
ELEC 377 –
Operating Systems
Week 4 – Class 1

Last

Class

Last Class

• Finished Semaphores

• Classic Problems

• Critical Regions

• Monitors

ELEC 377 – Operating Systems

Today

• Regions & Monitors

• Java Synchronization

• Scheduling

ELEC 377 – Operating Systems

ELEC 377 – Operating Systems

Critical Regions

• shared variable is used

 shared T v;

example:

 shared int v1;

 struct xyzzy {

 char * a;

 int b;

 }

 shared struct xyzzy v2;

ELEC 377 – Operating Systems

Critical Regions

• special language construct to access shared

variable

 region v when B do S;

◊ B is a boolean condition

◊ S is one or more statements

example:

 region v1 when (true) do v1++;

 region v2 when (v2.b > 0) {

 printf(“%s\n”,v2.a);

 b--;

 }

ELEC 377 – Operating Systems

Monitors

• high level synchronization construct

◊ allows safe sharing of an abstract data type

 monitor Accout {

 float balance;

 procedure deposit(float amt){

 balace += amt;

 }

 procedure withdrawl(float amt){

 balance -= amt;

 }

 {

 balance = 0.0;

 }

 }

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

Shared Data

Inits

Procs

Entry Queue

Monitors

ELEC 377 – Operating Systems

Monitors

• Processes may want to wait for another process

◊ e.g. a buffer might be full!

• Condition variable

◊ declared in shared variable section, private to

monitor

 condition x,y;

◊ Two operations, wait and signal

◊ x.wait() means go to sleep and yield lock on monitor

◊ x.signal() means wake up one process if there is a

process that did an x.wait(). A process that did a

y.wait() is not affected. If no process are waiting on

condition x, then no effect.

ELEC 377 – Operating Systems

Shared Data

Inits

Procs

Entry Queue

Monitors

x Queue

y Queue

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

Signal()

• When a process executes x.signal() and another

process is waiting on condition X, what happens?

• Several cases

◊ First process (signaler) goes to sleep until second

process exits (releases lock) or waits on another

condition

◊ First process continues until it leaves or waits on a

condition and then signaled process continues

ELEC 377 – Operating Systems ELEC 377 – Operating Systms

Producer Consumer

 monitor buffer {

 condition full, empty;

 procedure addX(char X){

 if (buffer is full) full.wait();

 …

 empty.signal();

 }

 procedure getX(char &X){

 if (buffer is empty) empty.wait();

 …

 full.signal();

 }

 …

 }

ELEC 377 – Operating Systems

Monitors

• Prioritized waiting

◊ x.wait(c) – c is an integer expressions

◊ gives priority on queue for X

• System correctness

◊ easier than semaphores

◊ use monitors to guard shared resources, but not

put shared resources inside monitor (may be more

than one)

◊ must still make sure that process makes correct

monitor calls

◊ concurrent processing is tricky!!

ELEC 377 – Operating Systems

The two meanings of wait and signal

• Two versions of wait and signal

• Semaphores

 Semaphore mutex = 1

 wait (mutex)

 ...

 signal(mutex)

• Monitors

 Condition x

 x.wait()

 ...

 x.signal()

ELEC 377 – Operating Systems

The two meanings of wait and signal

• Semaphores

 integer variable

user visible value influences operation

• Monitor Condition

 Queue variable

 No user visible value

– wait in a semaphore may go right through

 (value > 0)

– wait in a monitor always means stop

ELEC 377 – Operating Systems

Today

• Monitors

• Java Synchronization <<<<<<

• Scheduling

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

Java Synchronized

• The java synchronized keyword provides high level

synchronization

• Two cases:

◊ synchronized methods – similar to monitors

◊ synchronized blocks – similar to critical regions

ELEC 377 – Operating Systems

Java Synchronized Methods

• synchronized keyword is applied to methods

 class buffer{

 …

 public synchronized boolean putX(int x)

 …

 }

• the instance of the class is the shared entity

 buffer a = new buffer();

 buffer b = new buffer();

 two processes may not call a.putX() at the same time

 they may call a.putX() and b.putX() at the same time

ELEC 377 – Operating Systems

Java Synchronized Blocks

• closer to Critical Regions

 …

 synchronized (x) {

 …

 }

 …

• x must be an object pointer (not integral type)

 ◊ lock is on object given by x

 ◊ other threads with similar synchronized blocks may

have different variables, but bound to same object

 ◊ Java only provides a single lock on an object, so a

synchronized block

1) with a given object and

2) a synchronized method in class of the object

are mutually exclusive

ELEC 377 – Operating Systems

Java Wait() and Notify()

• Yet a third wait, but only two signals

• like wait() and signal() in monitors, but only one

(implicit) condition variable.

• Producer/Consumer problem as given uses two

condition variables. Can be done with one condition

variable.

ELEC 377 – Operating Systems

Java Produce Consumer
class buffer{

 vars for buffer

 public synchronized void putX(int x){

 while(buffer is full){wait();}

 …add x to buffer…

 notify();

 }

 public synchronized int getX(){

 int retval;

 while(buffer is empty){wait();}

 …remove from buffer into retval…

 notify();

 return retval;

 }

}

ELEC 377 – Operating Systems

Today

• Monitors

• Java Synchronization

• Scheduling <<<<<<

ELEC 377 – Operating Systems

Scheduling – Basic Concepts

• Goal: Maximum CPU utilization

◊ give CPU to another process while other is waiting

I/O

• Processes proceed in bursts

◊ Do some work

◊ Do some I/O

◊ repeat

ELEC 377 – Operating Systems

Processing Bursts

• Most CPU Bursts are short

◊ Extensively studied

◊ The longer the burst, the less likely it is to occur

◊ Hyper exponential distribution

◊ Parameters of curve depend on OS, Applications

Length

Freq

ELEC 377 – Operating Systems

CPU Scheduler

• Selects processes from ready queue and allocates

to CPU

• When?

1 Processes goes to wait state (I/O, event wait, etc.)

2 Process is interrupted

3 Process goes from wait to ready (I/O completes)

4 Process Terminates

◊ 1 and 4 are nonpreemptive

◊ Others are preemptive

ELEC 377 – Operating Systems

Dispatcher

• Dispatcher is the part of the scheduler responsible

for performing the context switch and resuming the

process

• Dispatch Latency

◊ time for dispatcher to run

ELEC 377 – Operating Systems

Scheduling Criteria

• CPU utilization – keep CPU as busy as possible

• Throughput – # of jobs done per time unit

• Turnaround Time – Time of submission to Time of

Completion

• Waiting Time – amount of time in ready queue

• Response Time – submit time to time of first output

request

ELEC 377 – Operating Systems

First Come First Served (FCFS)
• Simple, easy to implement

◊ ready queue is a first-in-first-out (FIFO) queue

• Average Waiting time may be long

◊ Short Bursty I/O do not have priority over CPU

intensive jobs

◊ variance in wait time/throughput is large, depends

on order of jobs

◊ Convoy effect, all I/O jobs end up behind CPU jobs

which hog the CPU

• Tends to make poor response in interactive

systems

◊ used only in simple OS or in systems with very

little variance in CPU burst times

ELEC 377 – Operating Systems

Convoy Effect

• Tends to make poor response in interactive

systems

◊ used only in simple OS or in systems with very

little variance in CPU burst times

• How do we handle high variance in CPU Burst

times?

1 2 3 4 5

ELEC 377 – Operating Systems

Shortest Job First (SJR)

• scheduling ordered on the length of the next CPU

burst

• Nonpreemptive - process gets entire slot

• Preemptive - after interrupt, if a new process with a

CPU burst time less than remaining time, then

current process looses CPU (Shortest Remaining

Time First [SRTF])

• SJF is optimal for minimal waiting time

ELEC 377 – Operating Systems

Estimating CPU Burst Times

• Use length of last CPU burst – exponential

average

t
n
 = current CPU burst time


0

 = initial estimate


n
 = predicted for current burst


n+1

 = prediction for next CPU burst

 = weighting parameter


n+1

 =  t
n
 + (1 - ) 

n

 = 0  
n+1

= 
0
 (initial estimate) never changes

 = 1  
n+1

= t
n

 (last time slice) only used

ELEC 377 – Operating Systems

Estimating CPU Burst Times

• Use length of last CPU burst – exponential

average


0

 = 10

t
0
 = 5, t

1
 = 5, t

2
 = 5, t

3
 = 8, t

4
 = 8

 = 0.3


1
 = 0.3 * 5 + (0.7) * 10 = 8.5


2
 = 0.3 * 5 + (0.7) * 8.5 = 7.45


3
 = 0.3 * 5 + (0.7) * 7.45 = 6.715


2
 = 0.3 * 8 + (0.7) * 6.715 = 7.1005


2
 = 0.3 * 8 + (0.7) * 7.1005 = 7.37035

ELEC 377 – Operating Systems

Estimating CPU Burst Times
• predicted time always lags real time

• If process spends a reasonable period of time at a

constant burst range then estimate approaches

current burst time

• what is reasonable? how to tune?

◊  is the tuning parameter

◊  is low, then past behaviour has heavier weight,

estimate is slower to change

 - ignore transient behaviour

◊  is high, then last time slice has heavier weight,

estimate is faster to change

 - faster to adapt to changes

ELEC 377 – Operating Systems

Priority Scheduling

• Each process has a priority

• CPU goes to process with highest priority

◊ ready queue is sorted based on priority

◊ same priority is handled FCFS

◊ preemptive / nonpreemptive

◊ internal/external

• SJF is priority scheduling with priority based on

length of next CPU burst.

ELEC 377 – Operating Systems

• Similar to FCFS, but add preemption.

• Designed for Time Sharing Systems

• Time slice (quantum) -> maximum time process

gets to run

• if the quantum (q) is large -> FCFS

• if q is small, then appears to be multiple slower

CPU’s (processor sharing).

• context switching is not free

◊ shorter q, more context switches to complete a

single CPU burst for a given process

◊ q must be large with respect to context switch time

◊ 80% of CPU bursts should be shorter than q.

Round Robin (RR)

ELEC 377 – Operating Systems

Round Robin – Quantum Length

Length

Freq

ELEC 377 – Operating Systems

multilevel Queues

highest priority

 System Processes

 Interactive Processes

 Interactive Editing Processes

 Batch Processes

 Experimental Processes

lowest priority

ELEC 377 – Operating Systems

Multi Level Queues

• Each queue has it’s own scheduling algorithm

• Interactive (foreground) - Round Robin

• Scheduling must be done between the queues

◊ usually fixed priority preemptive scheduling

(starvation)

◊ time slice between queues (portion time between

queues)

• In simplest form, processes are assigned a queue

and remain there until completion

• Higher priority queues may require more money,

or more status

ELEC 377 – Operating Systems

Multi Level Feedback

• processes move between queues

• when doing I/O, processes move to higher priority

queues

• When CPU intensive, processes move to lower

priority queues

• Give higher priority queues smaller quanta

(preemptive)

• Processes that use entire quanta are too high

priority, bump down to lower priority queue

• Processes that don’t use entire quanta are too low

priority and moved up to a higher priority queue

ELEC 377 – Operating Systems

Multi Level Feedback

• parameters

◊ number of queues

◊ the scheduling algorithm for each queue

◊ when to upgrade a process

◊ when to downgrade a process

◊ how to choose the initial queue

• most complex algorithm, is approximated using

priorities

ELEC 377 – Operating Systems

Scheduling Algorithms
• FIFO - non preemptive

• SJF - non-preemptive (exponential average)

• SRTF - preemptive

• priority - preemptive/non-preemptive

◊ aging

• Round Robin - preemptive (quantum)

• Multiple queues

◊ multiple scheduling algorithms

◊ mutli level feedback

ELEC 377 – Operating Systems

Multiple Processors

• Scheduling is more complex

◊ usually a common queue for all processors (load

sharing)

◊ sometimes hardware limitations (I/O)

◊ actual parallel system, have to watch access to

kernel data structures such as PCBs and Queues.

• Homogenous/memory sharing processors

• Symmetric / Asymmetric

ELEC 377 – Operating Systems

Real Time Scheduling

• Hard Real Time

◊ guaranteed completion times

◊ resource reservation

◊ dedicated hardware

• Soft Real Time

◊ performance concerns

◊ multimedia

◊ priority scheduling required

◊ low dispatch latency required!!

◊ kernel preemption points

◊ kernel preempt able

ELEC 377 – Operating Systems

Algorithm Evaluation

• Earlier, we talked about criteria

◊ decide on relative importance of each criteria

• CPU utilization – keep CPU as busy as possible

• Throughput – # of jobs done per time unit

• Turnaround Time – Time of submission to Time of

Completion

• Waiting Time – amount of time in ready queue

• Response Time – submit time to time of first output

request

ELEC 377 – Operating Systems

Algorithm Evaluation

• Deterministic Modeling

◊ take an example representative workload

 - a set of cpu burst times, usually more than one

burst time for each process

◊ calculate each of the criteria for each of the

algorithms (wait time, turn around time, etc.)

◊ in general, makes too many assumptions

ELEC 377 – Operating Systems

Algorithm Evaluation

• Deterministic Modeling
◊ Gantt charts
P1 - 6ms, P2 - 8ms, P3 - 7 ms, P4 - 3 ms
What is total & average waiting time with FIFO

scheduling.

P1

0 6

P2

14

P3 P4

21 24

• Waiting time:

 - P1 - 0ms, P2 - 6ms, P3 - 14 ms, P4 - 21 ms =

41ms

• average = 10.25ms

ELEC 377 – Operating Systems

Algorithm Evaluation

• Same processes

P1 - 6ms, P2 - 8ms, P3 - 7 ms, P4 - 3 ms

What is total & average waiting time with SJF

scheduling.

P1

0 3

P2

9

P3 P4

16 24

• Waiting time:

 - P1 - 3ms, P2 - 16 ms, P3 - 9 ms, P4 - 0 ms =

28ms

• average = 7ms

ELEC 377 – Operating Systems

Algorithm Evaluation

• Simulation

◊ simulate all of the relevant parts of the system

◊ difficult to link various parts of the model

◊ trace tapes (generated from real systems)

• Implementation

◊ try it and find out.

◊ expensive

ELEC 377 – Operating Systems

Scheduling Examples

P1 - 10 ms, P2 - 5 ms, P3 - 3 ms, P4 - 12 ms

FIFO

0 30

P1

10

P2 P3 P4

15 18

Wait Times:

 P1: 0 P2: 10 P3: 15 P4: 18

Total: 43 Average: 10.75

ELEC 377 – Operating Systems

Scheduling Examples

P1 - 10 ms, P2 - 5 ms, P3 - 3 ms, P4 - 12 ms

SJF

0 30

P1

3

P2 P3 P4

8 18

Wait Times:

 P1: 8 P2: 3 P3: 0 P4: 18

Total: 29 Average: 7.25

ELEC 377 – Operating Systems

Scheduling Examples

P1 - 10 ms, P2 - 5 ms, P3 - 3 ms, P4 - 12 ms

RR, q=7ms, no context overhead

0 30

P1

7

P2 P3 P4

12 22

Wait Times:

 P1: (22-7) = 15 P2: 7 P3: 12 P4: 15+(25-22)= 18

Total: 52 Average: 13

Turnaround for P2: 12 P3: 15

15

P1

25

P4

ELEC 377 – Operating Systems

Scheduling Examples

P1 - 10 ms, P2 - 5 ms, P3 - 3 ms, P4 - 12 ms

RR, q=5ms, no context overhead

0 30

P1

5

P2 P3 P4

10 18

Wait Times:

 P1: 13 P2: 5 P3: 10 P4: 18

Total: 46 Average: 11.5

Turnaround for P2: 10 P3: 13

13

P1

23

P4 P4

28

ELEC 377 – Operating Systems

Scheduling Examples

P1 - 10 ms, P2 - 5 ms, P3 - 3 ms, P4 - 12 ms

RR, q=7ms, 1 ms context overhead

0 35

P1

7,8

P2 P3 P4

13,1

4

25,2

6
Wait Times:

 P1: (26-7)=19 P2: 8 P3: 14 P4: 18+(30-25)=23

Total: 64 Average: 16

Turnaround for P2: 13 P3: 17

17,1

8

P1

29,3

0

P4

ELEC 377 – Operating Systems

Scheduling Examples

P1 - 10 ms, P2 - 5 ms, P3 - 3 ms, P4 - 12 ms

RR, q=5ms, 1 ms context overhead

0 36

P1

5,6

P2 P3 P4

11,1

2

21,22

Wait Times:

 P1: 16 P2: 6 P3: 12 P4: 24

Total: 58 Average: 14.5

Turnaround for P2: 11 P3: 15

15,1

6

P1

27,2

8

P4 P4

33,3

4

ELEC 377 – Operating Systems

Scheduling Examples

P1 - 10 ms, P2 - 5 ms, P3 - 3 ms, P4 - 12 ms

SRTF, interrupt at time 4, P5 - 3 ms

0 33

P1

3

P2 P3 P4

7 21

Wait Times:

 P1: 11 P2: 6 P3: 0 P4: 21

 P5: 0

Total: 38 Average: 7.6

4

P5 P2

11

