
ELEC 377 –
Operating Systems
Week 6 – Class 1

Last Class

• Deadlock

• Bankers Algorithm

ELEC 377 – Operating Systems

Admin

• Lab today

• Quiz 2 Tomorrow

ELEC 377 – Operating Systems

Today

• Memory Management

◊ Binding

◊ memory management

◊ dynamic memory

◊ overlays

◊ Swapping

◊ Contiguous Allocation

◊ Paging

ELEC 377 – Operating Systems

ELEC 377 – Operating Systems

Binding Instructions and Data

• Entities in the original program must be bound to a

location in memory

 ◊ int count;

• Programs may reside in different parts of memory

• Three different stages

◊ Compile (and linkage) time (MS-DOS .COM)

◊ Load Time – When loader loads program into

memory, addresses are resolved

◊ Execution Time – programs move in memory

 - hardware support required

ELEC 377 – Operating Systems

Binding Instructions and Data

• Compile Time (or Assembly Time)

◊ use absolute addressing

◊ code can only be loaded at a particular location

.text

.org 0x734

.start 0x734

mov AL,L AL <- L

add AL,P AL <- AL + P

…

.data

.org 9af

L: .byte 12

P: .byte 42

ELEC 377 – Operating Systems

Binding Instructions and Data

• Load Time

◊ header of load file contains locations of

referneces

◊ loader (Part of OS) resolves them at the time

they are read into memory

.text

start:

mov AL,L <= header gives this location in memory

add AL,P <= and this location in memory

…

.data

L: .byte 12

P: .byte 42

ELEC 377 – Operating Systems

Load Time Module

.text

start:

mov AL,L

add AL,P

…

.data

L: .byte 12

P: .byte 42

bar.c

T start

B L

B P

bar.o

T start

.......

...

............................

...........................

............ B L B P

ELEC 377 – Operating Systems

Load Time Module

.text

start:

mov AL,L

add AL,P

…

.data

L: .byte 12

P: .byte 42

bar.c

T start

D L

D P

bar.o

T start

.......

...

............................

...........................

...... D L 12 D P

42

ELEC 377 – Operating Systems

Load Time (Loader)

• In load time binding, the loader resolves the address

int load_program(void * startAddress, char * prgName){

 ProgHeader header;

 Symbol sym;

 ... open file prgName for read ...

 ... read the header into header...

 ... read the rest of the file (header.size) to startAddress

 for each sym in header

 ... adjust each reference to the symbol by offset

 from startAddress ...

}

ELEC 377 – Operating Systems

Binding Instructions and Data

• Execution Time

◊ Similar to Compile Time, but hardware looks after

translation

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

Compile

extern int x;

extern foo();

int y = 3;

int bar(int z){

...

 x = y+z;

 x += foo();

}

bar.c

t foo

b x

D y

T bar

D y 3

T bar

.......

... ...

............................

...........................

bar.o

ELEC 377 – Operating Systems

Compile

extern int x;

extern foo();

int y = 3;

int bar(int z){

...

 x = y+z;

 x += foo();

}

bar.c

t foo

b x

D y

T bar

D y 3

T bar

.......

... ...

............................

...........................

bar.o

Data Segment

Header

Text Segment

ELEC 377 – Operating Systems

Compile

extern int x;

extern foo();

int y = 3;

int bar(int z){

...

 x = y+z;

 x += foo();

}

bar.c

t foo

b x

D y

T bar

D y 3

T bar

.......

... ...

............................

...........................

bar.o

ELEC 377 – Operating Systems

Compile

extern int x;

extern foo();

int y = 3;

int bar(int z){

...

 x = y+z;

 x += foo();

}

bar.c

t foo

b x

D y

T bar

D y 3

T bar

.......

... ...

............................

...........................

bar.o

ELEC 377 – Operating Systems

Compile

extern int x;

extern foo();

int y = 3;

int bar(int z){

...

 x = y+z;

 x += foo();

}

bar.c

t foo

b x

D y

T bar

D y 3

T bar

.......

... ...

............................

...........................

bar.o

ELEC 377 – Operating Systems

Linking
...

int x;

extern int y;

FILE * f;

int main(int argc, char * argv[]){

 f= fopen(“/proc/lab3”,”r”);

 fprintf(stderr,”foobar %d”,x+bar(y));

 ...

}

int foo(){...}

...

int x;

extern int y;

FILE * f;

int main(int argc, char * argv[]){

 f= fopen(“/proc/lab3”,”r”);

 fprintf(stderr,”foobar %d”,x+bar(y));

 ...

}

int foo(){...}

ELEC 377 – Operating Systems

Linking

Defined

Undefined bar.o

Undefined library

ELEC 377 – Operating Systems

Linking–combine to single executable

1

foo.o

def main,x

undef fopen,bar

1

ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

ELEC 377 – Operating Systems

Linking–combine to single executable

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

1

1

2

2

3
3

4

4

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

3

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

1

2

3
1

2

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

1

2

4

3
1

2

4

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

1

2

4

3
1

2

4

bar.o

def bar,y

undef foo,x

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

main

exit

bar.o

def bar,y

undef foo,x
ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

1

2

4

3
1

2

4

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

stderr

fopen

fprintf
bar

y

bar.o

def bar,y

undef foo,x
ELEC 377 – Operating Systems

Linking–combine to single executable

1

1

2

2

3
3

4

4

3

1

2

4

3
1

2

4

foo.o

def main,x

undef fopen,bar

stdio.o

-def fopen,

fprintf, stderr

crt.o

- defines entry

- undef main

x

foo

ELEC 377 – Operating Systems

Logical vs Physical Address Space

Central Concept to Memory Management

• Logical Address

◊ address generated by CPU

◊ also known as virtual address

• Physical Address

◊ location in physical memory

• Logical and Physical address are the same in

compile and load time address binding. They differ

in execution time binding

• User program only deals with logical addresses. It

never sees the physical address

ELEC 377 – Operating Systems

Memory Management Unit (MMU)

• Hardware that maps virtual to physical address

◊ many different approaches

• One simple approach is to have a single register

that is added to every virtual address

◊ Similar to the original memory protection

scheme talked about in Week 1.

◊ Limit register is now size of memory space

◊ base register is called the relocation register

◊ Used by MSDOS on 386, PDP-11

• Logical addresses (0…max)

• Physical address (R…R+max)

 ◊ R is the value of the relocation register

ELEC 377 – Operating Systems

Memory Management Unit (MMU)

CPU Logical Addr MMU Phys Addr RAM

ELEC 377 – Operating Systems

Memory Management Unit (MMU)

CPU Logical Addr MMU Phys Addr
RAM

P1

P2

ELEC 377 – Operating Systems

Simple MMU

CPU
logical

address limit

check

limit
register

relocation
register

physical

address

Memory

+

ELEC 377 – Operating Systems

Contiguous Allocation

• main memory is divided into two parts

◊ operating system (usually in same part as

interrupt vector)

◊ User memory (divided among processes)

• single partition allocation

◊ simple allocation, each process gets a single

chunk of main memory to live in

◊ hardware relocation register and limit register

provides relocation and memory protection.

ELEC 377 – Operating Systems

Contiguous Allocation

• When system first starts, allocation is simple

◊ One block of memory, and as each process

starts, allocate the memory to the process

ELEC 377 – Operating Systems

Contiguous Allocation

• When system first starts, allocation is simple

◊ One block of memory, and as each process starts,

allocate the memory to the process

P1

ELEC 377 – Operating Systems

Contiguous Allocation

• When system first starts, allocation is simple

◊ One block of memory, and as each process

starts, allocate the memory to the process

P1 P2

ELEC 377 – Operating Systems

Contiguous Allocation

• When system first starts, allocation is simple

◊ One block of memory, and as each process

starts, allocate the memory to the process

P1 P2 P3 P4 P5 P6 P7

ELEC 377 – Operating Systems

Contiguous Allocation

• When system first starts, allocation is simple

◊ One block of memory, and as each process

starts, allocate the memory to the process

• Some processes run long, some quit soon after

they start

◊ Not related to size. A large program can run

short or long...

P1 P3 P5 P7

Holes

ELEC 377 – Operating Systems

Contiguous Allocation

• User memory must be allocated to processes

◊ fixed size segments – IBM MFT – obsolete

◊ variable size segments

• OS keeps list of holes

◊ Memory not allocated to a process

◊ When a process is started, find a hole big

enough to hold it

◊ When a process ends, add the memory to the

free list

• General memory allocation problem

◊ merge adjacent holes

 - on allocation or on free?

ELEC 377 – Operating Systems

Storage Allocation

Three general approaches

• First Fit

◊ use the first hole on the free list that is big

enough

◊ always search from beginning?

◊ search from previous location

◊ only look at part of list

• Best Fit

◊ smallest block that is large enough

◊ search entire list

• Worst Fit

◊ largest block (largest remainder)

◊ worst algorithm

ELEC 377 – Operating Systems

Best Fit

P1 P2 P3 P4

P5

ELEC 377 – Operating Systems

First Fit

P1 P2 P3 P4

P5

ELEC 377 – Operating Systems

Worst Fit

P1 P2 P3 P4

P5

ELEC 377 – Operating Systems

Fragmentation
• Internal Fragmentation

◊ if we allocate memory in units larger than a

single byte (say 1K)

◊ last block is only partially used

• External Fragmentation

◊ lots of small holes spread throughout memory,

none big enough to satisfy a request

◊ worst fit tries to reduce this

◊ compaction - move blocks (requires execution-

time binding)

• 50 percent rule - N allocated blocks, 0.5 N lost

to fragmentation (1/3 of memory unusable)

ELEC 377 – Operating Systems

Fragmentation

P1 P2 P3 P4 P5

External

Fragmentation

Internal

Fragmentation

P6

ELEC 377 – Operating Systems

Dynamic Loading

• Memory is always in short supply

• Not all routines are loaded when the program is

loaded

◊ only loaded when needed

◊ some routines are rarely if ever used

◊ does not require any special support from

operating system

• Some execution environments do support dynamic

loading (IBM mainframe, Java VM)

◊ external programs are called by name, OS

provides binding

ELEC 377 – Operating Systems

Dynamic Linking
• Static linking is when the all of the modules, including system

libraries, are linked together at compile time.

• Dynamic linking provides stubs for each routine.

◊ when the routine is called the first time, the routine is

loaded

◊ primarily used for shared libraries

 – libraries commonly used by many programs

 e.g. strcpy, fopen, fclose.

 – allows updates and bug fixes without relinking

◊ if libraries are to be shared between processes, then

operating system must provide support (memory

protection changes)

ELEC 377 – Operating Systems

Overlays

• common on older systems (MS-DOS)

• no OS support required (although OS can get in

the way)

• program is broken into multiple parts

• one common part of program always in memory

• other parts of program are replaced as needed

• common in early games for MS-DOS

 - different levels of the game might have different

code parts, as each level is loaded, the code

overlays the previous code

• also common in tools like compilers and

assemblers

• complex details in overlays, not common today

ELEC 377 – Operating Systems

Swapping

• Processes can be temporarily stored (swapped)

from memory to a backing store

 ◊ very fast hard drive - continuous store

• If memory binding is not execution time, then

process must be swapped back into same place in

memory

 ◊ PDP-11 Unix used swapping to relocate and

resize processes

• Make room for higher priority processes

• Major time is transfer time - amount of memory

swapped.

• Used with some modifications on many systems

