ELEC 377 -
Operating System

Last Class

n process solution - Bakery Algorithm

Hardware Support

Semaphores

Classic Problems

ELEC 377 — Operating Systems

Semaphores

« Semaphores generalize easily
« Limited Number of processes (> 1)
¢ allocate tape drives for example

Semaphore TapeDrives = 5; /[5 tape

drives

wait(TapeDrives)
... use a tape drive
signal(TapeDrives)

ELEC 377 — Operating Systems

Semaphores Other Uses

« Can Make one line wait for another.
S=0
what happens?

< 5

PO P1

wait(S) signal(S)

ELEC 377 — Operating Systems

Today

« Semaphores
e Classic Problems <<<L<<L<L<L<

ELEC 377 — Operating Systems

Bounded Buffer

« Shared Data:
semaphore full, empty, mutex;
initially:
full = 0; empty = n; mutex = 1,

n is size of buffer:

ELEC 377 — Operating Systems

Bounded Buffer - Producer

wait(empty);
walit(mutex);
... add to buffer ...
signal(mutex);
signal(full);

* Note that mutex is symmetric, empty and full
semaphores are not

ELEC 377 — Operating Systems

Bounded Buffer - Consumer

wait(full);
walit(mutex);
... remove from buffer ...
signal(mutex);
signal(empty);

« the empty semaphore contains the number of emp
spaces left in the buffer

 the full semaphore contains the number of items in
the buffer

ELEC 377 — Operating Systems

Bounded Buffer

» Synchronized Counting of Items (producer/consumer)
Sempaphore empty = <num of queue entries>;
Sempaphore full = 0;

Sempaphore Mutex = 1,

Producer Consumer
wait(empty) wait(full)
wait(mutex) wait(mutex)
signal(mutex) signal(mutex)
signal(full) signal(empty)

ELEC 377 — Operating Systems

Bounded Buffer

» Synchronized Counting of Items (producer/consumer)
Sempaphore empty = <num of queue entries>;
Sempaphore full = 0;

Sempaphore Mutex = 1,

Producer Consumer
wait(empty) wait(full)
wait(mutex) wait(mutex)
signal(mutex) signal(mutex)
signal(full) signal(empty)

ELEC 377 — Operating Systems

Bounded Buffer

» Synchronized Counting of Items (producer/consumer)
Sempaphore empty = <num of queue entries>;
Sempaphore full = 0;

Sempaphore Mutex = 1,

Producer Consumer
wait(empty) wait(full)
wait(mutex) wait(mutex)
signal(mutex) signal(mutex)
signal(full) signal(empty)

ELEC 377 — Operating Systems

Bounded Buffer

» Synchronized Counting of Items (producer/consumer)
Sempaphore empty = <num of queue entries>;
Sempaphore full = 0;

Sempaphore Mutex = 1,

Producer Consumer
wait(empty) wait(full)
wait(mutex) wait(mutex)
signal(mutex) signal(mutex)
signal(full) signal(empty)

ELEC 377 — Operating Systems

Bounded Buffer example

First Last

Empty =3 Full=0

ELEC 377 — Operating Systems

Bounded Buffer example

2345
6

| 1

Last First

Empty =2 Full =1

ELEC 377 — Operating Systems

Bounded Buffer example

.

L ast First

Empty =1 Full = 2

ELEC 377 — Operating Systems

Bounded Buffer example

]

Last First

Empty=2 Full=1 1

ELEC 377 — Operating Systems

Bounded Buffer example

|

First Last

Empty=1 Full =2 1

ELEC 377 — Operating Systems

Bounded Buffer example

56

]

First Last

Empty =0 Full = 3 1

ELEC 377 — Operating Systems

Bounded Buffer example

]

First Last

Empty =0 Full = 3 1
5

ELEC 377 — Operating Systems

Bounded Buffer example

]

First Last

Empty=1 Full=2 12
5

ELEC 377 — Operating Systems

Bounded Buffer example

I

First Last

Empty =0 Full = 3 12

ELEC 377 — Operating Systems

Bounded Buffer example

[

Last First

Empty=1 Full=2 123

ELEC 377 — Operating Systems

Bounded Buffer example

|]

Last First

Empty=2 Full=1 123

ELEC 377 — Operating Systems

Bounded Buffer example

]

LastFirst

Empty =3 Full=0

NG
SN

ELEC 377 — Operating Systems

Bounded Buffer example

|

First Last

Empty =2 Full =1

NG
SN

ELEC 377 — Operating Systems

Bounded Buffer example

]

LastFirst

Empty =3 Full=0

ELEC 377 — Operating Systems

Reader Writer Problem

* Only one process is allowed to write to a resource
at a time

* More than one process is allowed to read from the
resource at atime

* If a process is writing, no process can read

* If a process is reading, a writer must walit

ELEC 377 — Operating Systems

Reader Writer

« Shared Data:
semaphore mutex,wrt;
Int readcount

initially:
mutex = 1: wrt = 1; readcount =0

ELEC 377 — Operating Systems

Reader Writer - Writer

wait(wrt);
... read modify write ...

signal(wrt);

ELEC 377 — Operating Systems

Reader Writer - Reader

wait(mutex);

readcount ++;

If (readcount ==1) wait(wrt);
signal(mutex);

... read ...

wait(mutex);
readcount --;
If (readcount == 0) signal(wrt);
signal(mutex);

ELEC 377 — Operating Systems

Reader/Writer

« General Synchronization between processes
writer reader

wait(mutex)

readcount++

if (readcount == 1)

wait(wrt)

wait(wrt) signal(mutex)
...write data... ...read data...
signal(wrt) wait(mutex)

readcount --;

if (readcount == 0)

signal(wrt)

signal(mutex)

ELEC 377 — Operating Systems

Reader/Writer

« General Synchronization between processes
writer reader

wait(mutex)

readcount++

if (readcount == 1)

wait(wrt)

wait(wrt) signal(mutex)
...write data... ...read data...
signal(wrt) wait(mutex)

readcount --;

if (readcount == 0)

signal(wrt)

signal(mutex)

ELEC 377 — Operating Systems

Reader Writer

« General Synchronization between processes
writer reader

wait(mutex)

readcount++

if (readcount == 1)

wait(wrt)

wait(wrt) signal(mutex)
...write data... ...read data...
signal(wrt) wait(mutex)

readcount --;

if (readcount == 0)

signal(wrt)

signal(mutex)

ELEC 377 — Operating Systems

Dining Philosophers

* N philosophers eating rice

* N chopsticks (1 between
each philosopher)

« Each philosopher needs
two chopsticks to eat

* Philosophers alternate
between eating and
thinking....

ELEC 377 — Operating Systems

Dining Philosophers

ELEC 377 — Operating

Dining Philosophers

ELEC 377 — Operating

Dining Philosophers

—

ELEC 377 — Operating

Dining Philosophers

walit .

ELEC 377 — Operating

Dining Philosophers

walit .

ELEC 377 — Operating

Dining Philosophers

ELEC 377 — Operating

Dining Philosophers

Sempaphore chopstick|[n]

ELEC 377 — Operating Systems

Dining Philosophers

Sempaphore chopstick[n]; // each init to 1

philosopher(int i){
do {
wait(chopstick]i]);
wait(chopstick[(i+1)%n];
/[eat
signal(chopstick]i]);
signal(chopstick][(i+1)%n];
/] think
} while(1)
}

ELEC 377 — Operating Systems

