ELEC 377 -
Operating System

Week 2 — Class 2

Last Class

* Schedulers
* Process Creation
* Process Termination

* Interprocess Communication
* Message Passing

Today

* Finish Messaging
* Indirect vs Direct Messaging

* Threads
* Synchronization

Direct Communication

Processes explicitly identify each other
send(P,message)
receive(Q, &message)

<SS <5

addressing may be asymmetric
send(P,message)
receive(&id,&message)

<SS <5

* Advantages?

» Disadvantages?

ELEC 377 - Operating Systems

Direct Communication

« Advantages?
« Explicit
* Simple

» Disadvantages?

* Limited modularity of the resulting process
definitions

* Changing an ID of a process -> may nheed to
examine all other process definitions.

ELEC 377 - Operating Systems

Indirect Communication

Mailboxes
each mailbox has a unique id
processes share the mailbox

S > e

* What if more than one process wants to receive a
message from a mailbox

Only allow one process to read mailbox

First come — first serve

Multiple recelvers

S O

» Advantages?
» Disadvantages?

ELEC 377 - Operating Systems

Indirect Communication

* Advantages?
* More flexible

* No question who received the message from a
mailbox

» Disadvantages?

» QOperating system must provide mailbox
mechanism

* Mailbox ownership may be passed -> could
result in multiple receivers.

ELEC 377 - Operating Systems

Synchronization

» Coordination between sending and receiving
process

blocking vs non-blocking

applies to both sender and receiver

blocking is synchronous

non-blocking Is asynchronous

S OO

* If both send and receive are blocking ->
rendezvous
¢ Ada

ELEC 377 - Operating Systems

Buffering

« Zero Capacity -> rendezvous
* Queue of length O
» Sender blocks until message is received

* Bounded -> sender may need to wait or abandon

the message
* |If queue is full, sender blocks.

 Unbounded -> sender never needs to walit.

¢ resource intensive
¢ non-guaranteed delivery (IP/UDP)

ELEC 377 - Operating Systems

Threads

* Lightweight Processes

* Thread id, stack, registers, program counter

* Memory Management Costs in context switches
* Traditional Process is a single thread

Data | Files Data Files

Stack Registers Stack Stack Stack

Registers|Registers|Registers

SR

Code

Why use Threads?

* Responsiveness

* Resource Sharing

* Economy

 Utilization of Multiprocessor/Multicore Architectures

User Threads

* Earliest Threads
* Threads implemented by a library (asm routines)
* Operating System is unaware of the threads
* Advantages
* Fast, no system call, simple scheduling
* Disadvantages
* One thread blocks (1/0, IPC), all threads block
* No Multiprocessor support
* Examples:
* Early pthreads, Turing

Kernel Threads

* Threads provided by the operating system
* scheduled by the operating system

* only difference is in context switch, and killing a given process
kills all threads

* Advantages

* OS only blocks thread doing a system call

* MP support
* Disadvantage

* not quite as fast as user level threads

* Resource Intensive(each thread has a kernel entry)
* Provided by most modern operating systems

Thread Models

* Programmer sees threads, calls library to create thread.
* Library may create a kernel thread (if supported)
* Library may manage as a user level thread

* Mixture of user and kernel level threads possible

Many to One

* Only model on OS that do not support threads
* All threads mapped to a single kernel thread (process)

progrm |} ||

\\//

Kernel

One to One

* OS must support threads
* Each program level thread gets a kernel thread

S A

Kernel

Many to Many

* Limit number of kernel threads

* More program threads than kernel threads
* Thread library maps program threads to kernel

A,
\\“//
Oy

Program

Threading Issues

* Processes Level System Calls (fork, exec)
* Thread Termination
* Can a thread be terminated by another
* Or does it have to terminate itself
 Signals (user level interrupts)
* Which thread gets the signal
* Resource Intensive(each thread has a kernel entry)
* Provided by most modern operating systems
* Thread Pools
* Thread Specific Data

Recent Advances

* Even threads as are too heavy weight for fine grained use multi
core architectures.

* Good for function/object level concurrency
* But what about statement/block level concurrency?
* Cost of thread construction/destruction
* Thread Pool Pattern built into language
* Mechanism to farm out blocks of code to worker threads
* Grand Central dispatch (apple)
* Java Implementation (Java 7)

Thread Implementations

* Linux clone()
* Java threads

Linux clone() & fork()

* Linux is thread aware

* Every process has a PCB
* linux PCB is not a single level structure
* pointers to other structures

PCB 1
ID & Queue
Open |[Memory
Files ||Info

Linux clone() & fork()

* fork() starts another process
* Unix fork semantics - copy of PCB 1

parent process ID & Queue

v

Open ||Memory
Files ||Info ah

Deep

oPY PCB 2
ID & Queue

%

Open ||Memory
Files ||Info "

Linux clone() & fork()

* clone() starts another thread
* New PCB only

PCB 1

* control over amount of shared ID & Queue

information / J,

* parameters determine what is copied

* share memory and not files Open || Memory
* share files and not memory Files Info
* Mixture of kernel and user threads \ T
supported
PCB 2
Shallow ID & Queue

Copy

Java Threads

* Java threads
* Like Ada, Turing: threads are part of the language
* Some threads already defined (garbage collector)
* Thread class
* start() method
* Two ways to define code that thread will run
* Extend Thread class and override run()
* Implement Runnable interface and provide run()

Extend Thread

class Foo extends Thread {
public void run() {
for (1=0;1<10; i++){
System.out.printin(“bar”);
}

}
}

Foo bar = new Foo();
Foo bat = new Foo();
bar.start();
bat.start();

Implement Runnable

class Foo implements Runnable {
public void run() {
for 1I=0;1<10; 1++){
System.out.printin(“bar”);
}
}
}

Foo bar = new Foo();
Foo bat = new Foo();
Thread a = new Thread(bar);
Thread b = new Thread(bat);
a.start();
b.start();

JVM Virtual Machine

* Java is compiled to byte codes (0...255)

* Virtual machine is a hardware emulator

* Just-in-time compilers

* Threads implemented inside of the Virtual machine
* Green Threads (user level threads)

° Native Threads

* Almost all of the thread implementations are available in
different java implementations

* Since I/0 is provided by Java VM, don’t have to worry about one
thread blocking the entire processes.

Process Synchronization

* Most Important Part of the Course and Text

* Concurrent access to shared resources
* data inconsistency
* need some mechanism to control access to shared resources

Synchronization Example

Account Deposit

account = account + deposit

Account Withdrawl

account = account - withdrawl

Synchronization Example

Account Deposit

mov account, regl
// mov = get the memory value at the address and put it into

//register
add deposit, regl
move regl, account

Account Withdrawl
mov account, regl

sub withdrawl, regl
move regl, account

Synchronization Example

Account Deposit

mov account, regl
add deposit, regl
move regl, account

Account Withdrawl

mov account, regl
sub withdrawl, regl
move regl, account

+$ 100

$ 5,243
1$5,343 INT
3% 5,343

-$ 100

$ 5,243
2% 5,143 INT

4% 5,143

Process Synchronization

* Race Condition
* Several process handle shared resources
* Final value depends on who finishes first

* To prevent race conditions, concurrent processes must be
synchronized

* train signaling problem (James Burke)

Critical Sections

Account Deposit

mov account, regl
add deposit, regl
move regl, account

Account Withdrawl

mov account, regl
sub withdrawl, regl
move regl, account

critical section

critical section

