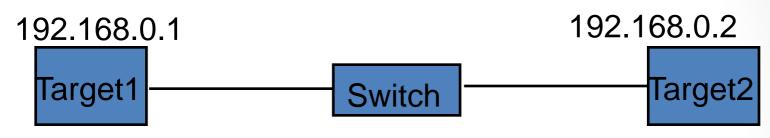
push ebp mov ebp,esp push Canary add esp,NumLocals


testl Canary,(ebp) jne _stackErr_ leave ret

Canary Values

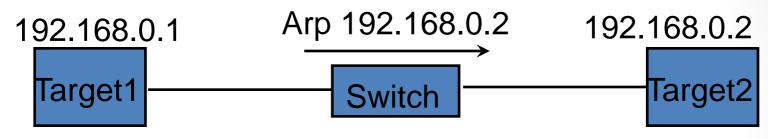
push ebp mov ebp,esp push Canary add esp,NumLocals

testl Canary,(ebp) jne _stackErr_ leave ret

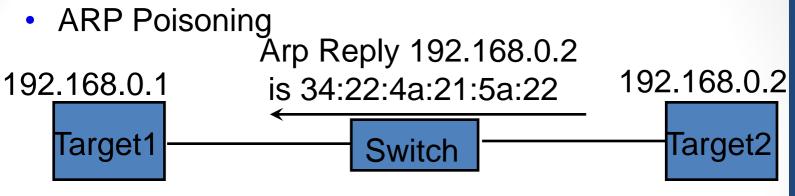

Buffer Overflow

- Other Variants:
 - ◊ Overflow to a local function pointer
 - protection: rearrange stack frame
 - put buffers above function pointers
 - can't rearrange structures

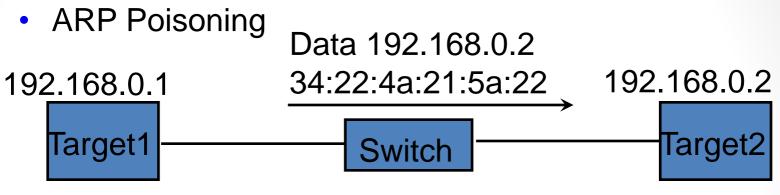
```
struct xyzzy {
    void (*f)(int, int);
    char buffer[1024];
};
```


- Eavesdropping
 WAR driving
 - ◊ WEP Vulnerability
 - Switches only route to specific ethernet addresses
 - ARP poisoning

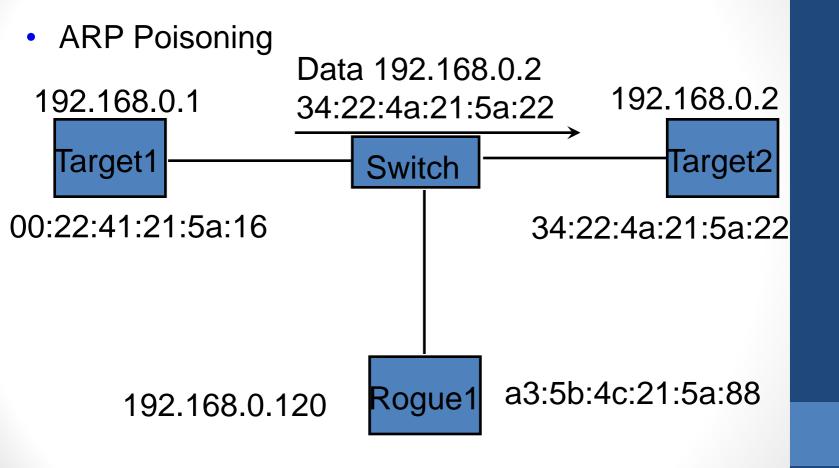
ARP Poisoning

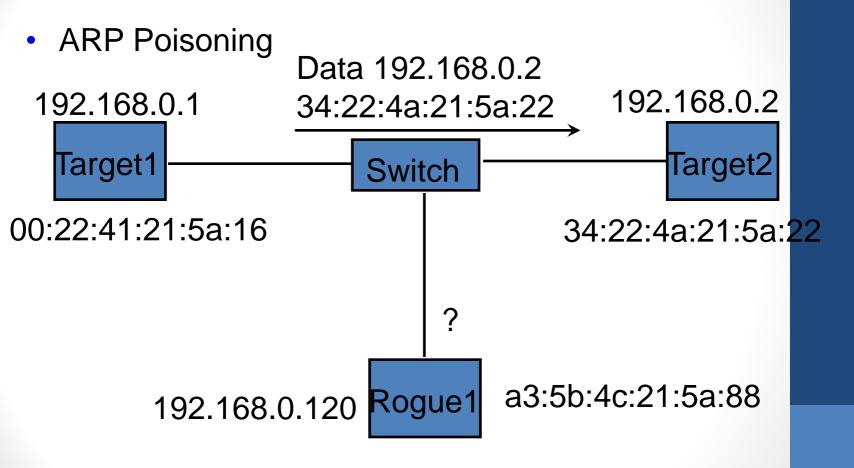

00:22:41:21:5a:16

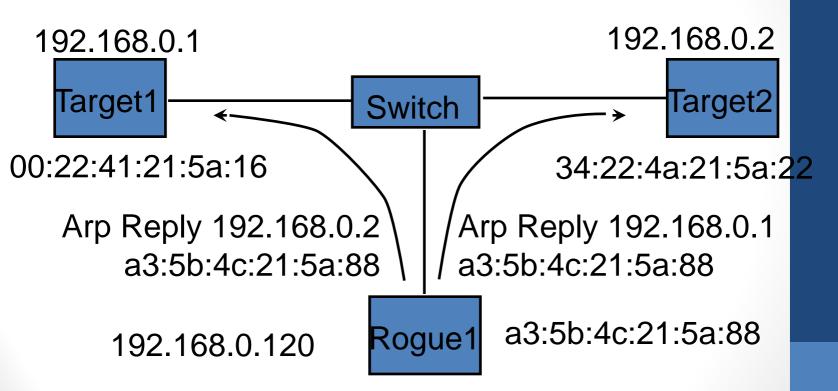
ARP Poisoning


00:22:41:21:5a:16

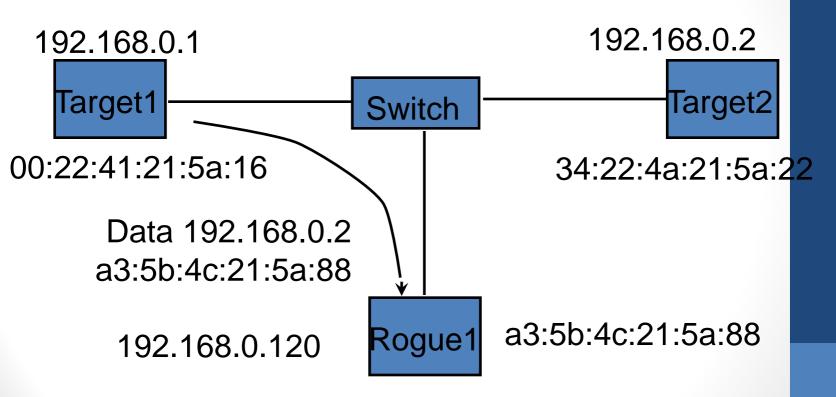
Note: Arp is a broadcast packet

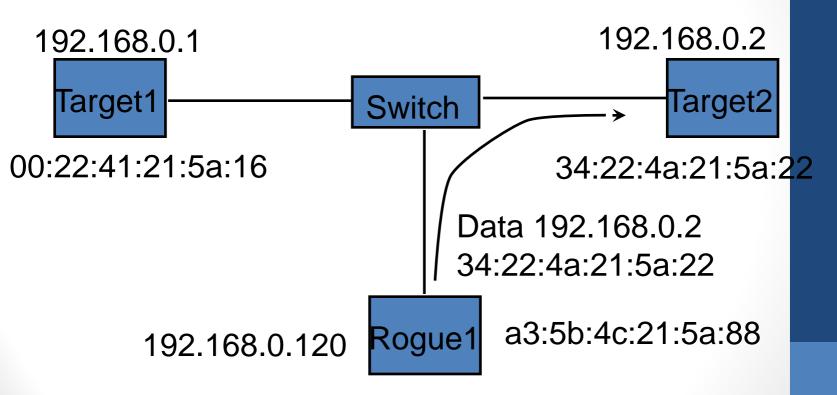

00:22:41:21:5a:16


34:22:4a:21:5a:22


00:22:41:21:5a:16

34:22:4a:21:5a:22




ARP Poisoning

ARP Poisoning

ARP Poisoning

Arp Poisoning

- Protections
 - ♦ Don't use replies you did not ask for.
 - ◊ If MACs change unexpectedly, log changes, so a record available.

- Eavesdropping
 - ◊ WAR driving
 - ◊ WEP Vulnerability
 - Switches only route to specific ethernet addresses
 - ARP poisoning
 - MAC Flooding
 - ◊ unencrypted protocols
 - ftp, telnet
 - o encrypted protocols
 - sftp, scp, ssh

- Other Network Attacks...
 - smurf attack
 - ping response....
 - oversize ICMP packet
 - ICMP packet that is too big....
 - Xmas Tree Packets
 - turn on all of the flags

- ACK, SYN, etc..

- pharming
 - ◊ reverse proxy for a online bank/Paypal
 - ◊ compromise a DNS server/Or DHCP server
 - new attack, DNS poisoning
 - ◊ point bank/Paypal at your reverse proxy
 - \diamond pass transactions through to the bank
 - but record information for later use.
 - security images???
 - o compromise router
 - backbone routers
 - cosumer grade routers
 - DLINK advertising...

Authentication

- Passwords
 - ◊ main login
 - access to resources (databases, Unix groups)
- Vulnerable
 - guessing most user chosen passwords are easy to remember, short, easy to guess
 -WPA interface
 - Shoulder surfing (ATM hack)
 - o packet sniffing (conferences)
 - ◊ masquerade
 - ◊ account sharing
- System generated?
 - ◊ too hard to remember?

- Must store to verify?
 - ◊ If passwords are stored on OS must be secure
 - ◊ encrypted passwords
 - ◊ one way encryption
 - how to check?
 - safe???
 - In brute force attack (Dictionary Attack)
 - ◊ public file?

/etc/secure

- One Time Passwords
 - ◊ challenge response
 - hardware key
 - ◊ one time pad
 - list of random numbers
 - early on-line banking
- Biometrics
 - ◊ Fingerprints, retina, iris
 - ◊ replay attacks?
 - ◊ major disadvantage

- Biometrics
 - ◊ Fingerprints, retina, iris
 - ◊ accuracy
 - false positives (identifies me as you)
 - false negatives (denies you)
 - ◊ anonymity (my yahoo account is anoymous)
 - In the accounts of the accounts of the accounts of the account of the account

high security/low security

- limited number of biometric keys

- Biometrics
 - ◊ false sense of security
 - thermal sensors
 - repudiation
 - ◊ replay attacks?
 - ◊ fake fingers
 - silicone fingers
 - Tsutomu Matsumoto of Yokohama National
 - University
 - Gelatin fingers (same electrical characteristics as flesh)
 - can be made from finger prints left on any object

- accuracy what does it mean?
- 300 Million People in the USA
- Assume 1000 terrorists (1 per 300,000 = .00033%)
- Assume 40 percent positive detection (finds 40%) (400 terrorists)
- Assume 0.01% misidentification (30,000 people)

So What is the chance that someone identified as a terrorist is a terrorist?

- accuracy what does it mean?
- 300 Million People in the USA
- Assume 1000 terrorists (1 per 300,000 = .00033%)
- Assume 40 percent positive detection (finds 40%) (400 terrorists)
- Assume 0.01% misidentification (30,000 people)

So What is the chance that someone identified as a terrorist is a terrorist? 400/30,000 = 1.32 %

- 300 Million People in the USA
- Assume 1000 terrorists (1 per 300,000 = .00033%)
- Assume 70% positive detection (700 terrorists)
- Assume 0.01% misidentification (30,000 people)

So What is the chance that someone identified as a terrorist is a terrorist?

- 300 Million People in the USA
- Assume 1000 terrorists (1 per 300,000 = .00033%)
- Assume 70% positive detection (700 terrorists)
- Assume 0.01% misidentification (30,000 people)

So What is the chance that somone identified as a terrorist is a terrorist? 700/30,000 = 2.3%

Program Threats

- Trojan Horse
 - game program that sends the contents your
 mail box to another server
 - utility that wipes out your accounting program (DOS)
- Masquerade
 - ♦ special type of trojan horse
 - ◊ pretends to be a valid service
 - ◊ login masquerade
 - ◊ web site masquerade (spelling error/email)

Program Threats

Trap Door/Back Door

- ◊ Intentional hole left by programmer
- Hard coded account numbers or Ids
- Var Games (Matthew Broderick)