ELEC 377 -
Operating Systems

Lab

First lab is on Monday. Partner up today!

Lab handout will be uploaded before tomorrow Morning

Prelab is due in paper form at the beginning of lab.

Please send me
1. NetIDs of you and your partner
2. NetlD of repository to be used

Stay behind today if you don’t have a partner yet, so you can
pair together.

Last Class

« Computer System Structure, Controllers
* |Interrupts & Traps

 1/O structure and device gueues.

« Storage Structure & Caching

« Hardware Protection

* Dual Mode Operation

ELEC 377

Command Interpreter

» User Interface
* Accept commands and execute them
« Scripting languages
« Graphical Interface
« Sometimes built into the system

¢ Windows/Macintosh

¢ Old Basic Systems (Pet, Apple 2)
* Sometimes separate process

¢ Unix shell

¢ TSO Interpreter

¢ MS-DOS COMMAND.COM

ELEC 377

System Services

 All of the systems we have discussed have to be
accessible to user and user programs

« Have to have mechanisms to start programs,
request I/O, communicate with other processes
and with other computers

* Error detection is required (hardware, user
programs)

* Other services needed are:
¢ Resource Allocation
¢ Accounting (time, disk space, pages, etc.)
¢ Protection

ELEC 377

System Calls

* Interface between a running process and the
operating system
¢ Generally implemented as an assembly
language instruction (INT on INTEL, TRAP on
PDP-11, ALine instruction on 68000)
¢ Sometimes a function call (Amiga, NCR32000)
¢ Programming languages provide libraries that
wrap these instructions for easy access.

 Like most function calls, they take arguments and
return a result, it's just the mechanism of the call
that is different.

ELEC 377

System Calls

* The system call is identified in one of two ways
¢ One of the parameters (Dos)
¢ Different instruction (Macintosh)

« Three general ways are used to pass parameters
¢ Use the registers of the CPU (Amiga, MS-DOS)
¢ Store them in memory and pass the address of
the memory in a register (Linux)
¢ Pass them on the stack

* Results are passed back in one of two ways:
¢ On the stack
¢ Inaregister

ELEC 377

Types of System Calls

* Process Management
¢ exit, abort, TSR,load, execute

¢ manage child processes (attributes, walit,

trace)
¢ memory allocation, signals
* File System Management
¢ create,open,close,read,write,etc.
« Device Management (e.g. serial speed)
¢ request, release, read,write,attributes
 Information Maintenance
¢ time, date, file and device attributes
« Communication
¢ open,close,send,receive, status

ELEC 377

Communication Model

* Interprocess Communication
¢ Command interpreter -> child process
¢ other processes need to communicate (Mac
publish and subscribe)
 Message Model
¢ Operating system provides message passing
facility.
¢ In some cases, works over network (sockets)
« Shared Memory Model
¢ both processes have access to the same
memory
¢ small segments or all of processes memory

ELEC 377

Systems Program

« System calls provide capability, but user must be
able to invoke them.

« Users view of system defined by system programs,
not system calls. No system call to copy a file, but
there Is a system program.

* Programs must be written that the user can invoke
that make the system calls
¢ Command interpreter
¢ File System Management (copy, cp, mkdir,
rmdir)
¢ Info (date, time, disk space, list directory)
¢ Editors
¢ compilers, project support
¢ communication (web browsers, ftp clients)

ELEC 377

System Structure

« Simple Structure
¢ Limited by hardware
¢ MS-DOS - interfaces and functionality not well
separated
¢ Unix Is two separate parts
— kernel system call interface (some
modularity)
— systems programs
« Layered (OS/2)
¢ Operating system divided into layers
O |)Each layer only uses lower layers (no sibling
calls
* Microkernel (Mach)
¢ Minimal kernel (no consensus on what
minimal is)
¢ Move as much as possible into system
eLec sprograms

Virtualization

* Multiprocessing creates the illusion that there is
more than one CPU
¢ What if the OS provided an interface that
looked exactly like a computer system (virtual
CPU, devices, etc.)
¢ IBM VM Operating system (each can run it’s
own operating system such as CMS or Linux)
Requires more hardware support
Avallable on PCs (vmware/xen/kvm)
Limits sharing of resources
Perfect for OS research and development
Emulation (Sheepshaver/BOCHS)

SO

ELEC 377

Virtual Machines

« Portability
¢ virtual machine provides same interface on all
hardware
« Security
¢ sandbox
* Like an OS
¢ class loader (loads bytecode)
¢ threads (sort of like virtual cpus)
« Performance
¢ Just in time compilation
* Android
¢ Linux Kernel
¢ Dalvik virtual machine

ELEC 377

Dalvik virtual machine

« Google’s Android Operating System
* Runs apps
« Written in Java and compiled in bytecode

-> Converted from JVM to .class -> .dex

 Open source

* Register-Based

« Performs optimizations to make it suited to
embedded domains.

« Just-in-time compiler (stores the programs in
memory as byte code, then compiles it to machine
code JIT)

ELEC 377

http://code.google.com/p/dalvik/
http://www.netmite.com/android/mydroid/dalvik/docs/

Virtual Machines (Java)

* Portability
¢ virtual machine provides same interface on all
hardware
« Security
¢ sandbox
* Like an OS
¢ class loader
¢ threads
« Performance
¢ Just in time compilation

ELEC 377

Design and Implementation

« Mechanisms and Policies
¢ Mechanisms are how
— Use timer to protect CPU
¢ Policy is what will be done
— timer value (max time process can have CPU)
¢ more flexibility
* Implementation
language
efficiency
portability (Linux runs on many architectures)
monitoring capability
sysgen (customization of operating system)

SO

ELEC 377

What Is a process?

* An operating system handles a variety of programs
In a variety of ways
¢ Batch systems handle jobs
¢ Timesharing systems calls them user
programs or tasks.

« Job and process are used almost interchangeably.

« Aprocess is a program in execution, and all of the
resources associated with that executing instance
of the program
¢ Memory
¢ Program Counter
¢ Open files, other devices, etc.

ELEC 377

Program Layout

Procedure Call/Return Stack
Local Variables Segment
— grows downwards

Unallocated

Top Half is the Heap (malloc)
— grows upwards
Bottom Half is Global Vars

Executable Code

Binary Machine Instructions
Usually Shared

ELEC 377

Process State

Started

Interrupt

>

Dispatch

/O or Event
Completion

/O or Event
Request

ELEC 377

Process Control Block (PCB)

* One allocated for each process
and sometimes for each thread

* Repository for information that
varies from process to process

« Some operating systems have
a pre allocated number of them,
that is an array (early UNIX)

« Some permit dynamic
allocation (Amiga OS)

ELEC 377

Context Switch

Process Process 2

1 l Int or System Call

v

Save State into PCB
Do Accounting

Do OS Tasks

Select Next Process
Restore Staite from PCB

Return from Int @

ELEC 377

Context Switch - Start

Data & Code

Data & Code
e

- Int Serv Rout

Context Switch - Int. or Sys Call

ELEC
- N"777

CPU

Stack

> Data & Code

Stack

Data & Code
]

Int Serv Rout

Context Switch - Save State

Stack

CPU

> Data & Code

Stack

Data & Code

Em——

Int Serv Rout

ELEC
- N"777

Context Switch - Restore State

Data & Code

Stack

Data & Code

Int Serv Rout

ELEC
- N"777

Context Switch - Ret from Int or Tra

.
o
CPU A
Data & Code
[
Stack
.
 |E
(@)
N
Data & Code
e

\PCB

Int Serv Rout

ELEC
- N"777

Context Switch

* Depends on hardware
¢ number of registers to save/restore
¢ supporting hardware (memory management, etc).
¢ hardware support
— banks of registers
— supporting hardware (cache, TLB, etc.)

e System is not doing useful work
¢ overhead of multitasking
¢ 1to 1000 micro seconds

ELEC 377

