ELEC 377 -
Operating Systems

Today

Deadlock
Characterization
Prevention
Avoidance
Recovery

SO e

ELEC 377 — Operating Systems

* Final Exam
« Friday December 7t" — 9AM

* Quiz #1, get from me after class
 Quiz #2, Oct 16

ELEC 377 — Operating Systems

What is Deadlock?

* A set of process, each holding a resource that

another process in the set needs

Iﬂﬂiﬂjﬂﬂﬂit%

&

I

ﬂﬂﬂﬂiﬁﬂiﬁi&

e Common track is a resource
e Starvation
 rollback?

ELEC 377 — Operating Systems

System Model

* Resource Types Rl’ R2, .., R

Each resource has a number oq Instances (Wi)
Resource instances are indistinguishable

— doesn’t matter which one you get.

<SS <5

Process resource protocol
request

use

release

S OS> e

ELEC 377 — Operating Systems

Deadlock Conditions

 four conditions necessary for deadlock:

¢ mutual exclusion: only a limited number (usually
one) process at a time can use a resource

¢ hold and wait: a process has (at least) one
resource and is waiting for another

¢ no preemption: we can’t take a resource away
from a process

¢ circular walit: PO walts for a resource held by Pl’
which waits for a resource held by PZ’ ... P
which waits for a resource held by PO

n!

ELEC 377 — Operating Systems

Resource Allocation Graph

* Process

* Resource Type
¢ 4 instances

. Pi requests an
Instance of Rj
. Pi holds an

Instance of Rj

ELEC 377 — Operating Systems

Resource Allocation Graph Exampl

ELEC 377 — Operating Systems

Resource Allocation Graph Exampl

Resource
Requests

ELEC 377 — Operating Systems

Deadlock Example

-QAL

ELEC 377 — Operating Systems

No Deadlock

No Deadlock

\.V

ELEC 377 — Operating Systems

Deadlock Basics

* No cycle — no deadlock

 Cycle
¢ one instance per resource type —> deadlock
¢ more than one instance per resource type?
— might be a deadlock
— also might not be a deadlock!!

ELEC 377 — Operating Systems

What do we do??

Prevention

« ensure one of the 4 conditions never happens

Avoidance:

« Extra information before allocating an available
resource

Recovery:

» enter deadlock state and recover

lgnore

* hope it never happens

« handle it manually

« Most interactive operating systems use this
approach

ELEC 377 — Operating Systems

Prevention

« Mutual Exclusion
- Some resources are shareable (some are not)
- Can add spooler or other device driver in some

cases
— Unfortunately, this is often the least flexible

condition

ELEC 377 — Operating Systems

Prevention

* Prevent Hold and Walit
¢ When requesting a resource, cannot already have
another resource
¢ If need more than one resource at a time, then must
request them all at the same time
¢ After using one or more resources, then must release
them before requesting new resources
¢ Efficiency??
— Resource utilization lower
- have to hold resources longer
- over commit resources
- might need resource, so take resource
— Starvation??

ELEC 377 — Operating Systems

Prevention

* Relax Preemption

¢ Take away resources when needed

¢ If holding several resources and ask for more that
are not available, lose the ones you have

¢ Wait for entire set to become available

¢ Other possibility is to preempt another process
that is waiting for the requested resources

rollback??
restart of transaction??

S 5

ELEC 377 — Operating Systems

Prevention

 Prevent Circular walit

P1 P2 P1 P2
wait(A) wait(B) wait(A) wait(A)
wait(B) wait(A) wait(B) wait(B)

* Reqguest in same order — no circular requests

* Impose order on all resource requests
Based on typical order for the given system

Optimal for some (most?) processes, suboptimal
for others.

<SS <5

ELEC 377 — Operating Systems

Avolidance

e Information up front
O Processes declare maximum resources needed

« Dynamically check current resource allocation to
make sure cannot be a circular-wait condition

« Resource allocation state

¢ Number of available and allocated resources and
the a priori kKnown maximum resources

ELEC 377 — Operating Systems

Safe State

« System is safe if there is some order we can

0

0

S O

0

allocate the resources and not produce a deadlock
might not be the order that the processes actually
request the resources

Safe order means that someone may have to wait
<P1, P2, ..., Pn>is safe if Pi can satisfy the
maximum resources with available (free)
resources and the resources owned by previous
processes.

P1 max must be satisfied only with free resources
P2 max must be satisfied with free + P1

P3 max gets available + P1 + P2

If not, wait until a previous process finishes.

ELEC 377 — Operating Systems

Safe
-S@?@state - no deadlock

« unsafe - possibility of deadlock

« Stay in safe state
¢ easler to calculate than deadlock

ELEC 377 — Operating Systems

Safe
State

ELEC 377 — Operating Systems

Deadlock Detection

« Allow system to deadlock

* run a detection algorithm occasionally
¢ Maintain a “waitfor” graph
look for cycles

<

* Recovery scheme

Flat tire - change the tire

ELEC 377 — Operating Systems

Deadlock Detection

« How often do we run the deadlock detection
algorithm?

how often do deadlocks occur?

how many processes do we have to rollback?

<SS <5

 If we walit to long, the graph may have many
cycles, and we can't rollback only the process that
created the mess

« Algorithm Is expensive
¢ 1f run to often, waste too many cycles

ELEC 377 — Operating Systems

Deadlock Recovery

Terminate Processes?

<

all deadlocked processes
one at a time until deadlock is resolved
- Run deadlock algorithm each time
- How do we choose?
1) process priority
2) compute time (past and future)
3) resource usage
4) resources needed
5) type of process (interactive, batch)

<

ELEC 377 — Operating Systems

Deadlock Recovery

* Resource Preemption

¢ take away resources from other processes
- same questions as for termination

¢ process must be rolled back

¢ starvation - Is one process always chosen as the
victim?

« Different than prevention case
¢ In prevention case, we just said resources are
pre-emptible and build into system. Here we use it
only as a last resort.

ELEC 377 — Operating Systems

Safe State — Examples

Process Current Max

PO 5 10
P1 2 4
P2 2 9

Total = 12, Free =3

ELEC 377 — Operating Systems

Safe State — Examples

Process Current Max

PO 5 10
P1 2 4
P2 2 9

Total = 12, Free =3

<Pl1,PO,P2>
P1(2) + 3=5>=P1Max(4)
5+ P0O(5) = 10 >= POMax(10)
5+ P2(2) =7 not>=P2Max(9) (wait for prev. proc.
(PO) to finish)
10 + P2(2) = 12 >= P2Max(9)

ELEC 377 — Operating Systems

Safe State — Examples

Process Current Max

PO 5 10
P1 2 4
P2 2+1 9

Total = 12, Free = 3-1 =2 ----> No longer safe

<P1l,P0orP2? P2orP0>
P1(2) +2=4>=P1Max(4)
4 + PO(5) = 9 not>= POMax(10)
4+ P2(3) =7 not>=P2Max(9)

ELEC 377 — Operating Systems

Safe State — Examples

Process Current Max

PO 5 10
P1 2 4
P2 2 7

Total = 12, Free =3

ELEC 377 — Operating Systems

Safe State — Examples

Process Current Max

PO 5 10
P1 2 4
P2 2 7

Total = 12, Free = 3
PO(5) + 3 = 8 not >= POMax(10)

P1(2) + 3 =5 >= P1Max(4)
P2(2) + 3 =5 not >= P2Max(7)

ELEC 377 — Operating Systems

Safe State — Examples

Process Current Max

PO 5 10
P1 2 4
P2 2 7

Total = 12, Free = 3

<P1,P0,P2>
P1(2) +3=5 >= P1Max(4)
5 + PO(5) = 10 >= POMax(10)
5+ P2(2)=7 >=P2Max(7)

ELEC 377 — Operating Systems

Safe State — Examples

Process Current Max

PO 5 10
Pl 2 4
P2 2+1 4

Total = 12, Free = 3-1 =2 ----> safe?
<P1,PO,P2>

P1(2) + 2 =4 >= P1Max(4)
4 + PO(5) = 9 not>= POMax(10)

ELEC 377 — Operating Systems

Safe State — Examples

Process Current Max

PO 5 10
P1 2 4
P2 2+1 V4

Total = 12, Free = 3-1 = 2 ----> safellll

<P1,P2,P0>
P1(2) + 2 =4 >= P1Max(4)
4 + PO(5) = 9 not>= POMax(10)
4 + P2(3) =7 >=P2Max(7)

ELEC 377 — Operating Systems

Safe State

* As described, only works on one resource type

* have to define the order for multiple resource
types simultaneously.

* Find order of processes so that cascading sum
holds in parallel for each resource type
¢ Bankers Algorithm

ELEC 377 — Operating Systems

Bankers Algorithm

 Allocation Algorithm
1 Compare request to available
- not available, cannot allocate (sleep)
2 Compare reguest to max
- violates max request, terminate process
3 Create temporary new state as if resource were
allocated
- do not allocate resources, just pretend to
4 Run safety algorithm on new state.
- If not safe, put process to sleep
until another process releases resource
- If safe, allocate resources

ELEC 377 — Operating Systems

Bankers Algorithm

PO
P1
P2
P3
P4

Total Allocated

Avall
#Res

ELEC 377 — Operating Systems

Allocation Max

010
200
302
211
002
7125

332

1057

753
322
902
222
433

Need
743
122
600
011
431

Bankers Algorithm - Safety Algorith

PO
P1
P2
P3
P4
Total Allocated

Avall

#Res
Work

ELEC 377 — Operating Systems

Allocation
010
200
302
211
002
725

332
1057
332

Max

753
3272
902
2272
433

Need
743
122
600
011
431

Finished

f
f
f
f
f

Bankers Algorithm - Safety Algorith

PO
P1
P2
P3
P4
Total Allocated

Avall

#Res
Work

ELEC 377 — Operating Systems

Allocation
010
200
302
211
002
725

332
1057
332

Max

753
3272
902
2272
433

Need
743
122
600
011
431

Finished

f
f
f
f
f

Bankers Algorithm - Safety Algorith

PO
P1
P2
P3
P4
Total Allocated

Avall

#Res
Work

ELEC 377 — Operating Systems

Allocation
010
200
302
211
002
725

332
1057
532

Max

753
322
902
2272
433

<P1

Need
743
122
600
011
431

Finishe

—h —h —h — =—h

Bankers Algorithm - Safety Algorith

PO
P1
P2
P3
P4
Total Allocated

Avall

#Res
Work

ELEC 377 — Operating Systems

Allocation
010
200
302
211
002
725

332
1057
532

Max

753
322
902
2272
433

<P1

Need
743
122
600
011
431

Bankers Algorithm - Safety Algorith

Allocation Max Need Finished
PO 010 753 743 f
P1 200 322 122 t
P2 302 902 600 f
P3 211 222 011 t
P4 002 433 431 f

Total Allocated 725
Avall 332

#Res 1057
Work 743 <P1, P3

ELEC 377 — Operating Systems

Bankers Algorithm - Safety Algorith

Allocation Max Need Finished
PO 010 753 743 f
P1 200 322 122 t
P2 302 902 600 f
P3 211 2272 011 t
P4 002 433 431 f

Total Allocated 725
Avall 332

#Res 1057
Work 743 <P1, P3

ELEC 377 — Operating Systems

Bankers Algorithm - Safety Algorith

PO
P1
P2
P3
P4
Total Allocated

Avall

#Res
Work

ELEC 377 — Operating Systems

Allocation
010
200
302
211
002
725

332
1057
745

Max Need
753 743
322 122
902 600
222 011
433 431
<P1, P3, P4

Finished

f
t
f
t
t

Bankers Algorithm - Safety Algorith

PO
P1
P2
P3
P4
Total Allocated

Avall

#Res
Work

ELEC 377 — Operating Systems

Allocation
010
200
302
211
002
725

332
1057
745

Max Need
753 743
322 122
902 600
222 011
433 431
<P1, P3, P4

Bankers Algorithm - Safety Algorith

PO
P1
P2
P3
P4
Total Allocated

Avall

#Res
Work

ELEC 377 — Operating Systems

Allocation
010
200
302
211
002
725

332
1057
104 7

Max Need
753 743
322 122
902 600
222 011
433 431
<P1, P3, P4, P2

Finished

f
t
t
t
t

Bankers Algorithm - Safety Algorith

PO
P1
P2
P3
P4
Total Allocated

Avall

#Res
Work

ELEC 377 — Operating Systems

Allocation
010
200
302
211
002
725

332
1057
1047

Max

753
322
902
2272
433

Need
743
122
600
011
431

<P1, P3, P4, P2

Finished

f
t
t
t
t

Bankers Algorithm - Safety Algorith

PO
P1
P2
P3
P4
Total Allocated

Avall

#Res
Work

ELEC 377 — Operating Systems

Allocation
010
200
302
211
002
725

332
1057
1057

Max

753
322
902
2272
433

Need
743
122
600
011
431

Finished

t
t
t
t
t

<P1, P3, P4, P2, PO> SAFE

Bankers Algorithm

 Allocation Algorithm
1 Compare request to available
- not available, cannot allocate (sleep)
2 Compare reguest to max
- violates max request, terminate process
3 Create temporary new state as if resource were
allocated
- do not allocate resources, just pretend to
4 Run safety algorithm on new state.
- If not safe, put process to sleep
until another process releases resource
- If safe, allocate resources

ELEC 377 — Operating Systems

