
ELEC 377 –
Operating Systems
Matthew Stephan

Week 1 – Class 1

Instructor

Matthew Stephan

Office: Goodwin Hall 624

Email: matthew.stephan@queensu.ca

Hours: Wed 1:30

 and by appointment

• Engineering Undergrad and Masters at UWaterloo

• Ph.D. Candidate in CISC

• 2 years industrial experience

• 2 years teaching experience

ECE Rep

Election/Volunteer

Required Textbooks

Operating System Concepts, 8th Ed

 Silberschatz, Galvin, Gagne

 7th edition is acceptable.

Some Sort of C Reference (not C++) is required

 - You can use what you feel comfortable with

Notes

• I may be away for the 3rd week of class for a

conference

• I will assign a guest lecturer.

• You are responsible for what is in the text, what is

on the slides and what is said in class.

• If you miss a class, make sure you get notes

from someone that was there

• There will be material not in the textbook

Marking Scheme

• 5 Assignments done in C/bash on Linux

 (25% of total mark)

• 3 Quizzes

 (8% each, 24% of total mark)

• Final Exam (51% of total mark)

Assignment Marking Scheme

• Questions + Programming

Programming Part:
• Documentation (2 parts) 40%
 Description of the problem and your solution

• Structure and Clarity of Approach 20%
 Code must be well structured, clear and
 commented.

• Testing and Correctness 40%
 Test cases and output must be included in what is

handed in. Must also include a written argument
about the completeness of your testing

Quizzes

• There will be 3 quizzes, each 20 minutes long

• Quizzes will be given in class at the beginning of

the lecture
• Each quiz will cover the lecture material from

the previous quiz up to and including the
immediately preceding class. You are
responsible for all material covered in class.
Some subjects have extra material in class not
in the textbook.

• The tentative quiz dates are Tuesdays
(Week 3,6 and 9)

 Sept 25 Oct 16 Nov 6

Tutorial and Labs

• Tutorial and Labs are combined in the Teaching
Studio (ILC 213)

• One Section, 10:30 Monday (2hrs)
• Teams of two
• Please choose a partner by next Monday

and send me email with your partners name.
• Most labs are multiple weeks long

• important to be prepared
• The first lab is an Orientation Lab, we will go

through a simple exercise of modifying the
Linux kernel. Even though there are no marks,
it is important you be there to make sure that
your environment works.

Tutorial and Labs

• There will be an extra tutorial this week. This
will be an in–depth tutorial of C programming for
the course. Attendance is optional. However if
you have no C programming experience
beyond ELEC 276 you should be there.

Monday September 10th at WLH 210 at 6:30PM

Why Study Operating Systems?

• Sophisticated Users

– When programming, operating issues become

relevant. Threads, priority, sharing.

– Car Driver vs. Airplane Pilot Model

Adapted from: Transport Canada Flight Training Manual 3rd ed.

Why Study Operating Systems?

• Interaction between Hardware and OS

– Modern hardware contains many features needed

to support operating system functionality

– Memory/Process/IO Protection

– Interrupt, Cache, and Virtual Memory features

– Hardware designers need to understand OS

Why Study Operating Systems?

• Modern Embedded Systems
– There is a continuum between small devices and

more sophisticated devices
– For small devices such as Interact Terminals,

minimal OS support is needed (ELEC 371)
– Fly-by-wire systems need more support
– Growth in consumer devices (TiVo, LG Fridge)

• Informed User
– A lot of misinformation out there from all parties.
– You may have to choose and recommend for

employers and clients

TiVo – What is it?

• Digital Video Player

– Like VCR, but no tapes (hard drive)

– Customized Guide (record program by name)

– Phone network connection for correct time and

content guide

– Pause live events

TiVo – Requirements

Tivo

Video

In Video

Out

TiVo – Requirements

Tivo

Video

In Video

Out

- Remote and other user I/O

TiVo – Requirements

Tivo

Video

In Video

Out

- Remote and other user I/O

Phone

- Net: Time and Content Info

TiVo – Requirements

Tivo

Video

In Video

Out

- Remote and other user I/O

Phone

- Net: Time and Content Info

- Local Storage(organization)

TiVo – Operating System

• Requirements
– Video I/O
– User I/O
– Networking (on demand)
– Storage (file system)
 – Video Data
 – Content Info
 – Operating Software

TiVo – Operating System

• Requirements
– Video I/O
– User I/O
– Networking (on demand)
– Storage (file system)
 – Video Data
 – Content Info
 – Operating Software

• Everything required for an operating system

TiVo – Operating System

• Requirements
– Video I/O
– User I/O
– Networking (on demand)
– Storage (file system)
 – Video Data
 – Content Info
 – Operating Software

• Everything required for an operating system
– rather than develop from scratch, adopted an

existing operating system (Linux)

What is an Operating System?

• A Program that acts as an intermediary between a

user and the computer hardware

• Goals:

 ◊ Execute user programs and make solving

user programs easier

 ◊ Make the computer system more easier to use

• Use the computer hardware in an efficient manner

Computer System Components

Computer

Hardware

Operating System

Application

1

Application

2
Application

N
…

User

1

User

2

User

N

What is an Operating System?

Definitions:

• Resource Allocator
 ◊ Manage and allocate resources
 ◊ Provide a uniform interface to similar

hardware

• Control Program
 ◊ Controls the execution of user programs
 ◊ Controls operation of I/O devices (i.e. disk)

• Kernel
 ◊ The one program running at all times
 ◊ IPL – Initial Program Load

Single Program Systems

• Early Batch Mainframe Systems

– pool of jobs each run sequentially.

• MS-DOS

• Single Process at a Time

• CPU is idle while waiting for I/O

– wasted cycles

• Minimal hardware/OS

requirements

Operating

System

User

Program

Area

Multiprogram Systems

• Later Batch Mainframe Systems

• Pool of Jobs

 ◊ More than one program in memory at a time

• When one program is doing I/O, anther gets CPU

 ◊ Eliminate wasted cycles

• More hardware/OS requirements

 ◊ OS provides I/O routines

 ◊ Memory management and security

 ◊ CPU scheduling

 ◊ Device Allocation

Time Sharing/Interactive

• CPU is shared between several program kept in

memory.

• Programs are swapped between disk and memory.

 ◊ sometimes only parts of programs are

swapped.

• May be more than one user

• More hardware/OS requirements

 ◊ Communication with user (terminal, WIMP)

 ◊ Scheduling differences from batch

multiprocessing

Parallel Systems

• Tightly coupled

 ◊ processes share memory and I/O

• Advantages

 ◊ Increased throughput

 ◊ Reliability

• Symmetric

 ◊ Each processor identical, process run on

whatever processor is available (may run on more

than one during it’s lifetime)

• Asymmetric

 ◊ Master–slave relationship

Distributed Systems

• Distribute computation among several processors

• loosely coupled

 ◊ Each process has own memory, I/O devices

 ◊ Communication infrastructure

• Advantages

 ◊ resource sharing/load sharing

 ◊ reliability

• Client–Server

• Peer–to–Peer

• Clustered Systems

Real–Time Systems

• Usually in embedded systems

• Well–defined fixed time constraints

• Hard real–time

 ◊ hard limits that must be met or the system

fails

• Soft real–time

 ◊ A missed deadline does not mean system

failure, but value of result decreases with time.

Example: Real time video

Computer System Structures

Memory

Computer System Structures

CPU
Disk

Controller

Memory

Controller

Video

Controller …

Computer System Structure

• CPU and devices execute concurrently

• Each controller is in charge of a one or more devices

of a similar type

• Device controller has some sort of local buffer that is

used to communicate data to and from the device

• Either CPU or device controller moves data to and

from main memory

• Interrupt used to indicate the operation is complete

Interrupts

• Suspends execution of the current program

 (saves current execution location)

• Transfers control to the interrupt routine

• Determines which controller generated the

interrupt

 ◊ Polling

 ◊ Vectored Interrupts

• Separate routines for each type of interrupt

Interrupts and Traps

• Interrupts are asynchronous

 ◊ They can happen at any time

• Traps are like interrupts, but are generated by the

program executing.

 ◊ Division by Zero, other exceptions

 ◊ Trap instruction to request a service from the

operating system (Friday’s lecture)

• Traps typically use the same mechanism as

interrupts for management.

I/O Paradigms

• Synchronous I/O

– control returns to program only after I/O is complete

– wait instruction or polling

– more efficient to give the CPU to another process

– Common in multi user systems

– If no process ready to run, the entire system waits.

• Asynchronous

– return directly to program

– program registers a notification routine to be notified

when the I/O is done (or asks later)

– Common in single user systems (Windows, Macintosh)

I/O Queues

• More than one process may request I/O from a

controller (e.g. more than one program reading a file)

• If the device is busy, then the I/O request is queued.

When the interrupt for that device occurs, the next

request is removed from the queue and given to the

device controller.

• In the example, when one block has been read for

one program, the next read request is passed to the

disk controller

