ELEC 377 -
Operating Systems

Last Week

 Computer System Structure

 Interrupts, Traps, I/O Queues

« C language

« Storage Structure (Main Memory, Secondary,
Cache)

« Hardware Protection — System Modes

« Operating System is interrupt driven

« System Calls

ELEC 377 - Operating Systems

Labs

 Lab 1is onthe Website, prelab is due at
beginning of lab

ELEC 377 - Operating Systems

What Is a process?

* An operating system handles a variety of programs
In a variety of ways

Batch systems handle jobs

Timesharing systems calls them user programs or
tasks.

« Job and process are used almost interchangeably.
« Aprocess is a program in execution, and all of the
resources associated with that executing instance of
the program

Memory

Program Counter

Open files, other devices, etc.

<SS <5

S > O

ELEC 377 - Operating Systems

Program Layout

Procedure Call/Return Stack

Local Variables Segmen

— grows downwards t
Unallocated

Top Half is the Heap (malloc)
— grows upwards
Bottom Half is Global Vars

Executable Code

Binary Machine Instructions
Usually Shared

ELEC 377 - Operating Systems

Process State

Interrupt

>
Dispatch

/O or Event
Completion

/O or Event
Request

ELEC 377 - Operating Systems

Process Control Block

* One allocated for each process
and sometimes for each thread

« Repository for information that
varies from process to process

« Some operating systems have a
pre allocated number of them.
l.e. an array (early UNIX)

« Some permit dynamic allocation
(Amiga OS)

ELEC 377 - Operating Systems

Context Switch

* Depends on hardware
¢ number of registers to save/restore
¢ supporting hardware (memory management, etc).
¢ hardware support
— banks of registers
— multiple supporting hardware (cache, TLB,
etc.)
« System is not doing useful work
¢ overhead of multitasking
¢ 1 to 1000 micro seconds

ELEC 377 - Operating Systems

Scheduling Queues

« Process may be on more than one queue at a time
« Job Queue (all jobs)
¢ easy way to find status of any particular job

« Ready Queue - all process ready to run

« Device Queues - all processes waiting for 1/O

« Suspend Queue — processes that have been
suspended.

« As processes change state, issue system calls, are

Interrupted, they move between the queues.
¢ queues are used to keep track of the processes

ELEC 377 - Operating Systems

Scheduling Queues

ELEC 377 - Operating Systems

Types of Processes

I/O Bound (more time in I/O)

Mostly I/O

Interactive processes (editors, chat, web)
High priority

CPU bound(more time in Computations)
A lot of computation

Scientific programs

3D games

Low priority

Many programs change over time
Periods where 1/O bound - reading/writing data
Periods of CPU bound - calculating
Compilers

ARG A IR I A GG C

ELEC 377 - Operating Systems

Scheduling

« Scheduler has to choose the next job to run

¢ short term scheduler (into CPU)

¢ process chosen will last until interrupt, system call
or timer expires (short term)

¢ simple, low penalty for mistake

 In batch systems, long term scheduler chooses

which job to load into memory from the job pool

longer term decision, high penalty for mistake

more sophisticated algorithms

controls balance of multiprogramming

S > O

ELEC 377 - Operating Systems

Medium Term Scheduler

 In interactive systems (Unix, Windows, MacQS),
medium term scheduler to swap inactive tasks in
and out of memory

¢ partially executed processes may be removed
from memory and later restored

¢ In older unix systems (i.e. PDP-11), may be
necessary to increase size of memory partition for
process.

ELEC 377 - Operating Systems

Process Creation

« Almost as many ways to create a process as there
are operating systems!!

« Usually a parent—child relationship

« Parent process creates one or more child processes

« Parent usually has some sort of control over child

Unix - first user level process is called init

¢ starts daemon processes (network servers, printer
servers, etc.)

¢ terminal login processes

« Terminal login processes create shell processes when
users log in

« Shells create user processes as children

ELEC 377 - Operating Systems

Process Creation

Resource Sharing

Parent and children share all resources

Parent partitions resources to children (subset)
Parent and child share no resources

Execution possibilities

parent is suspended and waits for children (DOS)
parent continues to execute concurrently with
children (UNIX)

¢ some operating systems have both as separate
system calls.

SO SO0 .

ELEC 377 - Operating Systems

Process Creation

« Address possibilities

¢ Children and Parent share address space (threads,
linux clone())

¢ Child is copy (including open files) [UNIX]

¢ Child starts new program specified in system call
[VMS]

¢ Some operating systems have more than one of
these.

ELEC 377 - Operating Systems

Process Termination

* Process asks the operating system to exit or abort
Parent informed of exit status
process resources are recovered by operating system
(otherwise a leak!!)
Child may make an error (memory, privilege, etc.)
OS aborts and informs parent
Parent may abort the child
Task assigned to child is no longer required (network service
for example)
¢ Parent is exiting
— Some operating systems auto kill children, and
children’s children
— some permit children to be inherited by parent of parent
[UNIX].

<SS <5

S 0> e

ELEC 377 - Operating Systems

Cooperating Processes

* Independent process cannot affect or be affected
by another process

« Cooperating processes can affect or be affected
by other processes

* Why provide cooperating processes?

ELEC 377 - Operating Systems

Example: Producer Consumer

* Producer generates information that is passed to a
consumer processes

« Unbounded buffer (assumes no bounds on size of
buffer used to share data)
¢ Only the consumer needs to walit

« Bounded buffer — there is a limit
¢ both produce and consumer may have to wait

« Example of Shared Memory Interprocess
communication

ELEC 377 - Operating Systems

Interprocess Communication

* Mechanism for processes to communicate and to
synchronize their actions

 Message System

¢ send(message), receive(message)
¢ need to establish a connection between processes

ELEC 377 - Operating Systems

Implementation Questions

 How are links established?
 Number of processes?

« Link Capacity

« Max Message Size (variable)

« Unidirectional/Bidirectional

« Message copied or pointer sent?
« Explicit/Implicit buffering

ELEC 377 - Operating Systems

Direct Communication

Processes explicitly identify each other
send(P,message)
receive(Q, &message)

<SS 5

addressing may be asymmetric
send(P,message)
receive(&id,&message)

<SS 5

ELEC 377 - Operating Systems

Direct Communication

« Advantages?
« Explicit
« Simple
* Disadvantages?
« Limited modularity of the resulting process
definitions
« Changing an ID of a process -> may need to
examine all other process definitions.

ELEC 377 - Operating Systems

Indirect Communication

Mailboxes
each mailbox has a unique id
processes share the mailbox

S > e

« What if more than one process wants to receive a
message from a mailbox

Only allow one process to read mailbox

First come — first serve

Multiple receivers

S O

ELEC 377 - Operating Systems

Indirect Communication

« Advantages?
* More flexible

* No question who received the message from a
mailbox

« Disadvantages?

« Operating system must provide mailbox
mechanism

« Mailbox ownership may be passed -> could
result in multiple receivers.

ELEC 377 - Operating Systems

Synchronization

« Coordination between sending and receiving
process

blocking vs non-blocking

applies to both sender and receiver

blocking is synchronous

non-blocking is asynchronous

S OO

* If both send and receive are blocking ->
rendezvous
¢ Ada

ELEC 377 - Operating Systems

Buffering

« Zero Capacity -> rendezvous
* Queue of length O
« Sender blocks until message is received

« Bounded -> sender may need to wait or abandon
the message
 If queue is full, sender blocks.

 Unbounded -> sender never needs to walit.

¢ resource intensive
¢ non-guaranteed delivery (IP/UDP)

ELEC 377 - Operating Systems

