ELEC 377 -
Operating Systems

Reminders

« 2"dsession of Lab 1 today
* Write up due 4PM Sept 27th

* Quiz #1 tomorrow

Last Class

Synchronization

Critical Sections and Race Conditions

Criteria for Solutions

2 Process Solution - 3 Algorithms

ELEC 377 — Operating Systems

Today

Synchronization

Bakery Algorithm

Hardware Support

Classic Problems

ELEC 377 — Operating Systems

Critical Sections - General Model

do {
entry section

critical section
exit section
remainder section

} while (1);

ELEC 377 — Operating Systems

n Processes - Bakery Algorithm

* Not in V8 of Textbook, but we are covering it
anyways

« Based on pick a number in Bakery, Deli’s,
Government offices.

* Pick the next number (smallest number goes first)

* Problem: picking the number
¢ real world physical number ticket — only one!!

e Race conditions in picking numbers, but the numbers
are monotonic increasing (1,2,3,3,4,5,5,...)

* numbers not always unique
¢ tie goes process with lowest PID.

ELEC 377 — Operating Systems

n Processes - Bakery Algorithm

do {

choosing[i] = true;

num|[i] = max(num|[0],..,num[n]) + 1;

choosing[i] = false;

for j =0;)<n; J++)}
while(choosing]j]);
while(num|j] = 0 &&

\ ((numfjL.)<(numfil,))); *

critical section
numli] = O;
remainder section
} while(1);

ELEC 377 — Operating Systems

Bakery Algorithm - Choosing

choosing|i] = true;
num|i] = max(num(O],..,num[n]) + 1;
choosing|i] = false;

« Remember: i Is the current process

¢ choosing for us is true when picking a number
¢ max function and addition not atomic

¢ Interrupts can happen here

ELEC 377 — Operating Systems

Bakery Algorithm - Choosin

choosing|i] = true;
num|i] = max(num(O],..,num[n]) + 1;
choosing|i] = false;

« What are we guaranteeing? (Case analysis)

Case 1:
process j is outside of critical section, outside of
entry routine (i.e. in its remainder section)

1 num[j] = 0, choosing]j] = false

1 If process | enters after us, then they will have a
higher ticket number than us

ELEC 377 — Operating Systems

Bakery Algorithm - Choosing

choosing|i] = true;
num|i] = max(num(O],..,num|[n]) + 1;
choosing|i] = false;

« What are we guaranteeing? (Case analysis)
Case 2:

process j is in critical section ahead of us
1 num[j] # 0, num[j] < numli], choosing[j] = false
1 when they leave the critical section, num|[j] =0

ELEC 377 — Operating Systems

Bakery Algorithm - Choosin

choosing|i] = true;
num|i] = max(num(O],..,num[n]) + 1;
choosing|i] = false;

« What are we guaranteeing? (Case analysis)
Case 3:
process | has completed choosing before us, has
lower number
1 num[j] # 0, num[j] < numli], choosing[j] = false
1 they will go ahead of us into the critical section
1 when they leave the critical section, num|j] =0

ELEC 377 — Operating Systems

Bakery Algorithm - Choosin

choosing|i] = true;
num|i] = max(num(O],..,num[n]) + 1;
choosing|i] = false;

« What are we guaranteeing? (Case analysis)
Case 4.
process | has completed choosing after us, has
higher number
1 num[j] # 0, num[j] > numli], choosing[j] = false
1 we go ahead of them, they wait for us as case 3

ELEC 377 — Operating Systems

Bakery Algorithm - Choosing

choosing|i] = true;
num|i] = max(num(O],..,num[n]) + 1;
choosing|i] = false;

« What are we guaranteeing? (Case analysis)
Case 5.
both our process and process | are choosing a
number at the same time, both finished
1 num[j] # 0, num[j] = numli], choosing[j] = false
1 lowest process goes ahead

ELEC 377 — Operating Systems

Bakery Algorithm - Choosin

choosing[i] = true;
num[i] = max(num[0],..,num[n]) + 1,
choosing[i] = false;
 What are we guaranteeing? (Case analysis)
Case 6:

process j is still choosing, so we don’t know what the
ticket number for j is.

1 It might be lower (interrupt happened after | chose a
number, but before we chose a number)

] It might be higher

] choosing[j] = true

Only case where we are unsure

ELEC 377 — Operating Systems

Bakery Algorithm - Choosin

choosing|i] = true;
num|i] = max(num(O],..,num[n]) + 1;
choosing|i] = false;

* Looking at other ticket numbers is not atomic
« S0 when we go to look at other processes’ ticket
numbers, we first check to see if the number is

stable
¢ choosing]j] = false;

¢ once choosing[j] = false, then their ticket number
can never be lower, it can only increase.
¢ If it changes, it must be greater than our ticket

ELEC BI;]/u QQQ\%S Systems

Nn Processes - Bakery Algorithm

for () =0;) <n; j++){
while(choosing(j]);
while(num|[j] '= 0 &&
((nump.))<(num(i],1))); //lempty
} // loop

* Look at each other process in turn (not atomic)

 Check each process in process id order (lowest
process id first)

« wait for them to choose, then check ticket number.

* Only go to next | if we are ahead of the current j.

 When we hit the end of the loop, we must be at the
front of the list

ELEC 377 — Operating Systems

Nn Processes - Bakery Algorithm

for J =0;)<n; J++)}
while(choosing(j]);
while(num|[j] '= 0 &&
((num[j].))<(numli].1)));

* Look at each other process in turn (not atomic)

 Check each process in process id order (lowest
process id first)

« wait for them to choose, then check ticket number.

* Only go to next | if we are ahead of the current j.

 When we hit the end of the loop, we must be at the
front of the list

ELEC 377 — Operating Systems

Today

e Synchronization
« Bakery Algorithm
» Hardware Support <<<<<<<

 Classic Problems

ELEC 377 — Operating Systems

Hardware Support

« Some hardware provides support for
synchronization

atomic instructions

cannot be interrupted
read-modify-write

single processor/multi processor

S O S O

Test and Set

read a boolean variable

set the boolean variable to true

atomic, If another process reads after this
Instruction starts, then the variable will be true.
Only one process can read the value false.

ELEC 377 — Operating Systems

S S > e

Test And Set — Use

do {
while(TestAndSet(lock));

critical section
lock = false;
remainder section
} while(1);

* Bounded walit not satisfied

ELEC 377 — Operating Systems

Hardware Support

« Swap
¢ exchange a value between a register and memory
¢ atomic
do {
key = true;
while(key == true) { Swap(lock,key); }
critical section
lock = false;
remainder section
} while(1);

 use swap to implement test and set
» Bounded wait still not satisfied

ELEC 377 — Operating Systems

Test And Set — Bounded Walit

do {
waiting[i] = true;
key = true;

while(waiting[i] && key)
key = TestAndSet(lock);
waiting|i] = false
critical section
j=(+1) % n
while(j!=i && 'waiting[j]) j=(j+1)%n;
If(i ==) lock = false
else waiting[j] = false;
remainder section
} while(1);

ELEC 377 — Operating Systems

Test And Set — Bounded Wait

 pass the key approach

* When exiting the critical section, don’t release the
lock, pass the lock to someone who is already
waiting

 pass the lock in increasing process id order (with
wrap around)

* If one process leaves critical section and gets back
to entry point before a context switch, must walit
for all other processes that are waiting

« If waiting, each other process may execute critical
section at most once

ELEC 377 — Operating Systems

Bounded Walit - Entry

waiting[i] = true;
key = true;
while(waiting[i] && key)
key = TestAndSet(lock);
waiting[i] = false

« waiting flags (initially all false)

 lock initially false

* Process i indicates waiting with wait flag

* Once in the critical section no longer waiting

* loop on waiting flag and on lock

» Enter critical section if we get the lock or if it is passed to
us - key may never be false for us

ELEC 377 — Operating Systems

Bounded Walit - Exit

j=(+1) % n

while(j!'=i && 'waiting[j]) j=(j+1)%n;
If(i ==) lock = false

else waiting[j] = false;

* We don’t immediately set the lock to false (we don't
release the lock).

 Instead we pass the key to the next waiting
process (in process id order).

* Iterate through processes looking for processes
with waiting flag true. If we reach ourselves, no
processes waiting.

ELEC 377 — Operating Systems

Today

Synchronization

Hardware Support

Semaphores <<<<<<L<L<L

Classic Problems

ELEC 377 — Operating Systems

Semaphores

 All of the solutions to date do not generalize easily
« Busy Waiting - waste of CPU cycles (spinlock)

» General Solution - Semaphore

¢ Integer variable

¢ two atomic operations (wait and signal)

wait(S) P(S)
while (S < 0);
S--;

signal(S) V(S)

S++;

ELEC 377 — Operating Systems

Semaphore - Critical Sections

semaphore mutex = 1

do {
walit(mutex);
critical section
signal(mutex)

remainder section
} while(1);

ELEC 377 — Operating Systems

Semaphore - Blocking Solution

typedef struct {

Int value;

struct process * L;
} semaphore;
wait(S):

S.value--;

If (S.value < 0){
add process to S.L
block();}

signal(S):

S.value ++;

If (S.value <=0) {
get P from S.L
wakeup(P) }

ELEC 377 — Operating Systems

Semaphores

« Semaphores generalize easily

« Can make one line wait for another.
 Must be careful of deadlock and starvation
¢ deadlock

wait(S) wait(T)
wait(T) wait(S)
signal(S) signal(T)
signal(T) signal(S)

¢ starvation — signal is never made, process never
wakes up

ELEC 377 — Operating Systems

Two Types of Semaphores

« Counting Semaphores

* Binary Semaphores

* Must be careful of deadlock and starvation

O Simpler
can used two binary semaphores to implement a
counting semaphore.

ELEC 377 — Operating Systems

Today

e Synchronization
« Hardware Support
« Semaphores

 Classic Problems <LLLLL LKL

ELEC 377 — Operating Systems

Bounded Buffer

« Shared Data:
semaphore full, empty, mutex;
initially:
full = 0; empty = n; mutex = 1,

n is size of buffer:

ELEC 377 — Operating Systems

Bounded Buffer - Producer

walit(empty);
wait(mutex);

... add to buffer ...
signal(mutex);,
signal(full);

* Note that mutex is symmetric, empty and full
semaphores are not

ELEC 377 — Operating Systems

Bounded Buffer - Consumer

wait(full);
wait(mutex);

... remove from buffer ...
signal(mutex);
signal(empty);

* the empty semaphore contains the number of
empty spaces left in the buffer

 the full semaphore contains the number of items
In the buffer

ELEC 377 — Operating Systems

