
ELEC 377 –
Operating Systems
Week 6 – Class 2

ELEC 377 – Operating Systems

Today

• Memory Management <<<<<<<<

◊ Physical vs Logical Management

◊ Paging Structure

◊ Shared Pages

• Virtual Memory

◊ Concept

◊ Demand Paging

ELEC 377 – Operating Systems

Logical vs Physical Address Space

Central Concept to Memory Management

• Logical Address

◊ address generated by CPU

◊ also known as virtual address

• Physical Address

◊ location in physical memory

• Logical and Physical address are the same in

compile and load time address binding. They differ

in execution time binding

• User program only deals with logical addresses. It

never sees the physical address

ELEC 377 – Operating Systems

Memory Management Unit (MMU)

• Hardware that maps virtual to physical address

◊ many different approaches

• One simple approach is to have a single register

that is added to every virtual address

◊ Similar to the original memory protection

scheme talked about in Week 1.

◊ Limit register is now size of memory space

◊ base register is called the relocation register

◊ Used by MSDOS on 386, PDP-11

• Logical addresses (0…max)

• Physical address (R…R+max)

◊ R is the value of the relocation register

ELEC 377 – Operating Systems

Memory Management Unit (MMU)

CPU Logical Addr MMU Phys Addr RAM

ELEC 377 – Operating Systems

Memory Management Unit (MMU)

CPU Logical Addr MMU Phys Addr
RAM

P1

P2

ELEC 377 – Operating Systems

Simple MMU

CPU
logical

address limit

check

limit
register

relocation
register

physical

address

Memory

+

ELEC 377 – Operating Systems

Contiguous Allocation

• main memory is divided into two parts

◊ operating system (usually in same part as

interrupt vector)

◊ User memory (divided among processes)

• single partition allocation

◊ simple allocation, each process gets a single

chunk of main memory to live in

◊ hardware relocation register and limit register

provides relocation and memory protection.

ELEC 377 – Operating Systems

Contiguous Allocation

• When system first starts, allocation is simple

◊ One block of memory, and as each process starts,

allocate the memory to the process

ELEC 377 – Operating Systems

Contiguous Allocation

• When system first starts, allocation is simple

◊ One block of memory, and as each process

starts, allocate the memory to the process

P1

ELEC 377 – Operating Systems

Contiguous Allocation

• When system first starts, allocation is simple

◊ One block of memory, and as each process starts,

allocate the memory to the process

P1 P2

ELEC 377 – Operating Systems

Contiguous Allocation

• When system first starts, allocation is simple

◊ One block of memory, and as each process

starts, allocate the memory to the process

P1 P2 P3 P4 P5 P6 P7

ELEC 377 – Operating Systems

Contiguous Allocation

• When system first starts, allocation is simple

◊ One block of memory, and as each process

starts, allocate the memory to the process

• Some processes run long, some quit soon after

they start

◊ Not related to size. A large program can run

short or long...

P1 P3 P5 P7

Holes

ELEC 377 – Operating Systems

Contiguous Allocation

• User memory must be allocated to processes

◊ fixed size segments – IBM MFT – obsolete

◊ variable size segments

• OS keeps list of holes

◊ memory not allocated to a process

◊ when a process is started, find a hole big

enough to hold it

◊ when a process ends, add the memory to the

free list

• General memory allocation problem

◊ merge adjacent holes

 - on allocation or on free?

ELEC 377 – Operating Systems

Storage Allocation

Three general approaches

• First Fit

◊ use the first hole on the free list that is big

enough

◊ always search from beginning?

◊ search from previous location

◊ only look at part of list

• Best Fit

◊ smallest block that is large enough

◊ search entire list

• Worst Fit

◊ largest block (largest remainder)

◊ worst algorithm

ELEC 377 – Operating Systems

Best Fit

P1 P2 P3 P4

P5

ELEC 377 – Operating Systems

First Fit

P1 P2 P3 P4

P5

ELEC 377 – Operating Systems

Worst Fit

P1 P2 P3 P4

P5

ELEC 377 – Operating Systems

Fragmentation
• Internal Fragmentation

◊ if we allocate memory in units larger than a

single byte (say 1K)

◊ last block is only partially used

• External Fragmentation

◊ lots of small holes spread throughout memory,

none big enough to satisfy a request

◊ worst fit tries to reduce this

◊ compaction - move blocks (requires execution-

time binding)

• 50 percent rule - N allocated blocks, 0.5 N lost

to fragmentation (1/3 of memory unusable)

ELEC 377 – Operating Systems

Fragmentation

P1 P2 P3 P4 P5

External

Fragmentation

Internal

Fragmentation

P6

ELEC 377 – Operating Systems

Dynamic Loading

• memory is always in short supply

• not all routines are loaded when the program is

loaded

◊ only loaded when needed

◊ some routines are rarely if ever used

◊ does not require any special support from

operating system

• some execution environments support dynamic

loading (IBM mainframe, Java VM)

◊ external programs are called by name, OS

provides binding

ELEC 377 – Operating Systems

Dynamic Linking
• Static linking is when the all of the modules including system

libraries are linked together at compile time.

• Dynamic linking provides stubs for each routine.

◊ when the routine is called the first time, the routine is

loaded

◊ primarily used for shared libraries

 – libraries commonly used by many programs

 e.g. strcpy, fopen, fclose.

 – allows updates and bug fixes without relinking

◊ if libraries are to be shared between processes, then

operating system must provide support (memory

protection changes)

ELEC 377 – Operating Systems

Overlays

• common on older systems (MS-DOS)

• no OS support required (although OS can get in

the way)

• program is broken into multiple parts

• one common part of program always in memory

• other parts of program are replaced as needed

• common in early games for MS-DOS

 - different levels of the game might have different

code parts, as each level is loaded, the code

overlays the previous code

• also common in tools like compilers and

assemblers

• complex details in overlays, not common today

ELEC 377 – Operating Systems

Swapping

• processes can be temporarily stored (swapped)

from memory to a backing store

 ◊ very fast hard drive - continuous store

• If memory binding is not execution time, then

process must be swapped back into same place in

memory

 ◊ PDP-11 Unix used swapping to relocate and

resize processes

• make room for higher priority processes

• major time is transfer time - amount of memory

swapped.

• Used with some modifications on many systems

ELEC 377 – Operating Systems

Paging

• Why should memory have to be contiguous

• Physical memory is divided into frames (512 bytes

to 8K sizes typically)

• Logical memory is divided into pages (same size

as frames)

• If process needs n pages, find n free frames in

memory

 ◊ no need to be contiguous

• Table translates from each page to the appropriate

frame

• No external fragmentation, but still have internal

fragmentation

ELEC 377 – Operating Systems

Memory is mapped by Page Tables

Process1

Logical

Address

Space
page0

page1

pageF

Process2

Logical

Address

Space
page0

page1

pageF

Memory (Physical Address)

Frame 0

Frame 1

Frame 2

Frame N

ELEC 377 – Operating Systems

Memory is mapped by Page Tables

Process1

Logical

Address

Space
page0

page1

pageF

Process2

Logical

Address

Space
page0

page1

pageF

Memory (Physical Address)

Frame 0 P2pg1

P1pg0

P1pg1

P2pg0

P1pgF

P2pgF

Frame 1

Frame 2

Frame N

ELEC 377 – Operating Systems

Memory is mapped by Page Tables

Process1

Logical

Address

Space
page0

page1

pageF

Process2

Logical

Address

Space
page0

page1

pageF

Memory (Physical Address)

Frame 0 P2pg1

P1pg0

P1pg1

P2pg0

P1pgF

P2pgF

Frame 1

Frame 2

Frame N

ELEC 377 – Operating Systems

Paging

• Logical Address Space and Physical Address

space may not be the same size!!

 ◊ physical address may be larger

 (e.g. 32 bit logical, 40 bit physical)

 ◊ physical address may be smaller

 (64 bit logical = 1.8e19 bytes)

• Frame and page always the same size

 – always power of 2

ELEC 377 – Operating Systems

Page Table

• address generated by CPU is divided into two parts

◊ page number(p) - index into page table

◊ page offset(d) – location within the page

CPU p d f d

logical address physical address

f

{

ELEC 377 – Operating Systems

Memory is mapped by Page Tables

Process1

Logical

Address

Space
page0

page1

pageF

Process2

Logical

Address

Space
page0

page1

pageF

Memory (Physical Address)

Frame 0 P2pg1

P1pg0

P1pg1

P2pg0

P1pgF

P2pgF

Frame 1

Frame 2

Frame N

