
ELEC 377 –
Operating Systems
Week 3 – Class 1

Reminders

• 2nd session of Lab 1 today

• Write up due 4PM Sept 27th

• Quiz #1 tomorrow

ELEC 377 – Operating Systems

Last Class

• Synchronization

• Critical Sections and Race Conditions

• Criteria for Solutions

• 2 Process Solution - 3 Algorithms

ELEC 377 – Operating Systems

Today

• Synchronization

• Bakery Algorithm

• Hardware Support

• Classic Problems

ELEC 377 – Operating Systems

Critical Sections - General Model

do {

 entry section

 critical section

 exit section

 remainder section

} while (1);

ELEC 377 – Operating Systems

• Not in V8 of Textbook, but we are covering it

anyways

• Based on pick a number in Bakery, Deli’s,

Government offices.

• Pick the next number (smallest number goes first)

• Problem: picking the number

 ◊ real world physical number ticket – only one!!

• Race conditions in picking numbers, but the numbers

are monotonic increasing (1,2,3,3,4,5,5,…)

• numbers not always unique

 ◊ tie goes process with lowest PID.

n Processes - Bakery Algorithm

ELEC 377 – Operating Systems

n Processes - Bakery Algorithm

do {
 choosing[i] = true;
 num[i] = max(num[0],..,num[n]) + 1;
 choosing[i] = false;
 for (j = 0; j < n; j++){
 while(choosing[j]);
 while(num[j] != 0 &&
 ((num[j],j)<(num[i],i))); *
 }
 critical section
 num[i] = 0;
 remainder section
} while(1);

ELEC 377 – Operating Systems

Bakery Algorithm - Choosing

 choosing[i] = true;

 num[i] = max(num[0],..,num[n]) + 1;

 choosing[i] = false;

• Remember: i is the current process

◊ choosing for us is true when picking a number

◊ max function and addition not atomic

◊ interrupts can happen here

ELEC 377 – Operating Systems

Bakery Algorithm - Choosing

 choosing[i] = true;

 num[i] = max(num[0],..,num[n]) + 1;

 choosing[i] = false;

• What are we guaranteeing? (Case analysis)

Case 1:

 process j is outside of critical section, outside of

entry routine (i.e. in its remainder section)

 num[j] = 0, choosing[j] = false

 if process j enters after us, then they will have a

higher ticket number than us

ELEC 377 – Operating Systems

Bakery Algorithm - Choosing

 choosing[i] = true;

 num[i] = max(num[0],..,num[n]) + 1;

 choosing[i] = false;

• What are we guaranteeing? (Case analysis)

Case 2:

 process j is in critical section ahead of us

 num[j] ≠ 0, num[j] < num[i], choosing[j] = false

 when they leave the critical section, num[j] = 0

ELEC 377 – Operating Systems

Bakery Algorithm - Choosing

 choosing[i] = true;

 num[i] = max(num[0],..,num[n]) + 1;

 choosing[i] = false;

• What are we guaranteeing? (Case analysis)

Case 3:

 process j has completed choosing before us, has

lower number

 num[j] ≠ 0, num[j] < num[i], choosing[j] = false

 they will go ahead of us into the critical section

 when they leave the critical section, num[j] = 0

ELEC 377 – Operating Systems

Bakery Algorithm - Choosing

 choosing[i] = true;

 num[i] = max(num[0],..,num[n]) + 1;

 choosing[i] = false;

• What are we guaranteeing? (Case analysis)

Case 4:

 process j has completed choosing after us, has

higher number

 num[j] ≠ 0, num[j] > num[i], choosing[j] = false

 we go ahead of them, they wait for us as case 3

ELEC 377 – Operating Systems

Bakery Algorithm - Choosing

 choosing[i] = true;

 num[i] = max(num[0],..,num[n]) + 1;

 choosing[i] = false;

• What are we guaranteeing? (Case analysis)

Case 5:

 both our process and process j are choosing a

number at the same time, both finished

 num[j] ≠ 0, num[j] = num[i], choosing[j] = false

 lowest process goes ahead

ELEC 377 – Operating Systems

Bakery Algorithm - Choosing

 choosing[i] = true;

 num[i] = max(num[0],..,num[n]) + 1;

 choosing[i] = false;

• What are we guaranteeing? (Case analysis)

Case 6:

 process j is still choosing, so we don’t know what the

ticket number for j is.

 It might be lower (interrupt happened after j chose a

number, but before we chose a number)

 It might be higher

 choosing[j] = true

Only case where we are unsure

ELEC 377 – Operating Systems

Bakery Algorithm - Choosing

 choosing[i] = true;

 num[i] = max(num[0],..,num[n]) + 1;

 choosing[i] = false;

• Looking at other ticket numbers is not atomic

• So when we go to look at other processes’ ticket

numbers, we first check to see if the number is

stable
◊ choosing[j] = false;

◊ once choosing[j] = false, then their ticket number

can never be lower, it can only increase.

◊ If it changes, it must be greater than our ticket

number

ELEC 377 – Operating Systems

n Processes - Bakery Algorithm

 for (j = 0; j < n; j++){

 while(choosing[j]);

 while(num[j] != 0 &&

 ((num[j],j)<(num[i],i))); //empty

 } // loop

• Look at each other process in turn (not atomic)

• Check each process in process id order (lowest

process id first)

• wait for them to choose, then check ticket number.

• Only go to next j if we are ahead of the current j.

• When we hit the end of the loop, we must be at the

front of the list

ELEC 377 – Operating Systems

n Processes - Bakery Algorithm

 for (j = 0; j < n; j++){

 while(choosing[j]);

 while(num[j] != 0 &&

 ((num[j],j)<(num[i],i)));

 }

• Look at each other process in turn (not atomic)

• Check each process in process id order (lowest

process id first)

• wait for them to choose, then check ticket number.

• Only go to next j if we are ahead of the current j.

• When we hit the end of the loop, we must be at the

front of the list

ELEC 377 – Operating Systems

Today

• Synchronization

• Bakery Algorithm

• Hardware Support <<<<<<<

• Classic Problems

ELEC 377 – Operating Systems

Hardware Support

• Some hardware provides support for

synchronization

◊ atomic instructions

◊ cannot be interrupted

◊ read-modify-write

◊ single processor/multi processor

• Test and Set

◊ read a boolean variable

◊ set the boolean variable to true

◊ atomic, if another process reads after this

instruction starts, then the variable will be true.

Only one process can read the value false.

ELEC 377 – Operating Systems

Test And Set – Use

do {

 while(TestAndSet(lock));

 critical section

 lock = false;

 remainder section

} while(1);

• Bounded wait not satisfied

ELEC 377 – Operating Systems

Hardware Support

• Swap

◊ exchange a value between a register and memory

◊ atomic

do {

 key = true;

 while(key == true) { Swap(lock,key); }

 critical section

 lock = false;

 remainder section

} while(1);

• use swap to implement test and set

• Bounded wait still not satisfied

ELEC 377 – Operating Systems

Test And Set – Bounded Wait

do {

 waiting[i] = true;

 key = true;

 while(waiting[i] && key)

 key = TestAndSet(lock);

 waiting[i] = false

 critical section

 j = (i+1) % n

 while(j!=i && !waiting[j]) j=(j+i)%n;

 if(i == j) lock = false

 else waiting[j] = false;

 remainder section

} while(1);

ELEC 377 – Operating Systems

Test And Set – Bounded Wait

• pass the key approach

• When exiting the critical section, don’t release the

lock, pass the lock to someone who is already

waiting

• pass the lock in increasing process id order (with

wrap around)

• if one process leaves critical section and gets back

to entry point before a context switch, must wait

for all other processes that are waiting

• If waiting, each other process may execute critical

section at most once

ELEC 377 – Operating Systems

Bounded Wait - Entry

 waiting[i] = true;

 key = true;

 while(waiting[i] && key)

 key = TestAndSet(lock);

 waiting[i] = false

• waiting flags (initially all false)

• lock initially false

• Process i indicates waiting with wait flag

• Once in the critical section no longer waiting

• loop on waiting flag and on lock

• Enter critical section if we get the lock or if it is passed to

us - key may never be false for us

ELEC 377 – Operating Systems

 j = (i+1) % n

 while(j!=i && !waiting[j]) j=(j+i)%n;

 if(i == j) lock = false

 else waiting[j] = false;

• We don’t immediately set the lock to false (we don’t

release the lock).

• Instead we pass the key to the next waiting

process (in process id order).

• Iterate through processes looking for processes

with waiting flag true. If we reach ourselves, no

processes waiting.

Bounded Wait - Exit

ELEC 377 – Operating Systems

Today

• Synchronization

• Hardware Support

• Semaphores <<<<<<<<

• Classic Problems

ELEC 377 – Operating Systems

Semaphores

• All of the solutions to date do not generalize easily
• Busy Waiting - waste of CPU cycles (spinlock)
• General Solution - Semaphore
◊ integer variable
◊ two atomic operations (wait and signal)

wait(S) P(S)
 while (S ≤ 0);
 S--;

signal(S) V(S)
 S++;

ELEC 377 – Operating Systems

Semaphore - Critical Sections

semaphore mutex = 1

do {

 wait(mutex);

 critical section

 signal(mutex)

 remainder section

} while(1);

ELEC 377 – Operating Systems

Semaphore - Blocking Solution

typedef struct {

 int value;

 struct process * L;

} semaphore;

wait(S):

 S.value--;

 if (S.value < 0){

 add process to S.L

 block();}

signal(S):

 S.value ++;

 if (S.value <= 0) {

 get P from S.L

 wakeup(P) }

ELEC 377 – Operating Systems

Semaphores

• Semaphores generalize easily

• Can make one line wait for another.

• Must be careful of deadlock and starvation

◊ deadlock

 wait(S) wait(T)

 wait(T) wait(S)

 … …

 signal(S) signal(T)

 signal(T) signal(S)

◊ starvation – signal is never made, process never

wakes up

ELEC 377 – Operating Systems

Two Types of Semaphores

• Counting Semaphores

• Binary Semaphores

• Must be careful of deadlock and starvation

◊ Simpler

 can used two binary semaphores to implement a

counting semaphore.

ELEC 377 – Operating Systems

Today

• Synchronization

• Hardware Support

• Semaphores

• Classic Problems <<<<<<<<

ELEC 377 – Operating Systems

Bounded Buffer

• Shared Data:

 semaphore full, empty, mutex;

 initially:

 full = 0; empty = n; mutex = 1;

 n is size of buffer;

ELEC 377 – Operating Systems

Bounded Buffer - Producer

 wait(empty);

 wait(mutex);

 ... add to buffer ...

 signal(mutex);

 signal(full);

• Note that mutex is symmetric, empty and full

semaphores are not

ELEC 377 – Operating Systems

Bounded Buffer - Consumer

 wait(full);

 wait(mutex);

 ... remove from buffer ...

 signal(mutex);

 signal(empty);

• the empty semaphore contains the number of

empty spaces left in the buffer

• the full semaphore contains the number of items

in the buffer

