
ELEC 377 –
Operating Systems
Week 2 – Class 3

ELEC 377 – Operating Systems

Last Class

• Direct vs Indirect Communication

• Synchronization & Buffering

• Threads

• Started Synchronization

ELEC 377 – Operating Systems

Next Week

• Quiz #1 on Tuesday

◊ Covers everything up to the end of Monday’s class

◊ Covers material from first week

ELEC 377 – Operating

Systems

Notes

• Labs:

You need a C reference Manual

- you will be programming in C in 4th year, and after

you graduate

- good investment

- Douglas Library - QA 76.73 .C

ELEC 377 – Operating Systems

Today

• Synchronization

ELEC 377 – Operating

Systems

Process Synchronization

• Most Important Part of the Course and Text

• Concurrent access to shared resources

◊ data inconsistency

◊ need some mechanism to control access to shared

resources

ELEC 377 – Operating

Systems

Synchronization Example

Account Deposit

 …

 account = account + deposit

 …

Account Withdrawl

 …

 account = account - withdrawl

 …

Synchronization Example
Account Deposit

 …

 mov account, reg1

 add deposit, reg1

 move reg1, account

 …

Account Withdrawl

 …

 mov account, reg1

 sub withdrawl, reg1

 move reg1, account

 …

+$ 100

 $ 5,243

1 $ 5,343 INT

-$ 100

 $ 5,243

2 $ 5,143 INT

3 $ 5,343

4 $ 5,143

ELEC 377 – Operating

Systems

Process Synchronization

• Race Condition

◊ Several process handle shared resources

◊ Final value depends on who finishes first

• To prevent race conditions, concurrent processes

must be synchronized

◊ train signaling problem

ELEC 377 – Operating

Systems

Critical Sections

Account Deposit

 …

 mov account, reg1

 add deposit, reg1 critical section

 move reg1, account

 …

Account Withdrawl

 …

 mov account, reg1

 sub withdrawl, reg1 critical section

 move reg1, account

 …

]

]

ELEC 377 – Operating

Systems

Critical Sections

• several processes competing for access to some

shared data

• The sections of code where the shared data is

accessed and/or modified is called a critical

section (each process has its own critical

section[s])

• Problem:

◊ Only one process is allowed in its critical section at

a time.

ELEC 377 – Operating Systems

Critical Sections - Requirements

• Mutual Exclusion - only one

• Progress - if there is no process in a critical

section, and more than one process want to enter

their critical section, then the selection of a

process cannot be postponed indefinitely

• Bounded Waiting - once a process is waiting, the

other processes can only enter and leave a

bounded number of times (no starvation)

ELEC 377 – Operating Systems

Critical Sections - General Model

do {

 entry section

 critical section

 exit section

 remainder section

} while (1);

ELEC 377 – Operating Systems

Two Processes - Algorithm 1

• Shared Variables

 int turn (initially 0)

• Process P
i

 do {

 while (turn != i);

 critical section

 turn = j;

 remainder section

 } while (1);

ELEC 377 – Operating Systems

Two Processes - Algorithm 1

• turn = 0, process 0 enters critical section

• process 1 is waiting to enter its critical section

• process 0 leaves critical section, turn = 1

• turn = 1, process 1 enters critical section

• process 1 leaves critical section, turn = 0

• Evaluation:

◊ Mutual Exclusion: only one process in critical section

at a time √

◊ bounded waiting - the processes alternate √

ELEC 377 – Operating Systems

Two Processes - Algorithm 1

• turn = 0, process 0 enters critical section

• process 1 is waiting to enter its critical section

• process 0 leaves critical section, turn = 1

• turn = 1, process 1 enters critical section

• process 1 leaves critical section, turn = 0

• Evaluation:

◊ Mutual Exclusion: only one process in critical section

at a time √

◊ bounded waiting - the processes alternate √

◊ progress - turn = 0, process 1 is waiting to enter its

critical section, process 0 is outside of the critical

section but in an infinite loop.

ELEC 377 – Operating Systems

Two Processes - Algorithm 2

• Shared Variables

 boolean flag[2] (both initially false)

• Process P
i

 do {

 flag[i] = true;

 while (flag[j]);

 critical section

 flag[i] = false;

 remainder section

 } while (1);

• flag is used to indicate if the process is waiting for or in the

critical section

ELEC 377 – Operating

Systems

Two Processes - Algorithm 2

• flag[0] = false, flag[1] = false

• process 0 - flag[0] = true, flag [1] = false , enter

critical section

• process 1 - flag [1] = true, flag[0] = true, start

looping

• process 0 - leave critical section, flag[0] = false

• process 1, flag[0] = false, stop looping, enter

critical section

• process 1 – leave critical section

Satisfies mutual exclusion √

ELEC 377 – Operating Systems

Two Processes - Algorithm 2

• flag[0] = false, flag[1] = false

• process 0 - flag[0] = true, flag [1] = false , enter

critical section

• process 1 - flag [1] = true, flag[0] = true, start

looping

• process 0 - leave critical section, flag[0] = false

• process 1, flag[0] = false, stop looping, enter

critical section

• process 1 – leave critical section

ELEC 377 – Operating

Systems

Two Processes - Algorithm 2

• flag[0] = false, flag[1] = false

• process 0 - flag[0] = true, **interrupt**

• process 1 - flag [1] = true, flag[0] = true, start

looping

• process 0 - flag[1] = true, start looping

• Both processes in infinite loop,

neither get to enter critical

section, therefore no progress

• Entry to critical section contains

a race condition

• Entry to critical section contains

a critical section

ELEC 377 – Operating Systems

Two Processes - Algorithm 3

• Combine Alg 1 and Alg 2

• Process P
i

 do {

 flag[i] = true;

 turn = j

 while (flag[j] and turn = j);

 critical section

 flag[i] = false;

 remainder section

 } while (1);

• Meets all three requirements - Peterson’s Solution

ELEC 377 – Operating

Systems

Two Processes - Algorithm 3

• flag[0] = false, flag[1] = false, turn = 0

• process 0 - flag[0] = true, turn = 1, flag[1] = false:

enter critical section

• process 1 - flag[1] = true, turn = 0, flag[0] = true:

start looping

• process 0 - exit critical section, flag[0] = false

• process 1 - flag[0] = false: enter critical section

ELEC 377 – Operating

Systems

Two Processes - Algorithm 3

• flag[0] = false, flag[1] = false, turn = 0

• process 0 - flag[0] = true, turn = 1, interrupt!!

• process 1 - flag[1] = true, turn = 0, flag[0] = true:

start looping

• process 0 flag[1] = true, but turn = 0: enter critical

section

ELEC 377 – Operating Systems

Two Processes - Algorithm 3

• flag[0] = false, flag[1] = false, turn = 0

• process 0 - flag[0] = true, interrupt!!

• process 1 - flag[1] = true, turn = 0, flag[0] = true: start

looping

• process 0 - turn = 1, flag[1] = true:

 start looping

• process 1 - flag[0] = true, but turn = 1: enter critical

section

• Mutual Exclusion, Progress, Bounded Waiting are all

satisfied!!!

•Works for 2 processes, how about 3 or more?

ELEC 377 – Operating Systems

• Not in Version 7 or 8 of Textbook (But we cover it

anyway)

• Based on pick a number in Bakery, Deli’s,

Government offices.

• Pick the next number (smallest number goes first)

• Problem: picking the number

• Numbers are monotonic increasing (1,2,3,3,4,5,5,…)

• numbers not unique

◊ tie goes process with lowest PID.

n Processes - Bakery Algorithm

ELEC 377 – Operating Systems

n Processes - Bakery Algorithm

do {

 choosing[i] = true;

 num[i] = max(num[0],..,num[n]) + 1

 choosing[i] = false;

 for (j = 0; j < n; j++){

 while(choosing[j]);

 while(num[j] != 0 &&

 ((num[j],j)<(num[i],i))) *

 }

 critical section

 num[i] = 0;

 remainder section

} while(1);

