
ELEC 377 –
Operating Systems
Week 11 – Class 2

ELEC 377 – Operating Systems

Last Class

• Security and Program Threats

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

Today

• Security

 ◊ Other Program Threats

ELEC 377 – Operating Systems

Buffer Overflow (Globals)

• Variants

◊ function pointers in the heap within range of a global

buffer (simple overwrite)

 char buffer[1024];

 struct proc_dir{

 int (*read_proc)(char *page, char**start...)

} theProcDir;

◊ theProcDir is after buffer in memory, overwrite

read_proc variable, next time called, calls our code

ELEC 377 – Operating Systems

Buffer Overflow (Globals)

• Variants

◊ vtable pointers (C++)

 class A { class B:

public A {

 virtual int foo(){....}; virtual int foo(){....};

 int bar(){.....}; int

bar(){.....};

 } }

- call to bar is known at compile time (called directly)

- foo is based on type of instance in variable

- called through a global table of functions

ELEC 377 – Operating Systems

Buffer Overflow in the Heap

• What if the buffer is in the heap (after pointers)?

 - unused memory is kept in bins based on size of

block

 - each bin is represented by a double linked list

#define INTERNAL_SIZE_T size_t

struct malloc_chunk {

 INTERNAL_SIZE_T prev_size;

 INTERNAL_SIZE_T size;

 struct malloc_chunk * fd;

 struct malloc_chunk * bk;

};

This section based on “Smashing the Heap for Fun and Profit”, Michel "MaXX" Kaempf,

http://doc.bughunter.net/buffer-overflow/heap-corruption.html

ELEC 377 – Operating Systems

Heap Data Structure

Prev
Size Size fd bk …

One Block

- The size of the block

is

given by the Size field

User Pointer

Begin

of Block

fd (forward) and bk (backward) are only used

when the block is unallocated

Prev Size and Size are always used

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

Linking Blocks

fd

bk

ELEC 377 – Operating Systems

Linking Blocks

fd fd

bk bk

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

Unlinking

fd fd

bk bk

#define unlink(P, BK, FD) { \

 BK = P->bk; \

 FD = P->fd; \

 FD->bk = BK; \

 BK->fd = FD; \

}

P

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

Unlinking

fd fd

bk bk

#define unlink(P, BK, FD) { \

 BK = P->bk; \

 FD = P->fd; \

 FD->bk = BK; \

 BK->fd = FD; \

}

P

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

Unlinking

fd fd

bk bk

#define unlink(P, BK, FD) { \

 BK = P->bk; \

 FD = P->fd; \

 FD->bk = BK; \

 BK->fd = FD; \

}

P

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

Unlinking

fd

bk

#define unlink(P, BK, FD) { \

 BK = P->bk; \

 FD = P->fd; \

 FD->bk = BK; \

 BK->fd = FD; \

}

P User

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

The Vulnerable Buffer

fd fd

bk bk

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

The Vulnerable Buffer

fd fd

bk bk

Overwrite

these pointers
A function

pointer used

by program (e.g. malloc_hook)

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

The New Pointers

fd fd

bk
bk

Overwrite

these pointers
A function

pointer used

by program (e.g.

_malloc_hook)

-- located fd+8

** pointers no longer

point to free blocks

** wait for a malloc

call.......

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

After Unlinking...

bk

- 4 bytes at offset 8 get overwritten

- shell code has to jmp around..

**Next time the function pointer is used...

 Our code gets executed!!

ELEC 377 – Operating Systems

Buffer Overflow

• Other Examples

 - PDF Javascript Bug

 - Outlook Date Bug

• Whats the point

 - not here to teach you how to break in.

 - illustrate how easy it is to take advantage of errors

 - implications of certain classes of errors in code.

ELEC 377 – Operating Systems

• Race Conditions

◊ suid programs (programs that run with

administrator priveledges)

◊ make a security check before doing an action

◊ do the action

In the moment between check and do, attacker

switches the action. Often involves files in /tmp

directory (writable by anyone)

protection: don’t execute something the user can

change!!

Program Threats

ELEC 377 – Operating Systems

• Checking parameters

◊ shell scripts on unix. File contains:

 %!/bin/sh

 …shell commands…

◊ execute with -i flag (means interactive shell)

◊ if setuid shell script, now interactive shell in

other users name

◊ Most Unixes now do not support setuid shell

scripts

Program Threats

ELEC 377 – Operating Systems

• Checking parameters

◊ web parameters

◊ execute a system command using parameters

taken from a web form

 e.g. “mail -f confirmation $remote_address”

 - where remote_address comes from web form

 - remote_address contains

 “joe@foo.com ; rm -rf /*”

◊ cannot rely on javascript to verify form data

 - anyone can write a program to send data to a

web server!!

Program Threats

ELEC 377 – Operating Systems

• Checking parameters

◊ SQL Injection

◊ Take user input and insert into a query

SELECT from Table1 where Parm=’<user input

here>’

user input = fred’;update employee set

salary=70000 where emp=’barney

Program Threats

ELEC 377 – Operating Systems

• Checking parameters

◊ SQL Injection

◊ Take user input and insert into a query

SELECT from Table1 where Parm=’<user input

here>’

user input = fred’;update employee set

salary=70000 where emp=’barney

Program Threats

ELEC 377 – Operating Systems

• Checking parameters

◊ SQL Injection

◊ Take user input and insert into a query

SELECT from Table1 where Parm=’<user input

here>’

user input = fred’;update employee set

salary=70000 where emp=’barney

◊ must scan input for key characters before

issuing database commands

Program Threats

ELEC 377 – Operating Systems

System Threats
• Virus

◊ covers a lot of ground

◊ trogan horse as vector

◊ infects boot sector/other programs

◊ macro viruses

◊ mail viruses

◊ often combined with other attacks

 - date overflow bug

◊ more sophisticated

 - contains own mail servers

 - camouflage

ELEC 377 – Operating Systems

System Threats
• Worms

◊ Automated program that breaks into another

system and creates a copy on the new system

◊ soon running on many vulnerable systems

◊ can take a delayed action (Code Red)

◊ Major Commercial Activity (Organzied Crime)

 - child pornography, software piracy, spam

• Distinction between worm and virus is the vector.

Virus needs a human action, worm contains code

to attack the next machine.

 ◊ fuzzy distinction, two techniques are

merging…

ELEC 377 – Operating Systems

Recent Developments
• Metamorphic Virus and Worms

 mov eax,0 xor eax,eax; nop

 ◊ multiple rewrites of code that are the same

 - change registers,

 - change constants

 - invert tests

 ◊ malware detectors are signature based

 - software changes its signatures

 – exponential number of signatures

 - must be normalized to compare to signatures

 – extra computation, more expensive to

 detect

ELEC 377 – Operating Systems

Recent Developments
• Botnets networks of malware (zombies)

◊ After infecting a machine, connect to a given

server and await commands

 - update

 - download and execute code

◊ early malware connected to regular IRC servers

 – password protected channels

◊ now connect to private IRC servers in foreign

countries

◊ several projects to break into the channels and

shutdown the botnets

 - spreading faster than can be shut down

ELEC 377 – Operating Systems

Botnets

• Botnets networks of malware

◊ latest development

 - low bandwidth p2p network

 - zombies divided into cells of several 100

CPUs

 - redundant connections between cells

◊ If you shut down the server, and the owner of the

botnet has a connection to any one of the

zombies, can use the p2p network to give them

a new IRC network to connect to.

ELEC 377 – Operating Systems

Botnets

• Summer 2005

◊ Worm Botnet

 - collects registration codes of commercial software

 - backdoor to video camera

 - Student Residences

 - Young Adult/Children Bedrooms

 - Camera light?

ELEC 377 – Operating Systems

Securing Systems and Facilities

• Periodic Scans

◊ check passwords

◊ set uid programs

◊ unauthorized programs in special directories

◊ long running processes

◊ directory and file protection bits

◊ system search path

◊ changes to system programs

ELEC 377 – Operating Systems

Securing Systems and Facilities

• Cannot lock up the machines

• firewalls

◊ in automobile, between engine and passengers

◊ in network, between wild jungle of internet and

(almost) secure network

◊ limit connections between outside and inside

◊ Demilitarized Zone (DMZ)

◊ network address translation (NAT)

◊ covert tunnels

◊ spoofing

ELEC 377 – Operating Systems

Intrusion Detection

• Aspects

◊ real time vs after intrusion

◊ what is examined (commands, system calls,

network packets, etc.)

◊ response

• What is an Intrusion?

◊ signature based detection

 - virus, multiple login attempts

◊ anomaly based detection

 - something not normal

ELEC 377 – Operating Systems

Intrusion Detection

• Issues

◊ Delay in adding signatures

◊ Errors in signatures

 - AVG accidentally removes user32.dll

◊ stealth channels

 - some intruders only want limited information

 - other want to stay and spy a while....

ELEC 377 – Operating Systems

Intrusion Detection

• Audits and Logs

◊ UNIX syslog daemon

◊ most daemons use the syslog daemon to log

activities

◊ swatch - scans daemons for anomalous

activity

• Tripwire

◊ Purdue University

◊ checksum of system files and attributes

 - detect modifications

◊ detect modification of tripwire?

ELEC 377 – Operating Systems

Security is Increasingly Important

• Continue to be interesting in ways never thought

of before

 - photo of keys??

 - can now cut keys from keys appearing in a

 picture, even from a distance of 200

feet

ELEC 377 – Operating Systems

Legal issues of Networks..
• File Sharing....

 - few lawyers, courts or politicians that understand

• automated infringement notices

 - sent to a printer.....

• Net neutrality(Barak Obama Cabinet)

 - who controls, new protocols, competition, conflict

of interest..

• Firewalls

 - ssh/http only(everything runs over http?)

 - vpn compatible at both ends?

ELEC 377 – Operating Systems

Root Kits
• Root Kit is software to hide the evidence of system

modification
• Originally used by intruders in Unix systems to hide changes

to systems
◊ add a back door process such as a chat daemon or ftp

server running on non-standard port
◊ changes to ps, netstat, w, passwd and other system

commands to hide the back door
• Now applies to any operating system

◊ Changes are now usually made to kernel and system
libraries rather than to system commands

– Although some combine both system libraries and system
commands

ELEC 377 – Operating Systems

What is a Root Kit?
• Not the initial vulnerability

◊ initial vulnerability is used to gain access, root kit is used
to maintain access to compromised system

◊ Sometimes the intruder patched vulnerability to keep
‘exclusive’ access to the system

◊ root kit may attempt to maintain ownership of the system
 - one part of root kit notices when another part has been

removed and reinstalls that component
• Often used by viruses and worms to disguise activities.
 ◊ Thus rootkit detection is a concern for Security Vendors.

ELEC 377 – Operating Systems

Root Kit Research
• Commercial and Personal Systems

◊ when you get malware, you want to remove it
◊ limit its damage

• Sensitive Systems.
 ◊ You don’t want to eradicate the malware
 ◊ You need to observe it
-- who is it reporting to?
-- what kind of information is it interested in
-- limit access to sensitive information
 ◊ Problem: it is checking to see if anyone is

watching
-- may self destruct/or may attempt to destroy

system.
-- may change its behaviour.

ELEC 377 – Operating Systems

Sensitive Systems
• Counter-Intelligence Operations

◊ after detecting malware, you provide a
simulated environment (including new operator)

◊ replace systems it has access to, with fake
systems with fake information

• Observe the malware
◊ CASCON paper
◊ Use root kit techniques to hide the anti malware

software from the malware
◊ Installed at time OS is installed -- we are in

first!!

ELEC 377 – Operating Systems

Root Kit Research
• Kernel Level Asynchronous Procedure Calls(APC)

◊ register a call back routine for a process inside
the kernel

◊ call back executes with knowledge of the
processes virtual memory tables, and other
process info

◊ Our anti-malware executes entirely as APC
callbacks.

◊ copy to different memory location
◊ register callbacks on different threads
◊ Can inject into malware’s thread and look at

malware in malware’s context
◊ jump onto thread to exfiltrate information

