
ELEC 377 –
Operating Systems
Week 5 – Class 3

ELEC 377 – Operating Systems

Today

• Deadlock

◊ Bankers Algorithm

ELEC 377 – Operating Systems

System Model

• Resource Types R
1
, R

2
, …, R

n
◊ Each resource has a number of instances (W

i
)

◊ Resource instances are indistinguishable

 – doesn’t matter which one you get.

• Process resource protocol

◊ request

◊ use

◊ release

ELEC 377 – Operating Systems

Deadlock Conditions

• four conditions necessary for deadlock:

◊ mutual exclusion: only a limited number (usually

one) process at a time can use a resource

◊ hold and wait: a process has (at least) one

resource and is waiting for another

◊ no preemption: we can’t take a resource away

from a process

◊ circular wait: P
0
 waits for a resource held by P

1
,

which waits for a resource held by P
2
, … P

n
,

which waits for a resource held by P
0

ELEC 377 – Operating Systems

Deadlock Basics

• No cycle -> no deadlock

• Cycle

◊ one instance per resource type -> deadlock

◊ more than one instance per resource type?

 – might be a deadlock

 – also might not be a deadlock!!

ELEC 377 – Operating Systems

What do we do??

• Prevention

• Ensure one of the 4 conditions never happens

• Avoidance:

• Extra information before allocating an available

resource

• Recovery:

• Enter deadlock state and recover

• Ignore

• Hope it never happens

• Handle it manually

• Most interactive operating systems use this

approach

ELEC 377 – Operating Systems

Prevention

• Mutual Exclusion

 - difficult, most resources are not shareable

 - spooler

• Hold and Wait

 - allocate all resources at once

 - inefficient

• Preemption

 - take resources away from other processes

 - rollback

• Circular Wait

 - always allocate resources in the same order

 – inefficient

ELEC 377 – Operating Systems

• Information up front

◊ processes declare maximum resources needed

• Dynamically check current resource allocation to

make sure cannot be a circular-wait condition

• Resource allocation state

◊ number of available and allocated resources and

the a priori known maximum resources

Avoidance

ELEC 377 – Operating Systems

• system is safe if there is some order we can

allocate the resources and not produce a deadlock

◊ might not be the order that the processes actually

request the resources

◊ safe order means that someone may have to wait

• <P1, P2, …, Pn> is safe if Pi can satisfy the

maximum resources with available (free) and the

resources owned by previous processes.

◊ P1 max must be satisfied only with free resources

◊ P2 max must be satisfied with free + P1

◊ P3 max gets available + P1 + P2

◊ If not, wait until a previous process finishes.

Safe State

ELEC 377 – Operating Systems

• Safe state - no deadlock

• unsafe - possibility of deadlock

• Stay in safe state

◊ easier to calculate than deadlock

Safe State

ELEC 377 – Operating Systems

Process Current Max

P0 5 10

P1 2 4

P2 2 9

Total = 12, Free = 3

 < P1 , P0 , P2 >

P1 (2) + 3 = 5 >= P1Max(4)

5 + P0(5) = 10 >= P0Max(10)

5 + P2(2) = 7 not >= P2Max(9)

10 + P2(2) = 12 >= P2Max(9)

Safe State – Examples

ELEC 377 – Operating Systems

• As described, only works on one resource type

• Have to define the order for multiple resource types

simultaneously.

• Find order of processes so that cascading sum holds

in parallel for each resource type

 ◊ Bankers Algorithm

 - based on algorithm designed for banks to

compute cash on hand

Safe State

ELEC 377 – Operating Systems

Bankers Algorithm

M types of resources

N processes

Available[M] = number of available resources

Max[N][M] = the max resources for each

process

Allocation[N][M] = the currently allocated resources

Need[N][M] = the max resources that might be

needed (Need[i][j] = Max [i][j] - Allocation[i][j]

Finished[N] = boolean flags to signal termination

(initially all false)

Work[M] = working copy of Available

ELEC 377 – Operating Systems

Bankers Algorithm

while (∃ i ∍ Finished[i] == false & Need[i] ≤ Work)

 // i is the next process in the safe sequence

 // add i’s resources to pool

 Work = Work + Allocation[i]

 // i is in the safe sequence

 Finished [i] = true

 if (∀i, Finished[i] == true)!

 //all processes can complete?

 return safe

 else

 return unsafe

ELEC 377 – Operating Systems

 Allocation Max Need

P0 0 1 0 7 5 3 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Bankers Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 f

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 f

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 3 3 2

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 f

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 f

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 3 3 2

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 f

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 5 3 2 <P1

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 f

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 5 3 2 <P1

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 7 4 3 <P1, P3

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 7 4 3 <P1, P3

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 t

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 7 4 5 <P1, P3, P4

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 t

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 7 4 5 <P1, P3, P4

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 t

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 t

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 10 4 7 <P1, P3, P4, P2

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 t

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 t

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 10 4 7 <P1, P3, P4, P2

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 t

P1 2 0 0 3 2 2 1 2 2 t

P2 3 0 2 9 0 2 6 0 0 t

P3 2 1 1 2 2 2 0 1 1 t

P4 0 0 2 4 3 3 4 3 1 t

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

Work 10 5 7 <P1, P3, P4, P2, P0> SAFE

Bankers Algorithm - Safety Algorithm

ELEC 377 – Operating Systems

• Allocation Algorithm

1 - compare request to available

 - not available, cannot allocate (sleep)

2 - compare request to max

 - violates max request, terminate process

3 - create temporary new state as if resource were

allocated

 - do not allocate resources, just pretend to

4 - run safety algorithm on new state.

 - If not safe, put process to sleep

 until another process releases

resources

 - if safe, allocate resources

Bankers Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need

P0 0 1 0 7 5 3 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

P1 request = 1 0 2

Bankers Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need

P0 0 1 0 7 5 3 7 4 3

P1 2 0 0 3 2 2 1 2 2

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Total Allocated 7 2 5

Avail 3 3 2

#Res 10 5 7

P2 request = 1 0 2

Bankers Algorithm

enough

resources?

ELEC 377 – Operating Systems

 Allocation Max Need

P0 0 1 0 7 5 3 7 4 3

P1 3 0 2 3 2 2 0 2 0

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Total Allocated 7 2 5

Avail 2 3 0

#Res 10 5 7

P1 request = 1 0 2

Bankers Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 3 0 2 3 2 2 0 2 0 f

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 f

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 2 3 0

#Res 10 5 7

Work 2 3 0

Bankers Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 3 0 2 3 2 2 0 2 0 f

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 f

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 2 3 0

#Res 10 5 7

Work 2 3 0 <P1

Bankers Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need Finished

P0 0 1 0 7 5 3 7 4 3 f

P1 3 0 2 3 2 2 0 2 0 f

P2 3 0 2 9 0 2 6 0 0 f

P3 2 1 1 2 2 2 0 1 1 f

P4 0 0 2 4 3 3 4 3 1 f

Total Allocated 7 2 5

Avail 2 3 0

#Res 10 5 7

Work 10 5 7 <P1, P3, P4, P2, P0>

SAFE

Bankers Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need

P0 0 1 0 7 5 3 7 4 3

P1 3 0 2 3 2 2 0 2 0

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Total Allocated 7 2 5

Avail 2 3 0

#Res 10 5 7

P0 request = 0 2 0

Bankers Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need

P0 0 3 0 7 5 3 7 2 3

P1 3 0 2 3 2 2 0 2 0

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Total Allocated 7 2 5

Avail 2 1 0

#Res 10 5 7

P0 request = 0 2 0

Bankers Algorithm

ELEC 377 – Operating Systems

 Allocation Max Need

P0 0 3 0 7 5 3 7 2 3

P1 3 0 2 3 2 2 0 2 0

P2 3 0 2 9 0 2 6 0 0

P3 2 1 1 2 2 2 0 1 1

P4 0 0 2 4 3 3 4 3 1

Total Allocated 7 2 5

Avail 2 1 0

#Res 10 5 7

Work 2 1 0 - no row in Need matches

 * UNSAFE*

Bankers Algorithm

ELEC 377 – Operating Systems

• allow system to deadlock

• run a detection algorithm Occasionally

◊ maintain “waitfor” graph (already have it)

◊ look for cycles

◊ expensive - O(n x m x m)

• recovery scheme

Deadlock Detection

ELEC 377 – Operating Systems

Binding Instructions and Data

• Entities in the original program must be bound to a

location in memory

◊ int count;

• Programs may reside in different parts of memory

• Three different stages

◊ Compile (and linkage) time (MS-DOS .COM)

◊ Load Time – When loader loads program into memory,

addresses are resolved

◊ Execution Time – programs move in memory

 - hardware support required

ELEC 377 – Operating Systems

Binding Instructions and Data

• Compile Time (or Assembly Time)
◊ use absolute addressing
◊ code can only be loaded at a particular location
.text
.org 0x734
.start 0x734
mov AL,L AL <- L
add AL,P AL <- AL + P
…
.data
.org 9af
L: .byte 12
P: .byte 42

ELEC 377 – Operating Systems

Binding Instructions and Data
• Load Time
◊ header of load file contains locations of referneces
◊ loader (Part of OS) resolves them at the time they

are read into memory
 .text
start:
 mov AL,L <= header gives this location in memory
 add AL,P <= and this location in memory
 …
 .data
L: .byte 12
P: .byte 42

ELEC 377 – Operating Systems

Load Time Module

.text

start:

 mov AL,L

 add AL,P

 …

 .data

L: .byte 12

P: .byte 42

bar.c

T start

B L

B P

bar.o

T start

.......

...

............................

...........................

............ B L B P

ELEC 377 – Operating Systems

Load Time Module

.text

start:

 mov AL,L

 add AL,P

 …

 .data

L: .byte 12

P: .byte 42

bar.c

T start

B L

B P

bar.o

T start

.......

...

............................

...........................

............ B L B P

ELEC 377 – Operating Systems

Load Time (Loader)

• In load time binding, the loader resolves the address

int load_program(void * startAddress, char * prgName){

 ProgHeader header;

 Symbol sym;

 ... open file prgName for read ...

 ... read the header into header...

 ... read the rest of the file (header.size) to startAddress

 for each sym in header

 ... adjust each reference to the symbol by offset

 from startAddress ...

}

ELEC 377 – Operating Systems

Binding Instructions and Data

• Execution Time

◊ Similar to Compile Time, but hardware looks after

translation

ELEC 377 – Operating Systems

Compile

extern int x;

extern foo();

int y = 3;

int bar(int z){

...

 x = y+z;

 x += foo();

}

bar.c

t foo

b x

D y

T bar

D y 3

T bar

.......

... ...

............................

...........................

bar.o

ELEC 377 – Operating

Systems

ELEC 377 – Operating Systems

Compile

extern int x;

extern foo();

int y = 3;

int bar(int z){

...

 x = y+z;

 x += foo();

}

bar.c

t foo

b x

D y

T bar

D y 3

T bar

.......

... ...

............................

...........................

bar.o

Data Segment

Header

Text Segment

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

Compile

extern int x;

extern foo();

int y = 3;

int bar(int z){

...

 x = y+z;

 x += foo();

}

bar.c

t foo

b x

D y

T bar

D y 3

T bar

.......

... ...

............................

...........................

bar.o

ELEC 377 – Operating Systems

Compile

extern int x;

extern foo();

int y = 3;

int bar(int z){

...

 x = y+z;

 x += foo();

}

bar.c

t foo

b x

D y

T bar

D y 3

T bar

.......

... ...

............................

...........................

bar.o

ELEC 377 – Operating Systems

Compile

extern int x;

extern foo();

int y = 3;

int bar(int z){

...

 x = y+z;

 x += foo();

}

bar.c

t foo

b x

D y

T bar

D y 3

T bar

.......

... ...

............................

...........................

bar.o

ELEC 377 – Operating Systems

Linking
...

int x;

extern int y;

FILE * f;

int main(int argc, char * argv[]){

 f= fopen(“/proc/lab3”,”r”);

 fprintf(stderr,”foobar %d”,x+bar(y));

 ...

}

int foo(){...}

...

int x;

extern int y;

FILE * f;

int main(int argc, char * argv[]){

 f= fopen(“/proc/lab3”,”r”);

 fprintf(stderr,”foobar %d”,x+bar(y));

 ...

}

int foo(){...}

ELEC 377 – Operating Systems

Linking

Defined

Undefined bar.o

Undefined library

ELEC 377 – Operating Systems

Linking–combine to single executable

1

foo.o

def main,x

undef fopen,bar

1

ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

ELEC 377 – Operating Systems

Linking–combine to single executable

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

1

1

2

2

3
3

4

4

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

3

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

1

2

3
1

2

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

1

2

4

3
1

2

4

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

1

2

4

3
1

2

4

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

main

exit

bar.o

def bar,y

undef foo,x
ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

1

2

4

3
1

2

4

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

stderr

fopen

fprintf
bar

y

bar.o

def bar,y

undef foo,x
ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

1

2

4

3
1

2

4

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

x

foo

