
ELEC 377 –
Operating System
Week 3 – Class 3

ELEC 377 – Operating Systems

Last Class

• Classic Problems

ELEC 377 – Operating

Systems

Today

• Semaphores

• Classic Problems

• Critical Regions

• Monitors

• Java synchronized keyword

ELEC 377 – Operating Systems

Dining Philosophers

• N philosphers eating

rice

• N chopsticks (1

between each

philospher)

• Each philosopher

needs two chopsticks

to eat

• Philosphers alternate

between eating and

thinking....

ELEC 377 – Operating Systems

Dining Philosophers

Sempaphore chopstick[n]; // each init to 1

philosopher(int i){

 do {

 if (i % 2 == 0){ // % integer representation of the remainder

 wait(chopstick[i]);

 wait(chopstick[(i+1)%n];

 } else {

 wait(chopstick[(i+1)%n];

 wait(chopstick[i]);

 }

 // eat

 signal(chopstick[i]);

 signal(chopstick[(i+1)%n];

 // think

 } while(1)

}

ELEC 377 – Operating Systems

Critical Regions

• Semaphores bracket critical sections

• start/end exchanged between cooperating processes

• Simple synchronization has wait(S) in one process

and signal(S) in another process.

◊ better than primitive synchronization

 ◊ Still susceptible to programming errors

• Critical Region is a higher level construct that

removes some of the programmer overhead

 ◊ Higher level construct -> language support!!

ELEC 377 – Operating Systems

Critical Regions

• shared variable is used

 shared T v;

example:

 shared int v1;

 struct xyzzy {

 char * a;

 int b;

 }

 shared struct xyzzy v2;

ELEC 377 – Operating Systems

Critical Regions

• special language construct to access shared

variable

 region v when B do S;

◊ B is a boolean condition

◊ S is one or more statements

example:

 region v1 when (true) do v1++;

 region v2 when (v2.b > 0) {

 printf(“%s\n”,v2.a);

 b--;

 }

ELEC 377 – Operating Systems

Critical Regions

• Each process has equivalent statement for v but

with (possibly) different B and S

◊ Only one S can be in execution at a time.

• If B is false, process waits until B is true, then

enters S (competes with other processes)

• When a process leaves critical region, all other

process that are waiting re-evaluate their B. Before

B was false, now it may be true. (or it may have

become false!!!)

ELEC 377 – Operating

Systems

Today

• Semaphores

• Classic Problems

• Critical Regions

• Monitors <<<<<<<<

• Java synchronized keyword

ELEC 377 – Operating Systems

Monitors

• high level synchronization construct

◊ allows safe sharing of an abstract data type

 monitor name {

 shared variables

 procedure P1(…){

 …

 }

 procedure P2(…){

 …

 }

 {

 init code

 }

 }

ELEC 377 – Operating Systems

Shared Data

Inits

Procs

Entry Queue

Monitors

ELEC 377 – Operating Systems

Monitors

• Processes may want to wait for another process

◊ e.g. a buffer might be full!

• Condition variable

◊ declared in shared variable section, private to

monitor

 condition x,y;

◊ Two operations, wait and signal

◊ x.wait() means go to sleep and yield lock on monitor

◊ x.signal() means wake up one process if there is a

process that did an x.wait(). A process that did a

y.wait() is not affected. If no process are waiting on

condition x, then no effect.

ELEC 377 – Operating Systems

Shared Data

Inits

Procs

Entry Queue

Monitors

x Queue

y Queue

ELEC 377 – Operating Systems

Signal()

• When a process executes x.signal() and another

process is waiting on condition X, what happens?

• Several cases

◊ First process (signaler) goes to sleep until second

process exits (releases lock) or waits on another

condition

◊ First process continues until it leaves or waits on a

condition and then signaled process continues

ELEC 377 – Operating Systems

Producer Consumer

 monitor buffer {

 condition full, empty;

 procedure add(char X){

 if (buffer is full) full.wait();

 …

 empty.signal();

 }

 char remove(){

 if (buffer is empty) empty.wait();

 …

 full.signal();

 }

 …

 }

ELEC 377 – Operating Systems

Monitors

• Prioritized waiting

◊ x.wait(c) – c is an integer expressions

◊ gives priority on queue for X

• System correctness

◊ easier than semaphores

◊ use monitors to guard shared resources, but not put

shared resources inside monitor (may be more than

one)

◊ must still make sure that process make correct monitor

calls incorrect sequence

◊ concurrent processing is tricky!!

ELEC 377 – Operating Systems

The two meanings of wait and signal

• Two versions of wait and signal

• Semaphores

Semaphore mutex = 1

wait (mutex)

...

signal(mutex)

• Monitors

Condition x

x.wait()

...

x.signal()

ELEC 377 – Operating Systems

The two meanings of wait and signal

• Semaphores

 integer variable

user visible value influences operation

• Monitor Condition

 Queue variable

 No user visible value

– wait in a semaphore may go right through

(value > 0)

– wait in a monitor always means stop

ELEC 377 – Operating Systems

Today

• Semaphores

• Classic Problems

• Critical Regions

• Monitors

• Java synchronized keyword <<<<<<<

ELEC 377 – Operating Systems

Java Synchronized

• The java synchronized keyword provides high level

synchronization

• Two cases:

◊ synchronized methods – similar to monitors

◊ synchronized blocks – similar to critical regions

ELEC 377 – Operating Systems

Java Synchronized Methods

• synchronized keyword is applied to methods

 class buffer{

 …

 public synchronized boolean putX(int x)

 …

 }

• the instance of the class is the shared entity

 buffer a = new buffer();

 buffer b = new buffer();

two processes may not call a.putX() at the same time

they may call a.putX() and b.putX() at the same time

ELEC 377 – Operating Systems

Java Synchronized Blocks

• closer to Critical Regions

 …

 synchronized (x) {

 …

 }

 …

• x must be an object pointer (not integral type)

◊ lock is on object given by x

◊ other threads with similar synchronized blocks may have

different variables, but bound to same object

◊ Java only provides a single lock on an object, so a

synchronized block with a given object and a synchronized

method in class of the object are mutually exclusive

ELEC 377 – Operating Systems

Java Wait() and Notify()

• Yet a third wait, but only two signals

• like wait() and signal() in monitors, but only one

(implicit) condition variable.

• Producer/Consumer problem as given uses two

condition variables. Can be done with one

condition variable.

