
ELEC 377 – 
Operating Systems 
Week 1 – Class 3 



Lab 

• First lab is on Monday. Partner up today! 

• Lab handout will be uploaded before tomorrow Morning 

• Prelab is due in paper form at the beginning of lab.  

• Please send me  

1. NetIDs of you and your partner 

2. NetID of repository to be used 

• Stay behind today if you don’t have a partner yet, so you can 
pair together.  



ELEC 377 

Last Class 
• Computer System Structure, Controllers 

• Interrupts & Traps 

• I/O structure and device queues. 

• Storage Structure & Caching 

• Hardware Protection 

• Dual Mode Operation 



ELEC 377 

Command Interpreter 

• User Interface 

• Accept commands and execute them 

• Scripting languages 

• Graphical Interface 

• Sometimes built into the system 

 ◊ Windows/Macintosh 

 ◊ Old Basic Systems (Pet, Apple 2) 

• Sometimes separate process 

 ◊ Unix shell 

 ◊ TSO Interpreter 

 ◊ MS-DOS COMMAND.COM 



ELEC 377 

System Services 

• All of the systems we have discussed have to be 

accessible to user and user programs 

• Have to have mechanisms to start programs, 

request I/O, communicate with other processes 

and with other computers 

• Error detection is required (hardware, user 

programs) 

 

• Other services needed are: 

 ◊ Resource Allocation 

 ◊ Accounting (time, disk space, pages, etc.) 

 ◊ Protection 



ELEC 377 

System Calls 

• Interface between a running process and the 
operating system 

 ◊ Generally implemented as an assembly 
language instruction (INT on INTEL, TRAP on 
PDP-11, ALine instruction on 68000) 

 ◊ Sometimes a function call (Amiga, NCR32000) 
 ◊ Programming languages provide libraries that 

wrap these instructions for easy access. 
 
• Like most function calls, they take arguments and 

return a result, it’s just the mechanism of the call 
that is different. 



ELEC 377 

System Calls 
• The system call is identified in one of two ways 
 ◊ One of the parameters (Dos) 
 ◊ Different instruction (Macintosh) 
 
• Three general ways are used to pass parameters 
 ◊ Use the registers of the CPU (Amiga, MS-DOS) 
 ◊ Store them in memory and pass the address of 

the memory in a register (Linux) 
 ◊ Pass them on the stack 
 
• Results are passed back in one of two ways: 
 ◊ On the stack 
 ◊ In a register 



ELEC 377 

Types of System Calls 

• Process Management 
 ◊ exit, abort, TSR,load, execute 
 ◊ manage child processes (attributes, wait, 

trace) 
 ◊ memory allocation, signals 
• File System Management 
 ◊ create,open,close,read,write,etc. 
• Device Management (e.g. serial speed) 
 ◊ request, release, read,write,attributes 
• Information Maintenance 
 ◊ time, date, file and device attributes 
• Communication 
 ◊ open,close,send,receive, status 



ELEC 377 

Communication Model 

• Interprocess Communication 

 ◊ Command interpreter -> child process 

 ◊ other processes need to communicate (Mac 

publish and subscribe) 

• Message Model 

 ◊ Operating system provides message passing 

facility. 

 ◊ In some cases, works over network (sockets) 

• Shared Memory Model 

 ◊ both processes have access to the same 

memory 

 ◊ small segments or all of processes memory 



ELEC 377 

Systems Program 

• System calls provide capability, but user must be 
able to invoke them. 

• Users view of system defined by system programs, 
not system calls. No system call to copy a file, but 
there is a system program. 

• Programs must be written that the user can invoke 
that make the system calls 

 ◊ Command interpreter 
 ◊ File System Management (copy, cp, mkdir, 

rmdir) 
 ◊ Info (date, time, disk space, list directory) 
 ◊ Editors 
 ◊ compilers, project support 
 ◊ communication (web browsers, ftp clients) 



ELEC 377 

System Structure 
• Simple Structure 
 ◊ Limited by hardware 
 ◊ MS-DOS - interfaces and functionality not well 

separated 
 ◊ Unix is two separate parts 
 – kernel system call interface (some 

 modularity) 
 – systems programs 
• Layered (OS/2) 
 ◊ Operating system divided into layers 
 ◊ Each layer only uses lower layers (no sibling 

calls) 
• Microkernel (Mach) 
 ◊ Minimal kernel (no consensus on what 

minimal is) 
 ◊ Move as much as possible into system 

programs 



ELEC 377 

Virtualization 

• Multiprocessing creates the illusion that there is 
more than one CPU 

 ◊ What if the OS provided an interface that 
looked exactly like a computer system (virtual 
CPU, devices, etc.) 

 ◊ IBM VM Operating system (each can run it’s 
own operating system such as CMS or Linux) 

 ◊ Requires more hardware support 
 ◊ Available on PCs (vmware/xen/kvm) 
 ◊ Limits sharing of resources 
 ◊ Perfect for OS research and development 
 ◊ Emulation (Sheepshaver/BOCHS) 



ELEC 377 

Virtual Machines 
• Portability 
 ◊ virtual machine provides same interface on all 

hardware 
• Security 
 ◊ sandbox 
• Like an OS 
 ◊ class loader (loads bytecode) 
 ◊ threads (sort of like virtual cpus) 
• Performance 
 ◊ Just in time compilation 
• Android 
 ◊ Linux Kernel 
 ◊ Dalvik virtual machine 



ELEC 377 

Dalvik virtual machine 

• Google’s Android Operating System 
• Runs apps 
• Written in Java and compiled in bytecode  

-> Converted from JVM to .class -> .dex 
• Open source 
• Register-Based 
• Performs optimizations to make it suited to 

embedded domains. 
• Just-in-time compiler (stores the programs in 

memory as byte code, then compiles it to machine 
code JIT) 

 
 
 
 
 
 
 
 
 
 
 
Source: http://code.google.com/p/dalvik/, 

http://www.netmite.com/android/mydroid/dalvik/docs/  

http://code.google.com/p/dalvik/
http://www.netmite.com/android/mydroid/dalvik/docs/


ELEC 377 

Virtual Machines (Java) 

• Portability 

 ◊ virtual machine provides same interface on all 

hardware 

• Security 

 ◊ sandbox 

• Like an OS 

 ◊ class loader 

 ◊ threads 

• Performance 

 ◊ Just in time compilation 



ELEC 377 

Design and Implementation 

• Mechanisms and Policies 
 ◊ Mechanisms are how 
 – Use timer to protect CPU 
 ◊ Policy is what will be done 
 – timer value (max time process can have CPU) 
 ◊ more flexibility 
• Implementation 
 ◊ language 
 ◊ efficiency 
 ◊ portability (Linux runs on many architectures) 
 ◊ monitoring capability 
 ◊ sysgen (customization of operating system) 



ELEC 377 

What is a process? 
• An operating system handles a variety of programs 

in a variety of ways 
 ◊ Batch systems handle jobs 
 ◊ Timesharing systems calls them user 

programs or tasks. 
• Job and process are used almost interchangeably. 
 
• A process is a program in execution, and all of the 

resources associated with that executing instance 
of the program 

 ◊ Memory 
 ◊ Program Counter 
 ◊ Open files, other devices, etc. 



ELEC 377 

Program Layout 

Text 

Segment 

Data 

Segment 

Stack 

Segment 

Executable Code 

Binary Machine Instructions 

Usually Shared 

Top Half is the Heap (malloc) 

– grows upwards 

Bottom Half is Global Vars 

Procedure Call/Return 

Local Variables 

– grows downwards 

Unallocated 



ELEC 377 

Process State 

New 

Ready Running 

Done 

Interrupt 

Dispatch 

Wait 

I/O or Event 

Completion 
I/O or Event 

Request 

Exit 

Started 



ELEC 377 

Process Control Block (PCB) 

• One allocated for each process 

and sometimes for each thread 

 

• Repository for information that 

varies from process to process 

 

• Some operating systems have 

a pre allocated number of them, 

that is an array (early UNIX) 
 

• Some permit dynamic 

allocation (Amiga OS) 

Queue Info 

Process State 

Process Id 

Program Counter 

Registers 

Memory Info 

Open File, etc. 

Accounting Info 

Schedule Info 



ELEC 377 

Context Switch 

Process 

1 

Process 2 

Save State into PCB 
Do Accounting 

Do OS Tasks 

Int or System Call 

Select Next Process 
Restore State from PCB 

Return from Int 



ELEC 

377 

Context Switch - Start 
P

ro
c
1
 

P
ro

c
2
 

Data & Code 

Stack 

Stack 

Data & Code 

CPU 

Memory Base 

Memory Lmt 

 StkPtr 

Pgm Ctr 

Other Regs 

Int Serv Rout 



ELEC 

377 

Context Switch - Int. or Sys Call 
P

ro
c
1
 

P
ro

c
2
 

Data & Code 

Stack 

Stack 

Data & Code 

CPU 

Memory Base 

Memory Lmt 

 StkPtr 

Pgm Ctr 

Other Regs 

Int Serv Rout 



ELEC 

377 

Context Switch - Save State 
P

ro
c
1
 

P
ro

c
2
 

Data & Code 

Stack 

Stack 

Data & Code 

CPU 

Memory Base 

Memory Lmt 

StkPtr 

Pgm Ctr 

Other Regs 

Int Serv Rout PCB1 

PCB2 



ELEC 

377 

Context Switch - Restore State 
P

ro
c
1
 

P
ro

c
2
 

Data & Code 

Stack 

Stack 

Data & Code 

CPU 

Memory Base 

Memory Lmt 

StkPtr 

Pgm Ctr 

Other Regs 

Int Serv Rout PCB1 

PCB2 



ELEC 

377 

Context Switch - Ret from Int or Trap 
P

ro
c
1
 

P
ro

c
2
 

Data & Code 

Stack 

Stack 

Data & Code 

CPU 

Memory Base 

Memory Lmt 

StkPtr 

Pgm Ctr 

Other Regs 

Int Serv Rout PCB1 

PCB2 



ELEC 377 

Context Switch 

• Depends on hardware 

 ◊ number of registers to save/restore 

 ◊ supporting hardware (memory management, etc). 

 ◊ hardware support 

 – banks of registers 

 – supporting hardware (cache, TLB, etc.) 

 

• System is not doing useful work 

 ◊ overhead of multitasking 

 ◊ 1 to 1000 micro seconds 


