
ELEC 377 –
Operating Systems
Week 5 – Class 2

ELEC 377 – Operating Systems

Today

• Deadlock

◊ Characterization

◊ Prevention

◊ Avoidance

◊ Recovery

ELEC 377 – Operating Systems

Admin

• Final Exam

• Friday December 7th – 9AM

• Quiz #1, get from me after class

• Quiz #2, Oct 16

ELEC 377 – Operating Systems

What is Deadlock?

• A set of process, each holding a resource that

another process in the set needs

• Common track is a resource

• Starvation

• rollback?

ELEC 377 – Operating Systems

System Model

• Resource Types R
1
, R

2
, …, R

n
◊ Each resource has a number of instances (W

i
)

◊ Resource instances are indistinguishable

 – doesn’t matter which one you get.

• Process resource protocol

◊ request

◊ use

◊ release

ELEC 377 – Operating Systems

Deadlock Conditions

• four conditions necessary for deadlock:

◊ mutual exclusion: only a limited number (usually

one) process at a time can use a resource

◊ hold and wait: a process has (at least) one

resource and is waiting for another

◊ no preemption: we can’t take a resource away

from a process

◊ circular wait: P
0
 waits for a resource held by P

1
,

which waits for a resource held by P
2
, … P

n
,

which waits for a resource held by P
0

ELEC 377 – Operating Systems

Resource Allocation Graph

• Process

• Resource Type

◊ 4 instances

• P
i
 requests an

instance of R
j

• P
i
 holds an

instance of R
j

P

i R
j

P

i R
j

ELEC 377 – Operating Systems

Resource Allocation Graph Example

ELEC 377 – Operating Systems

Resource Allocation Graph Example

Resource

Requests

ELEC 377 – Operating Systems

Deadlock Example

ELEC 377 – Operating Systems

No Deadlock

ELEC 377 – Operating Systems

No Deadlock

ELEC 377 – Operating Systems

Deadlock Basics

• No cycle -> no deadlock

• Cycle

◊ one instance per resource type -> deadlock

◊ more than one instance per resource type?

 – might be a deadlock

 – also might not be a deadlock!!

ELEC 377 – Operating Systems

What do we do??

• Prevention

• ensure one of the 4 conditions never happens

• Avoidance:

• Extra information before allocating an available

resource

• Recovery:

• enter deadlock state and recover

• Ignore

• hope it never happens

• handle it manually

• Most interactive operating systems use this

approach

ELEC 377 – Operating Systems

Prevention

• Mutual Exclusion

 - Some resources are shareable (some are not)

 - Can add spooler or other device driver in some

cases

 – Unfortunately, this is often the least flexible

condition

ELEC 377 – Operating Systems

Prevention
• Prevent Hold and Wait

◊ When requesting a resource, cannot already have

another resource

◊ If need more than one resource at a time, then must

request them all at the same time

◊ After using one or more resources, then must release

them before requesting new resources

◊ Efficiency??

 – Resource utilization lower

 - have to hold resources longer

 - over commit resources

 - might need resource, so take resource

 – Starvation??

ELEC 377 – Operating Systems

Prevention

• Relax Preemption

◊ Take away resources when needed

◊ If holding several resources and ask for more that

are not available, lose the ones you have

◊ Wait for entire set to become available

◊ Other possibility is to preempt another process

that is waiting for the requested resources

◊ rollback??

◊ restart of transaction??

ELEC 377 – Operating Systems

Prevention

• Prevent Circular wait

 P1 P2 P1 P2

 wait(A) wait(B) wait(A) wait(A)

 wait(B) wait(A) wait(B) wait(B)

• Request in same order – no circular requests

• Impose order on all resource requests

◊ Based on typical order for the given system

◊ Optimal for some (most?) processes, suboptimal

for others.

ELEC 377 – Operating Systems

• Information up front

◊ Processes declare maximum resources needed

• Dynamically check current resource allocation to

make sure cannot be a circular-wait condition

• Resource allocation state

◊ Number of available and allocated resources and

the a priori known maximum resources

Avoidance

ELEC 377 – Operating Systems

• System is safe if there is some order we can

allocate the resources and not produce a deadlock

◊ might not be the order that the processes actually

request the resources

◊ Safe order means that someone may have to wait

• <P1, P2, …, Pn> is safe if Pi can satisfy the

maximum resources with available (free)

resources and the resources owned by previous

processes.

◊ P1 max must be satisfied only with free resources

◊ P2 max must be satisfied with free + P1

◊ P3 max gets available + P1 + P2

◊ If not, wait until a previous process finishes.

Safe State

ELEC 377 – Operating Systems

• Safe state - no deadlock

• unsafe - possibility of deadlock

• Stay in safe state

◊ easier to calculate than deadlock

Safe

State

ELEC 377 – Operating Systems

Safe

State

Safe

Unsafe

Deadlock

ELEC 377 – Operating Systems

• Allow system to deadlock

• run a detection algorithm occasionally

◊ Maintain a “waitfor” graph

◊ look for cycles

• Recovery scheme

Flat tire - change the tire

Deadlock Detection

ELEC 377 – Operating Systems

• How often do we run the deadlock detection

algorithm?

◊ how often do deadlocks occur?

◊ how many processes do we have to rollback?

• If we wait to long, the graph may have many

cycles, and we can’t rollback only the process that

created the mess

• Algorithm is expensive

◊ if run to often, waste too many cycles

Deadlock Detection

ELEC 377 – Operating Systems

• Terminate Processes?

◊ all deadlocked processes

◊ one at a time until deadlock is resolved

 - Run deadlock algorithm each time

 - How do we choose?

 1) process priority

 2) compute time (past and future)

 3) resource usage

 4) resources needed

 5) type of process (interactive, batch)

Deadlock Recovery

ELEC 377 – Operating Systems

• Resource Preemption

◊ take away resources from other processes

 - same questions as for termination

◊ process must be rolled back

◊ starvation - is one process always chosen as the

victim?

• Different than prevention case

 ◊ In prevention case, we just said resources are

pre-emptible and build into system. Here we use it

only as a last resort.

Deadlock Recovery

ELEC 377 – Operating Systems

Process Current Max

P0 5 10

P1 2 4

P2 2 9

Total = 12, Free = 3

Safe State – Examples

ELEC 377 – Operating Systems

Process Current Max

P0 5 10

P1 2 4

P2 2 9

Total = 12, Free = 3

 < P1 , P0 , P2 >

P1 (2) + 3 = 5 >= P1Max(4)

5 + P0(5) = 10 >= P0Max(10)

5 + P2(2) = 7 not >= P2Max(9) (wait for prev. proc.

(P0) to finish)

10 + P2(2) = 12 >= P2Max(9)

Safe State – Examples

ELEC 377 – Operating Systems

Process Current Max

P0 5 10

P1 2 4

P2 2+1 9

Total = 12, Free = 3-1 = 2 ----> No longer safe

 < P1 , P0 or P2?, P2 or P0 >

P1 (2) + 2 = 4 >= P1Max(4)

4 + P0(5) = 9 not>= P0Max(10)

4 + P2(3) = 7 not >= P2Max(9)

Safe State – Examples

ELEC 377 – Operating Systems

Process Current Max

P0 5 10

P1 2 4

P2 2 7

Total = 12, Free = 3

Safe State – Examples

ELEC 377 – Operating Systems

Process Current Max

P0 5 10

P1 2 4

P2 2 7

Total = 12, Free = 3

P0(5) + 3 = 8 not >= P0Max(10)

P1(2) + 3 = 5 >= P1Max(4)

P2(2) + 3 = 5 not >= P2Max(7)

Safe State – Examples

ELEC 377 – Operating Systems

Process Current Max

P0 5 10

P1 2 4

P2 2 7

Total = 12, Free = 3

 < P1 , P0 , P2 >

P1 (2) + 3 = 5 >= P1Max(4)

5 + P0(5) = 10 >= P0Max(10)

5 + P2(2) = 7 >= P2Max(7)

Safe State – Examples

ELEC 377 – Operating Systems

Process Current Max

P0 5 10

P1 2 4

P2 2+1 7

Total = 12, Free = 3-1 = 2 ----> safe?

 < P1 , P0 , P2 >

P1 (2) + 2 = 4 >= P1Max(4)

4 + P0(5) = 9 not>= P0Max(10)

Safe State – Examples

ELEC 377 – Operating Systems

Process Current Max

P0 5 10

P1 2 4

P2 2+1 7

Total = 12, Free = 3-1 = 2 ----> safe!!!!

 < P1 , P2 , P0 >

P1 (2) + 2 = 4 >= P1Max(4)

4 + P0(5) = 9 not>= P0Max(10)

4 + P2(3) = 7 >= P2Max(7)

Safe State – Examples

ELEC 377 – Operating Systems

• As described, only works on one resource type

• have to define the order for multiple resource

types simultaneously.

• Find order of processes so that cascading sum

holds in parallel for each resource type

 ◊ Bankers Algorithm

Safe State

ELEC 377 – Operating Systems

• Allocation Algorithm

1 Compare request to available

 - not available, cannot allocate (sleep)

2 Compare request to max

 - violates max request, terminate process

3 Create temporary new state as if resource were

allocated

 - do not allocate resources, just pretend to

4 Run safety algorithm on new state.

 - If not safe, put process to sleep

 until another process releases resources

 - if safe, allocate resources

Bankers Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need

P0 0 1 0 7 5 3 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Bankers Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 f

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 f

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 3 3 2

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 f

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 f

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 3 3 2

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 f

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 5 3 2 <P1

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 f

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 5 3 2 <P1

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 7 4 3 <P1, P3

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 7 4 3 <P1, P3

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 t

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 7 4 5 <P1, P3, P4

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 t

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 7 4 5 <P1, P3, P4

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 t

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 t

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 10 4 7 <P1, P3, P4, P2

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 t

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 t

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 10 4 7 <P1, P3, P4, P2

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 t

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 t

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 t

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 10 5 7 <P1, P3, P4, P2, P0> SAFE

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

• Allocation Algorithm

1 Compare request to available

 - not available, cannot allocate (sleep)

2 Compare request to max

 - violates max request, terminate process

3 Create temporary new state as if resource were

allocated

 - do not allocate resources, just pretend to

4 Run safety algorithm on new state.

 - If not safe, put process to sleep

 until another process releases resources

 - if safe, allocate resources

Bankers Algorithm

