
ELEC 377 –
Operating Systems
Week 2 – Class 1

ELEC 377 - Operating Systems

Last Week

• Computer System Structure

• Interrupts, Traps, I/O Queues

• C language

• Storage Structure (Main Memory, Secondary,

Cache)

• Hardware Protection – System Modes

• Operating System is interrupt driven

• System Calls

ELEC 377 - Operating Systems

Labs

• Lab 1 is on the Website, prelab is due at

beginning of lab

ELEC 377 - Operating Systems

What is a process?

• An operating system handles a variety of programs

in a variety of ways

◊ Batch systems handle jobs

◊ Timesharing systems calls them user programs or

tasks.

• Job and process are used almost interchangeably.

• A process is a program in execution, and all of the

resources associated with that executing instance of

the program

◊ Memory

◊ Program Counter

◊ Open files, other devices, etc.

ELEC 377 - Operating Systems

Program Layout

Text

Segmen

t

Data

Segmen

t

Stack

Segmen

t

Executable Code

Binary Machine Instructions

Usually Shared

Top Half is the Heap (malloc)

– grows upwards

Bottom Half is Global Vars

Procedure Call/Return

Local Variables

– grows downwards

Unallocated

ELEC 377 - Operating Systems

Process State

New

Ready Running

Done

Interrupt

Dispatch

Wait

I/O or Event

Completion
I/O or Event

Request

Exit

Started

ELEC 377 - Operating Systems

Process Control Block

• One allocated for each process

and sometimes for each thread

• Repository for information that

varies from process to process

• Some operating systems have a

pre allocated number of them.

i.e. an array (early UNIX)

• Some permit dynamic allocation

(Amiga OS)

Queue Info

Process State

Process Id

Program Counter

Registers

Memory Info

Open File, etc.

Accounting Info

Schedule Info

ELEC 377 - Operating Systems

Context Switch

• Depends on hardware

◊ number of registers to save/restore

◊ supporting hardware (memory management, etc).

◊ hardware support

 – banks of registers

 – multiple supporting hardware (cache, TLB,

etc.)

• System is not doing useful work

◊ overhead of multitasking

◊ 1 to 1000 micro seconds

ELEC 377 - Operating Systems

Scheduling Queues

• Process may be on more than one queue at a time

• Job Queue (all jobs)

◊ easy way to find status of any particular job

• Ready Queue - all process ready to run

• Device Queues - all processes waiting for I/O

• Suspend Queue – processes that have been

suspended.

• As processes change state, issue system calls, are

interrupted, they move between the queues.

 ◊ queues are used to keep track of the processes

ELEC 377 - Operating Systems

Scheduling Queues

CPU
Done

Ready

I/O Queue I/O I/O Req

Timer

Create Child Child Created

Wait
Interrupt

or Event

ELEC 377 - Operating Systems

Types of Processes

• I/O Bound (more time in I/O)

◊ Mostly I/O

◊ Interactive processes (editors, chat, web)

◊ High priority

• CPU bound(more time in Computations)

◊ A lot of computation

◊ Scientific programs

◊ 3D games

◊ Low priority

• Many programs change over time

◊ Periods where I/O bound - reading/writing data

◊ Periods of CPU bound - calculating

◊ Compilers

ELEC 377 - Operating Systems

Scheduling

• Scheduler has to choose the next job to run

◊ short term scheduler (into CPU)

◊ process chosen will last until interrupt, system call

or timer expires (short term)

◊ simple, low penalty for mistake

• In batch systems, long term scheduler chooses

which job to load into memory from the job pool

◊ longer term decision, high penalty for mistake

◊ more sophisticated algorithms

◊ controls balance of multiprogramming

ELEC 377 - Operating Systems

Medium Term Scheduler

• In interactive systems (Unix, Windows, MacOS),

medium term scheduler to swap inactive tasks in

and out of memory

◊ partially executed processes may be removed

from memory and later restored

◊ In older unix systems (i.e. PDP-11), may be

necessary to increase size of memory partition for

process.

ELEC 377 - Operating Systems

Process Creation

• Almost as many ways to create a process as there

are operating systems!!

• Usually a parent–child relationship

• Parent process creates one or more child processes

• Parent usually has some sort of control over child

• Unix - first user level process is called init

◊ starts daemon processes (network servers, printer

servers, etc.)

◊ terminal login processes

• Terminal login processes create shell processes when

users log in

• Shells create user processes as children

ELEC 377 - Operating Systems

Process Creation

• Resource Sharing

◊ Parent and children share all resources

◊ Parent partitions resources to children (subset)

◊ Parent and child share no resources

• Execution possibilities

◊ parent is suspended and waits for children (DOS)

◊ parent continues to execute concurrently with

children (UNIX)

◊ some operating systems have both as separate

system calls.

ELEC 377 - Operating Systems

Process Creation

• Address possibilities

◊ Children and Parent share address space (threads,

linux clone())

◊ Child is copy (including open files) [UNIX]

◊ Child starts new program specified in system call

[VMS]

◊ Some operating systems have more than one of

these.

ELEC 377 - Operating Systems

Process Termination
• Process asks the operating system to exit or abort

◊ Parent informed of exit status

◊ process resources are recovered by operating system

(otherwise a leak!!)

• Child may make an error (memory, privilege, etc.)

◊ OS aborts and informs parent

• Parent may abort the child

◊ Task assigned to child is no longer required (network service

for example)

◊ Parent is exiting

 – Some operating systems auto kill children, and

children’s children

 – some permit children to be inherited by parent of parent

[UNIX].

ELEC 377 - Operating Systems

Cooperating Processes

• Independent process cannot affect or be affected

by another process

• Cooperating processes can affect or be affected

by other processes

• Why provide cooperating processes?

ELEC 377 - Operating Systems

Example: Producer Consumer

• Producer generates information that is passed to a

consumer processes

• Unbounded buffer (assumes no bounds on size of

buffer used to share data)

◊ Only the consumer needs to wait

• Bounded buffer – there is a limit

◊ both produce and consumer may have to wait

• Example of Shared Memory Interprocess

communication

ELEC 377 - Operating Systems

Interprocess Communication

• Mechanism for processes to communicate and to

synchronize their actions

• Message System

◊ send(message), receive(message)

◊ need to establish a connection between processes

ELEC 377 - Operating Systems

Implementation Questions

• How are links established?

• Number of processes?

• Link Capacity

• Max Message Size (variable)

• Unidirectional/Bidirectional

• Message copied or pointer sent?

• Explicit/Implicit buffering

ELEC 377 - Operating Systems

Direct Communication

• Processes explicitly identify each other

◊ send(P,message)

◊ receive(Q, &message)

• addressing may be asymmetric

◊ send(P,message)

◊ receive(&id,&message)

ELEC 377 - Operating Systems

Direct Communication

• Advantages?

• Explicit

• Simple

• Disadvantages?

• Limited modularity of the resulting process

definitions

• Changing an ID of a process -> may need to

examine all other process definitions.

ELEC 377 - Operating Systems

Indirect Communication

• Mailboxes

◊ each mailbox has a unique id

◊ processes share the mailbox

• What if more than one process wants to receive a

message from a mailbox

◊ Only allow one process to read mailbox

◊ First come – first serve

◊ Multiple receivers

ELEC 377 - Operating Systems

Indirect Communication

• Advantages?

• More flexible

• No question who received the message from a

mailbox

• Disadvantages?

• Operating system must provide mailbox

mechanism

• Mailbox ownership may be passed -> could

result in multiple receivers.

ELEC 377 - Operating Systems

Synchronization

• Coordination between sending and receiving

process

◊ blocking vs non-blocking

◊ applies to both sender and receiver

◊ blocking is synchronous

◊ non-blocking is asynchronous

• if both send and receive are blocking ->

rendezvous

◊ Ada

ELEC 377 - Operating Systems

Buffering

• Zero Capacity -> rendezvous

• Queue of length 0

• Sender blocks until message is received

• Bounded -> sender may need to wait or abandon

the message

• If queue is full, sender blocks.

• Unbounded -> sender never needs to wait.

◊ resource intensive

◊ non-guaranteed delivery (IP/UDP)

