
ELEC 377 –
Operating Systems
Week 12 – Class 2

Admin

• Lab 4/5 Will be marked shortly

• Quiz #3 returning today

ELEC 377 – Operating Systems

Today

• Unix History

ELEC 377 – Operating Systems

What is a Root Kit?
• Root Kit is software to hide the evidence of system

modification
• Originally used by intruders in Unix systems to hide changes

to systems
◊ add a back door process such as a chat daemon or ftp

server running on non-standard port
◊ changes to ps, netstat, w, passwd and other system

commands to hide the back door
• Now applies to any operating system

◊ Changes are now usually made to kernel and system
libraries rather than to system commands
– Although some combine both system libraries and

system commands

ELEC 377 – Operating Systems

What is a Root Kit?
• Not the initial vulnerability

◊ initial vulnerability is used to gain access, root kit is used
to maintain access to compromised system

◊ Sometimes the intruder patched vulnerability to keep
‘exclusive’ access to the system

◊ root kit may attempt to maintain ownership of the system
 - one part of root kit notices when another part has

been removed and reinstalls that component
• Often used by viruses and worms to disguise activities.
 ◊ Thus rootkit detection is a concern for Security Vendors.

ELEC 377 – Operating Systems

Legal Implications Canadian Laws
• Several attempts to introduce legislation (C-11)

 ◊ Several common themes

• Outlaws circumvention of TPM or distribution of

circumvention techniques (similar to DMCA)

 ◊ Some exceptions :

• Other issues with legislation

 ◊ no fair-dealing rights for anything protected by

TPM

http://www.michaelgeist.ca

ELEC 377 – Operating Systems

Other News

• Sony/BMG exec moves to MediaMax CEO

◊ Kevin M. Clement former Senior Director, New

Technology of SONY/BMG

• Gartner Group

◊ Data partition can be disabled with a piece of

tape. (DMCA violation?)

ELEC 377 – Operating Systems

Rootkits in Linux
• How would one accomplish this in Linux?
• system calls use int 0x80

◊ system call number in eax
◊ sys_call_table points to system call handler
◊ modules can modify sys_call_table entries to

point to them
• create, new, read directory, open file routines
• lsmod uses /dev/kmem to scan a list
 – remove module from list
• Modify /proc drivers not to show the processes

belonging to the back door the root kit is hiding
• put processes in /etc/rc/init.d to ensure they start

up each time - (ls hides the files...)

ELEC 377 – Operating Systems

Root Kit Research
• Commercial and Personal Systems

◊ when you get malware, you want to remove it
◊ limit its damage

• Sensitive Systems.
 ◊ You don’t want to eradicate the malware
 ◊ You need to observe it

-- who is it reporting to?
-- what kind of information is it interested in
-- limit access to sensitive information
 ◊ Problem: it is checking to see if anyone is

watching
-- may self destruct/or may attempt to destroy

system.
-- may change its behaviour.

ELEC 377 – Operating Systems

Sensitive Systems
• Counter-Intelligence Operations

◊ after detecting malware, you provide a
simulated environment (including new operator)
-- research on fake operator!!

◊ replace systems it has access to, with fake
systems with fake information

• Observe the malware
◊ CASCON paper
◊ Use root kit techniques to hide the anti malware

software from the malware
◊ Installed at time OS is installed -- we are in

first!!

ELEC 377 – Operating Systems

Sensitive Systems
• Battle of limited resources

◊ the malware is trying to remain covert
◊ covert channels to get data out to handler
◊ limited access to CPU time and Memory
-- consume to many resources, then becomes

obvious you are there...
• We are also trying to remain covert

◊ However, we are there first
◊ they have to use limited resources to both look

for us and to carry out primary mission (obtain
and exfiltrate desired information)

ELEC 377 – Operating Systems

Root Kit Research - Our Rootkit
• Kernel Level Asynchronous Procedure Calls(APC)

◊ threads and processes can register a call back
routine

-- attached to an event such as a key press, or a
timer

◊ Available to kernel threads
◊ Higher priority threads can attach callbacks to

lower priority threads

ELEC 377 – Operating Systems

Root Kit Research
• Kernel Level Asynchronous Procedure Calls(APC)

◊ We start with high priority
-- during init, allocate a memory block and

copy ourselves into it, register a callback on
another thread.

◊ call back executes with knowledge of the thread
virtual memory tables, and other process info

◊ Our anti-malware executes entirely as APC
callbacks.

◊ copy to different memory location
◊ register callbacks on different threads
◊ Can inject into malware’s thread and look at

malware in malware’s context
◊ jump onto firefox thread to exfiltrate information

ELEC 377 – Operating Systems

Intrusion Detection

• Aspects

◊ real time vs after intrusion

◊ what is examined (commands, system calls,

network packets, etc.)

◊ response

• What is an Intrusion?

◊ signature based detection

 - virus, multiple login attempts

◊ anomaly based detection

 - something not normal

ELEC 377 – Operating Systems

Intrusion Detection

• Issues

◊ Delay in adding signatures

◊ Errors in signatures

 - AVG accidentally removes user32.dll

◊ stealth channels

 - some intruders only want limited information

 - other want to stay and spy a while....

ELEC 377 – Operating Systems

Intrusion Detection

• Audits and Logs

◊ UNIX syslog daemon

◊ most daemons use the syslog daemon to log

activities

◊ swatch - scans daemons for anomalous activity

• Tripwire

◊ Purdue University

◊ checksum of system files and attributes

 - detect modifications

◊ detect modification of tripwire?

ELEC 377 – Operating Systems

Security is Increasingly Important

• Continue to be interesting in ways never thought

of before

 - photo of keys??

 - can now cut keys from keys appearing in a

 picture, even from a distance of 200 feet

ELEC 377 – Operating Systems

Unix - History
• 1969

◊ PDP-7 (Assembly Language)
◊ File-centric view of the world
◊ Small group operating system
◊ C - developed to write UNIX on PDP-11
◊ Given away to Universities with Source (1976)
◊ Language Design and Programming

Methodology Conference (1979)
◊ Lyon’s book
◊ Ported to many different architectures

• 1991
◊ Linux
◊ Free version of Unix for x86

ELEC 377 – Operating Systems

Unix - Kernel
• Minimal Kernel

◊ small address space (< 64K bytes)

◊ some things were implemented as user

processes (glob)

◊ better hardware -> larger kernel

◊ small tool centric view of the world

◊ Early kernels (both Unix and Linx) were

monolithic (one large program). Installation

involved building the kernel for the given

hardware

◊ Extended with loadable modules/device drivers

Unix - Kernel

ELEC 377 – Operating Systems

Unix - Scheduling

• Priority based scheduling

◊ all processes at a given priority level are

scheduled round robin.

◊ Processes priorities are aged by the kernel

◊ Extended with soft real time scheduling

◊ no longer simple.

ELEC 377 – Operating Systems

Linux Processes Scheduling
• two algorithms

◊ priority based scheduling

◊ real-time scheduling

◊ part of process personality

• priority based schedule

◊ credit based algorithm

◊ each timer interrupt (jiffy), the current process

looses one credit

◊ process in ready queue with most credits goes

next

◊ what happens when all process in ready queue

are out of credits?

ELEC 377 – Operating Systems

Linux Processes Scheduling
• credit rebalancing

◊ all process in the ready queue are out of

credits

◊ processes in wait queues may still have credits

◊ generate new credits for every process (not

just ready queue processes)

 credits = credits / 2 + priority

◊ mixes priority of process and process history

 - processes with a lot of wait time accumulate

 credits and always run when ready

 - CPU bound processes always short on credits

ELEC 377 – Operating Systems

O(1) Scheduler
• Kernel 2.5...

◊ recalculating credits means a computation for

every process in the system.

 - fine for small systems with a small number of

processes

 - overhead of a context switch grows as the

number of ready processes grow

 - bottleneck for SMP, Java (native thread model)

◊ New algorithm created

 - constant time no matter how many processes are

ready to run.

 - better support for SMP (Symmetric

multiprocessing)

ELEC 377 – Operating Systems

O(1) Scheduler

Real

Time

Other

0 High

.

.

.

99

100

.

.

.

140 Low

200

ms

10

ms

ELEC 377 – Operating Systems

O(1) Scheduler

• tasks at a given priority are added at the end of

each queue (a couple of pointer changes)

• Two sets of queues, Active and Expired

• Each process is initially given a time allocation

based on priority.

• As it executes, time is subtracted from the

allocation

• When empty, time slice is recalculated and the

process is put on the expired set of queues.

• If the active queue for a given priority is empty,

then the it is swapped with the expired queue.

ELEC 377 – Operating Systems

Dynamic Priorities

• Lower priority of CPU bound

• Raise Priority of Upper Bound

• Interactivity heuristic compares sleep time to run time

• +/5 priority points (changes which queue)

ELEC 377 – Operating Systems

UNIX - file centric view

• Much of the Unix Kernel Design is visible in the file

system

◊ Hard disks merged into a single tree

 - some attempt to hide disks

 - not entirely successful

◊ Start with single file

 - permissions

 - rwx - user, group and other

 - user ID, group ID (16 bits)

 - a user may belong to more than one group

ELEC 377 – Operating Systems

UNIX - single file view

• Total of 16 attribute bits for any file

◊ 9 so far (rwx)

◊ s - set uid bits (x 2)

◊ d - directory bit

◊ l - symbolic link

◊ b - block special device

◊ c - character special device

◊ p - pipe bit

• some combinations illegal

◊ d and b for example

ELEC 377 – Operating Systems

UNIX - single file view
• User and Group
◊ processes are executed by owner and a group
 - just like files, have an owner and a group
 - users can change their current group
 - used for accessing resources
 - most resources accessed through the file system
 - file permission bits determine resource access
◊ setuid bits permit owner of command to determine

the user id and group id of process
 - effective uid (euid), effective group id (egid)
 - most versions of unix permit the executable to

switch between real and effective user and group
ids (some allow for root only)

ELEC 377 – Operating Systems

UNIX - single file view

• setuid bits

◊ possible security hole

 - paths with ‘.’ at start

◊ real uses

 - passwd command

 - database access

 - data file access

ELEC 377 – Operating Systems

UNIX - single file view
• directory bit

◊ file is a directory
◊ can be read as a regular file
◊ opendir, closedir, readdir, link, unlink
◊ other bits have different meanings
 - r bit - read directory contents
 - x bit traverse directory
 - system must read
 - r no x means can open contents if name

 known
 - s bit
 - cannot execute directory
 - set gid bit is used to preserve group of

 directory

ELEC 377 – Operating Systems

UNIX - single file view

• link bit
◊ file contains a single line which is a path

(relative or absolute) to another directory or file
 - permits links to cross file systems
 - share directories

• b and c bits
◊ device files (/dev)
◊ files do not contain any data blocks
◊ used for processes talk directly to device

drivers
◊ major and minor modes
 - major mode identifies the device driver
 - minor mode is parameter
 - linux hda = b 3 0, tty0 = c 4 0

ELEC 377 – Operating Systems

Linux Processes
• first process started is init

◊ reads /etc/inittab

◊ starts any daemons

◊ some programs are monitored for restart

• login process (character based)

1. init starts getty on the terminal (console)

2. getty puts up login prompt and waits for username

3. getty spawns login with username as argument

4. login asks for password (turns off echo)

5. login spawns the shell given in /etc/passwd

6. when shell exits, init starts another instance of getty

