
ELEC 377 – 
Operating System 
Week 2 – Class 2 



Last Class 

• Schedulers 

• Process Creation 

• Process Termination 

• Interprocess Communication 

• Message Passing 



Today 

• Finish Messaging 

• Indirect vs Direct Messaging 

• Threads 

• Synchronization 



ELEC 377 - Operating Systems 

Direct Communication 

• Processes explicitly identify each other 

◊ send(P,message) 

◊ receive(Q, &message) 

 

• addressing may be asymmetric 

◊ send(P,message) 

◊ receive(&id,&message) 

 

• Advantages? 

 

• Disadvantages? 



ELEC 377 - Operating Systems 

Direct Communication 

• Advantages? 

• Explicit 

• Simple 

• Disadvantages? 

• Limited modularity of the resulting process 

definitions 

• Changing an ID of a process -> may need to 

examine all other process definitions. 



ELEC 377 - Operating Systems 

Indirect Communication 

• Mailboxes 

◊ each mailbox has a unique id 

◊ processes share the mailbox 
 

• What if more than one process wants to receive a 

message from a mailbox 

◊ Only allow one process to read mailbox 

◊ First come – first serve 

◊ Multiple receivers 
 

• Advantages? 

• Disadvantages? 



ELEC 377 - Operating Systems 

Indirect Communication 

• Advantages? 

• More flexible 

• No question who received the message from a 

mailbox 

• Disadvantages? 

• Operating system must provide mailbox 

mechanism 

• Mailbox ownership may be passed -> could 

result in multiple receivers.  



ELEC 377 - Operating Systems 

Synchronization 

• Coordination between sending and receiving 

process 

◊ blocking vs non-blocking 

◊ applies to both sender and receiver 

◊ blocking is synchronous 

◊ non-blocking is asynchronous 

 

• if both send and receive are blocking -> 

rendezvous 

◊ Ada 



ELEC 377 - Operating Systems 

Buffering 

• Zero Capacity -> rendezvous  

• Queue of length 0 

• Sender blocks until message is received 

 

• Bounded -> sender may need to wait or abandon 

the message 

• If queue is full, sender blocks.  

 

• Unbounded -> sender never needs to wait. 

◊ resource intensive 

◊ non-guaranteed delivery (IP/UDP) 



Threads 
• Lightweight Processes 

• Thread id, stack, registers, program counter 

• Memory Management Costs in context switches 

• Traditional Process is a single thread 



Why use Threads? 

• Responsiveness 

• Resource Sharing 

• Economy 

• Utilization of Multiprocessor/Multicore Architectures 



User Threads 

• Earliest Threads 

• Threads implemented by a library (asm routines) 

• Operating System is unaware of the threads 

• Advantages 

• Fast, no system call, simple scheduling 

• Disadvantages 

• One thread blocks (I/O, IPC), all threads block 

• No Multiprocessor support 

• Examples: 

• Early pthreads, Turing 



Kernel Threads 

• Threads provided by the operating system 

• scheduled by the operating system 

• only difference is in context switch, and killing a given process 
kills all threads 

• Advantages 

• OS only blocks thread doing a system call 

• MP support 

• Disadvantage 

• not quite as fast as user level threads 

• Resource Intensive(each thread has a kernel entry) 

• Provided by most modern operating systems 



Thread Models 

• Programmer sees threads, calls library to create thread. 

• Library may create a kernel thread (if supported) 

• Library may manage as a user level thread 

 

• Mixture of user and kernel level threads possible 



Many to One 
• Only model on OS that do not support threads 

• All threads mapped to a single kernel thread (process) 



One to One 
• OS must support threads 

• Each program level thread gets a kernel thread 



Many to Many 
• Limit number of kernel threads 

• More program threads than kernel threads 

• Thread library maps program threads to kernel 



Threading Issues 

• Processes Level System Calls (fork, exec) 

• Thread Termination 

• Can a thread be terminated by another 

• Or does it have to terminate itself 

• Signals (user level interrupts) 

• Which thread gets the signal 

• Resource Intensive(each thread has a kernel entry) 

• Provided by most modern operating systems 

• Thread Pools 

• Thread Specific Data 



Recent Advances 

• Even threads as are too heavy weight for fine grained use multi 
core architectures. 

• Good for function/object level concurrency 

• But what about statement/block level concurrency? 

• Cost of thread construction/destruction 

• Thread Pool Pattern built into language 

• Mechanism to farm out blocks of code to worker threads 

• Grand Central dispatch (apple) 

• Java Implementation (Java 7) 



Thread Implementations 

• Linux clone() 

• Java threads 



Linux clone() & fork() 

• Linux is thread aware 

• Every process has a PCB 

• linux PCB is not a single level structure 

• pointers to other structures 



Linux clone() & fork() 
• fork() starts another process 

• Unix fork semantics - copy of 
parent process 



Linux clone() & fork() 
• clone() starts another thread 

• New PCB only 

• parameters determine what is copied 

• control over amount of shared 
information 

• share memory and not files 

• share files and not memory 

• Mixture of kernel and user threads 
supported 



Java Threads 

• Java threads 

• Like Ada, Turing: threads are part of the language 

• Some threads already defined (garbage collector) 

• Thread class 

• start() method 

• Two ways to define code that thread will run 

• Extend Thread class and override run() 

• Implement Runnable interface and provide run() 



Extend Thread 
 

class Foo extends Thread { 

    public void run() { 

        for (i = 0; i < 10; i++){ 

             System.out.println(“bar”); 

        } 

    } 

} 

••• 

  Foo bar = new Foo(); 

  Foo bat = new Foo(); 

••• 

  bar.start(); 

  bat.start(); 



Implement Runnable 

class Foo implements Runnable { 

    public void run() { 

        for (i = 0; i < 10; i++){ 

             System.out.println(“bar”); 

        } 

    } 

} 

••• 

  Foo bar = new Foo(); 

  Foo bat = new Foo(); 

 Thread a = new Thread(bar); 

 Thread b = new Thread(bat); 

••• 

  a.start(); 

  b.start(); 



JVM Virtual Machine 

• Java is compiled to byte codes (0…255) 

• Virtual machine is a hardware emulator 

• Just-in-time compilers 

• Threads implemented inside of the Virtual machine 

• Green Threads (user level threads) 

• Native Threads 

• Almost all of the thread implementations are available in 
different java implementations 

• Since I/O is provided by Java VM, don’t have to worry about one 
thread blocking the entire processes. 



Process Synchronization 

• Most Important Part of the Course and Text 

 

• Concurrent access to shared resources 

• data inconsistency 

• need some mechanism to control access to shared resources 



Synchronization Example 

Account Deposit 

    … 

    account = account + deposit 

 … 

 

 

Account Withdrawl 

 … 

 account = account - withdrawl 

 … 

 



Synchronization Example 

Account Deposit 
     … 
     mov account, reg1  
 // mov = get the memory value at the address and put it into 
 //register 
 add deposit, reg1 
 move reg1, account 
 … 
 
Account Withdrawl 
 … 
 mov account, reg1 
 sub withdrawl, reg1 
 move reg1, account 
 … 
 



Synchronization Example 
Account Deposit 

     … 

     mov account, reg1 

 add deposit, reg1 

 move reg1, account 

 … 

 

Account Withdrawl 

 … 

 mov account, reg1 

 sub withdrawl, reg1 

 move reg1, account 

 … 

 

+$ 100 

   $ 5,243 

1 $ 5,343 INT 

-$ 100 

    $ 5,243 

2 $ 5,143 INT 

3 $ 5,343 

4 $ 5,143 



Process Synchronization 

• Race Condition 

• Several process handle shared resources 

• Final value depends on who finishes first 

 

• To prevent race conditions, concurrent processes must be 
synchronized 

• train signaling problem (James Burke) 



Critical Sections 

Account Deposit 

    … 

    mov account, reg1  

 add deposit, reg1    critical section 

 move reg1, account   

 … 

 

Account Withdrawl 

 … 

 mov account, reg1 

 sub withdrawl, reg1   critical section 

 move reg1, account 

 … 


