ELEC 377 – Operating Systems

Week 11 - Class 1

Last Class

- Security
 - ♦ Network Security
 - ♦ System Threats
 - Passwords and Authentication

Today

- Security
 - ♦ Authentication/Accuracy
 - ♦ System Threats

Network Security

- pharming
 - reverse proxy for a online bank/Paypal
 - ♦ compromise a DNS server/Or DHCP server
 - new attack, DNS poisoning
 - opoint bank/PayPal at your reverse proxy
 - pass transactions through to the bank
 - but record information for later use.
 - security images???
 - ♦ compromise router
 - backbone routers
 - consumer grade routers
 - DLINK advertising...

Authentication

- Passwords
 - ♦ main login
 - access to resources (databases, Unix groups)
- Vulnerable
 - guessing most user chosen passwords are easy to remember, short, easy to guess
 - -WPA interface
 - shoulder surfing (ATM hack)
 - packet sniffing (conferences)
 - masquerade
 - account sharing
- System generated?
 - ♦ too hard to remember?

- Must store to verify?
 - If passwords are stored on OS must be secure
 - o encrypted passwords (websites??/London)
 - one way encryption
 - how to check?
 - safe???
 - brute force attack (Dictionary Attack)
 - public file? /etc/secure

- One Time Passwords
 - ♦ challenge response
 - hardware key
 - ♦ one time pad
 - list of random numbers
 - early on-line banking
- Biometrics
- Fingerprints, retina, iris
- replay attacks?
- major disadvantage

- Biometrics
 - ♦ Fingerprints, retina, iris
 - ♦ accuracy
 - false positives (identifies me as you)
 - false negatives (denies you)
 - anonymity (my yahoo account is anoymous)
 - multiple accounts
 high security/low security
 - limited number of biometric keys

- Biometrics
 - ♦ false sense of security
 - thermal sensors
 - repudiation
 - ♦ replay attacks?
 - ♦ fake fingers
 - silicone fingers

Tsutomu Matsumoto of Yokohama National University

- Gelatin fingers (same electrical characteristics as flesh)
- can be made from finger prints left on any object

Other Biometric based Auth

- Oder Based Authentication
- Blood Vessel Patterns in Fingers

- accuracy what does it mean?
- 300 Million People in the USA
- Assume 1000 terrorists (1 per 300,000 = .00033%)
- Assume 40 percent positive detection (finds 40%) (400 terrorists)
- Assume 0.01% misidentification (30,000 people)

So What is the chance that someone identified as a terrorist is a terrorist?

- accuracy what does it mean?
- 300 Million People in the USA
- Assume 1000 terrorists (1 per 300,000 = .00033%)
- Assume 40 percent positive detection (finds 40%) (400 terrorists)
- Assume 0.01% misidentification (30,000 people)

So What is the chance that someone identified as a terrorist is a terrorist?

400/30,000 = 1.32 %

- 300 Million People in the USA
- Assume 1000 terrorists (1 per 300,000 = .00033%)
- Assume 70% positive detection (700 terrorists)
- Assume 0.01% misidentification (30,000 people)

So What is the chance that someone identified as a terrorist is a terrorist?

- 300 Million People in the USA
- Assume 1000 terrorists (1 per 300,000 = .00033%)
- Assume 70% positive detection (700 terrorists)
- Assume 0.01% misidentification (30,000 people)

So What is the chance that somone identified as a terrorist is a terrorist?

$$700/30,000 = 2.3\%$$

- Trojan Horse
 - game program that sends the contents your mail box to another server
 - tility that wipes out your accounting program(DOS)
- Masquerade
 - ♦ special type of trojan horse
 - pretends to be a valid service
 - ♦ login masquerade
 - web site masquerade (spelling error/email)

- Trap Door/Back Door
 - Intentional hole left by programmer
 - Hard coded account numbers or Ids
 - War Games (Matthew Broderick)

Buffer Overflow (Globals)

- Variants
- function pointers in the heap within range of a global buffer (simple overwrite)

```
char buffer[1024];
struct proc_dir{
  int (*read_proc)(char *page, char**start...)
} theProcDir;
```

 theProcDir is after buffer in memory, overwrite read_proc variable, next time called, calls our code

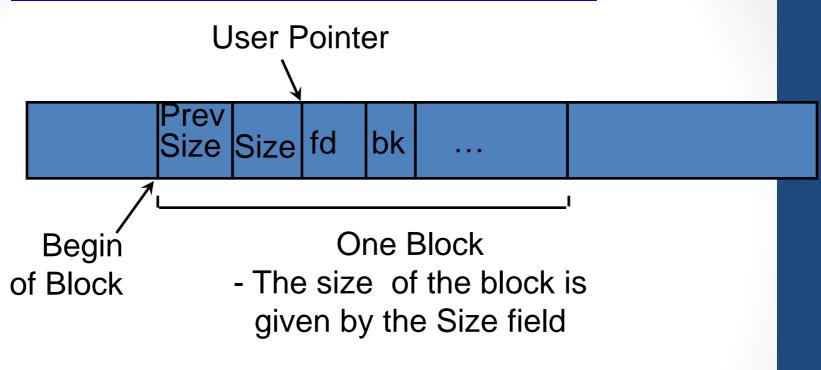
Buffer Overflow (Globals)

Variants

```
♦ vtable pointers (C++)
```

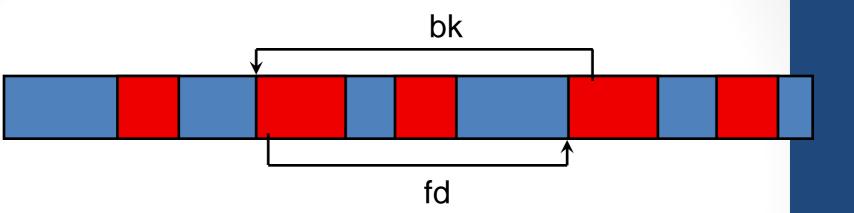
```
class A {
  virtual int foo(){....};
  int bar(){.....};
}
```

```
class B: public A {
virtual int foo(){....};
  int bar(){.....};
}
```

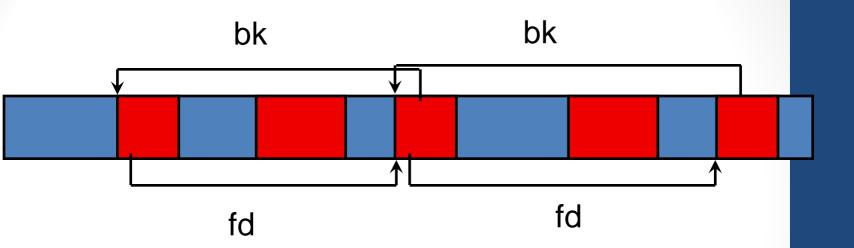

- call to bar is known at compile time (called directly)
- foo is based on type of instance in variable
- called through a global table of functions

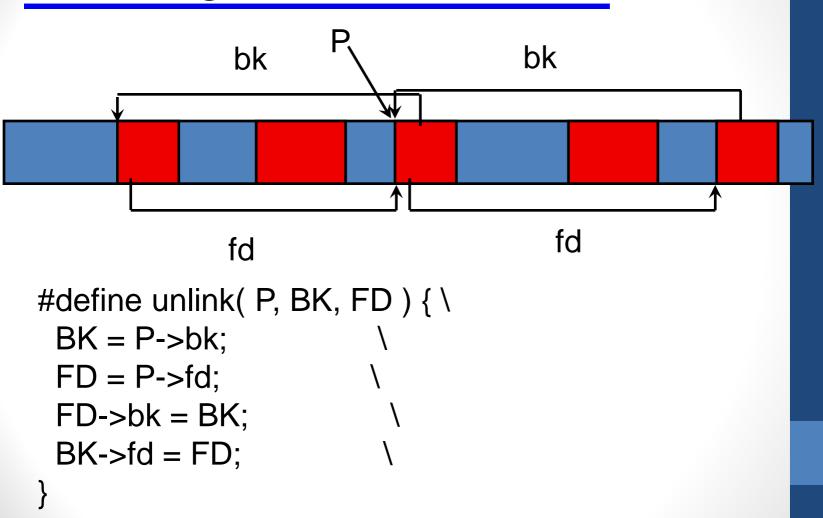
Buffer Overflow in the Heap

- What if the buffer is in the heap (after pointers)?
 - unused memory is kept in bins based on size of block
- each bin is represented by a double linked list #define INTERNAL_SIZE_T size_t

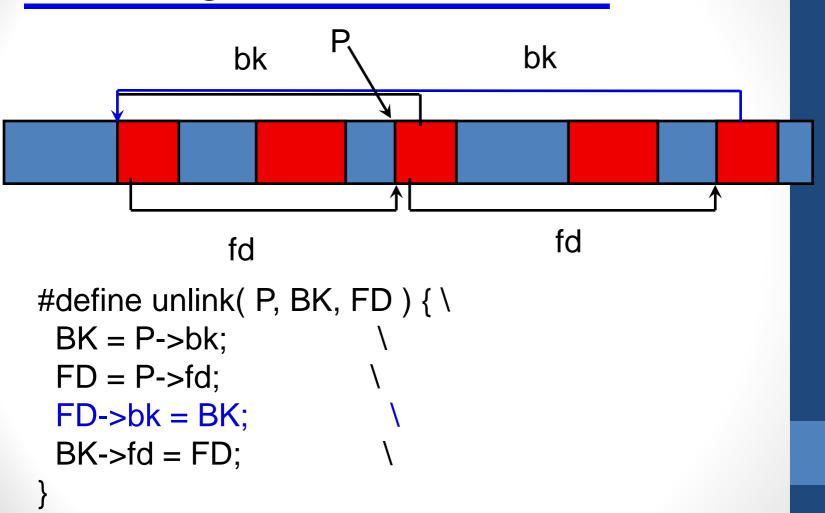

```
struct malloc_chunk {
   INTERNAL_SIZE_T prev_size;
   INTERNAL_SIZE_T size;
   struct malloc_chunk * fd;
   struct malloc_chunk * bk;
};
```

Heap Data Structure

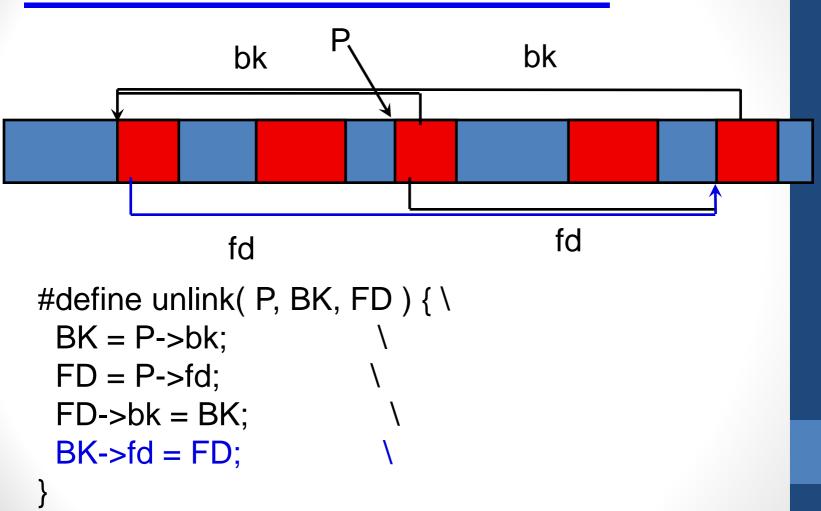


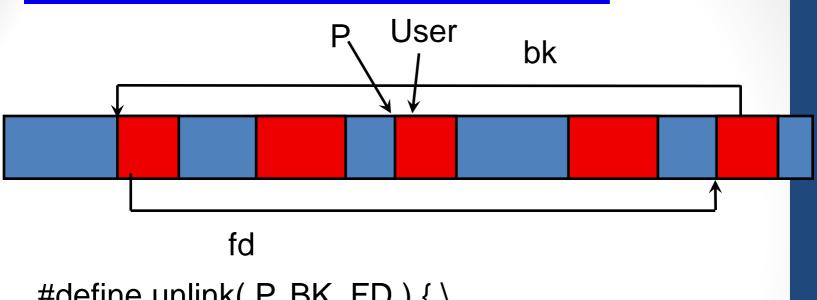

fd (forward) and bk (backward) are only used when the block is unallocated Prev Size and Size are always used

Linking Blocks

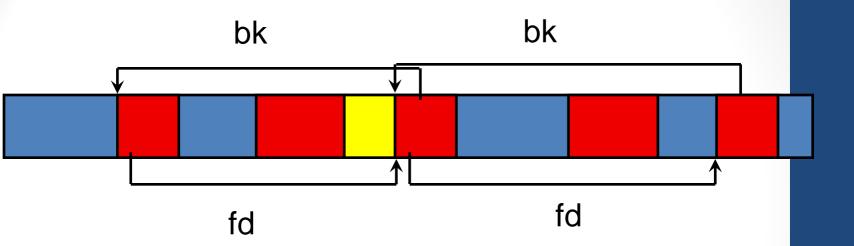


Linking Blocks

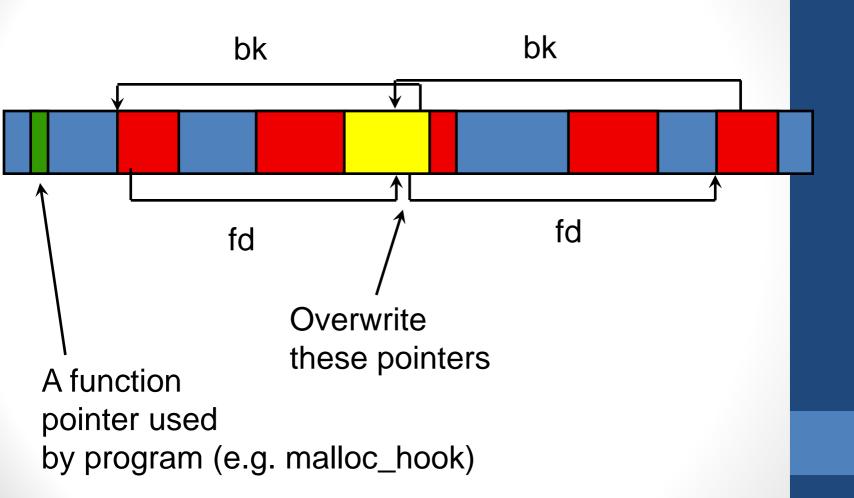



ELEC 377 – Operating Systems

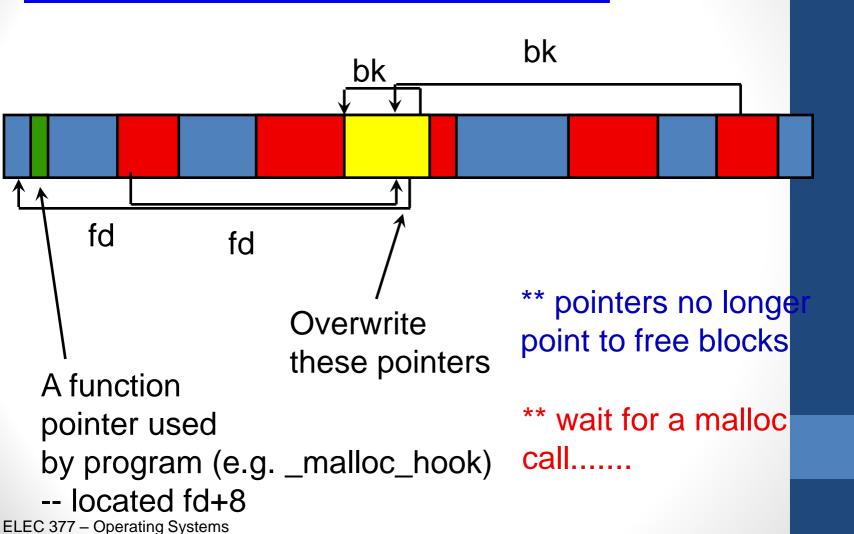
ELEC 377 – Operating Systems

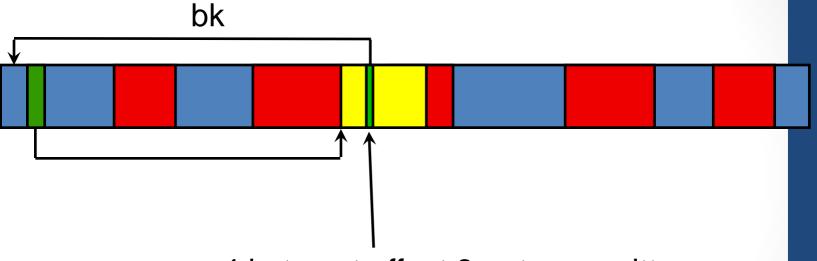


ELEC 377 – Operating Systems




```
#define unlink( P, BK, FD ) { \
    BK = P->bk; \
    FD = P->fd; \
    FD->bk = BK; \
    BK->fd = FD; \
}
```


The Vulnerable Buffer


The Vulnerable Buffer

The New Pointers

After Unlinking...

- 4 bytes at offset 8 get overwritten
- shell code has to jmp around..

**Next time the function pointer is used...
Our code gets executed!!

Buffer Overflow

- Other Examples
 - PDF Javascript Bug
 - Outlook Date Bug
- Whats the point
 - not here to teach you how to break in.
 - illustrate how easy it is to take advantage of errors
 - implications of certain classes of errors in code.

- Race Conditions
 - suid programs (programs that run with administrator priveledges)
 - make a security check before doing an action
 - do the action

In the moment between check and do, attacker switches the action. Often involves files in /tmp directory (writable by anyone)

protection: don't execute something the user can change!!

- Checking parameters
 - shell scripts on unix. File contains: %!/bin/sh
 - ...shell commands...
 - execute with -i flag (means interactive shell)
 - if setuid shell script, now interactive shell in other users name
 - Most Unixes now do not support setuid shell scripts

- Checking parameters
 - web parameters
 - execute a system command using parameters taken from a web form
 - e.g. "mail -f confirmation \$remote_address"
 - where remote_address comes from web form
 - remote_address contains
 "joe@foo.com; rm -rf /*"
 - cannot rely on javascript to verify form data
 - anyone can write a program to send data to a web server!!

- Checking parameters
 - ♦ SQL Injection
 - ♦ Take user input and insert into a query

SELECT from Table1 where Parm='<user input here>'

user input = fred';update employee set salary=70000 where emp='barney

- Checking parameters
- ♦ SQL Injection
- ♦ Take user input and insert into a query

SELECT from Table1 where Parm='<user input here>'

user input = fred';update employee set salary=70000 where emp='barney

- Checking parameters
- ♦ SQL Injection
- ♦ Take user input and insert into a query

SELECT from Table1 where Parm='<user input here>'

- user input = fred';update employee set salary=70000 where emp='barney
- must scan input for key (escape) characters before issuing database commands

System Threats

- Virus
 - covers a lot of ground
 - ♦ trojan horse as vector
 - infects boot sector/other programs
 - ♦ macro viruses
 - ♦ mail viruses
 - often combined with other attacks
 - date overflow bug
 - more sophisticated
 - contains own mail servers
 - camouflage

System Threats

- Worms
 - Automated program that breaks into another system and creates a copy on the new system
 - soon running on many vulnerable systems
 - can take a delayed action (Code Red)
- Distinction between worm and virus is the vector.
 Virus needs a human action, worm contains code to attack the next machine.
 - fuzzy distinction, two techniques have been merging for some time