
ELEC 377 –
Operating Systems
Week 4 – Lab 2 Tutorial

ELEC 377 – Operating Systems

Lab 2

• Modules

• Provide extensions to the kernel

• Device Drivers

• File Systems

• Extra Functionality

ELEC 377 – Operating Systems

Lab 2

int init_module() {

 .. do initialization stuff ..

 .. tell the kernel what we do...

 return success or failure;

}

void cleanup_module(){

 .. remove structures from the kernel..

}

ELEC 377 – Operating Systems

Lab 2

int init_module() {

 struct proc_dir_entry proc_entry;

 proc_entry = create_proc_entry(“lab2”,0444,NULL);

 if (proc_entry == NULL) return failure

 proc_entry->read_proc = your read proc

 return success ;
}

void cleanup_module(){

 ... remove structures from the kernel..
}

ELEC 377 – Operating Systems

File Access (From Disk)

 c = getchar();

1 library asks the kernel for data from the disk using

the read system call (asks for more data from

current position)

2 system call handler calls kernel file system

(procedure call)

3 Kernel is tracking current position in the file

4. Kernel file system module calls a lower level

module to ask for the contents of a file starting

from a given position (the current position)

5. low level module does disk io and returns data

ELEC 377 – Operating Systems

File Access (From Disk)

 c = getchar();

1 library asks the kernel for data from the disk using

the read system call (asks for more data from

current position)

2 system call handler calls kernel file system

(procedure call)

3 Kernel is tracking current position in the file

4. Kernel file system module calls a lower level

module to ask for the contents of a file starting

from a given position (the current position)

5. low level module does disk io and returns data

ELEC 377 – Operating Systems

File Access (From Disk)

 sequence:
1. Ask low level for 1024 bytes starting from location 0.
2. Low level returns 512 bytes (bytes 0-511)
3. Ask low level for 1024 bytes starting from location 512
4. Low level returns 1024 bytes (bytes 512 to 1535)
5. Ask Low level for 1024 bytes starting from location

1536
6. Low level returns 309 bytes (bytes 1536-1844)
7. Ask Low level for 1024 bytes starting at location 1845
8. Return 0, no more bytes
9. kernel tells higher level process that the end of the
 file has been reached

ELEC 377 – Operating Systems

Lab 2

 Not getting data from the disk

- generating data on the fly

- sort of like web sites with dynamic content

generation

- kernel asks for data in the virtual (non-existent) file

starting from a particular offset

- when starting, the kernel asks for offset 0

• Large part of lab is research. Look at struct

task_struct in sched.h, and read the comments

• /proc/ksym

• /boot/System.map

Linux Processes Scheduling

ELEC 377 – Operating Systems

• Old Scheduling algorithm

◊ Is the version used in your lab

◊ 2.6 kernel uses a new O(1) scheduling algorithm

with real time extensions

◊ nr_running is now a routine, and is not in the

export lists. nr_threads doesn’t exist

◊ Lab2 only works on unpatched 2.4 kernels with the

old scheduling algorithm. So watch out if you do

the lab at home!!

ELEC 377 – Operating Systems

Lab 2

sched.h - definitions of scheduling structures

struct task_struct {

 …

 pid_t pid;

 …

 int nice;

 …

};

ELEC 377 – Operating Systems

Lab 2

/proc protocol - Linux docs confusing

◊ *eof does not mean end of file, it means end of

current request

◊ Program such as cat or more attempts to read a file

 - calls read(fd,buffer,length) <- system call

 - kernel calls proc file system reader

 - proc file system reader call your read_proc function

 - if your read_proc function returns less than the

length of the system buffer, it is called again for more

data.

 - you return 0 to indicate end of file

 - setting *eof to true means don’t call read_proc

again until kernel is called again.

ELEC 377 – Operating Systems

Lab 2

/proc protocol – allows to handle breaks over buffer

boundaries.

Have a /proc file that returns
Number of Running Process: xxx

Number of Running Threads:

PID UID Nice

1 YY XX

The boundary (max length) for a buffer might be in the

middle of a line. You would have to write part of the info

to the buffer and save the rest for the next call.

*eof and *start allow you to break the system call at a

meaningful point in the file(*start= page; *eof=1);

ELEC 377 – Operating Systems

Lab 2

Extra Info

– Some PCBs in the list are unused (pid == 0), skip

them

– Sometimes the first PCB in the list has pid == 0, so

may lead to infinite loop

if (file_pos == 0) {

 .. write header ...

 theTask = &init_task;

 lastTask = theTask;

}

- use do{}while(); loop to advance the task in the else

ELEC 377 – Operating Systems

Testing

Nice varies from -20 (highest priority) to 19 (lowest
priority)

What is the default priority?

The unix nice command allows to change the priority

(use the command ‘man nice’).
Any user can start a command with a lower priority
Only root can give a higher priority
Start up some long running commands (e.g. an

editor) using the nice command with various
priorities so that the output (both your module and
the ps command) have various priorities.

