ELEC 377 -
Operating Systems

Last Class

« Memory Management
¢ Memory Paging
¢ Paging Structure

ELEC 377 — Operating Systems

Today

« Paging Sizes

* Virtual Memory
¢ Concept

¢ Demand Paging

ELEC 377 — Operating Systems

Page Table

« address generated by CPU is divided into two parts
¢ page number(p) - index into page table
¢ page offset(d) — location within the page

logical address physical address

U ~PTa] [TI1al

ELEC 377 — Operating Systems

Memory is mapped by Page Tables

Memory (Physical Addr

Processl Frame
Logical
Address

Space

A

Process?2
Logical
Address
Space

Frame
Frame

Frame

ELEC 377 — Operating Systems

Page Tables

« Each process can have its own logical address
space
¢ exception: Mac OS 7 had a single page table
for all processes (N0 memory protection
between processes)
« Thus each process has its own page table
* Thus each process has its own mapping to
physical memory

ELEC 377 — Operating Systems

Paging
- frame table - keeps track of allocated and free frames

* |/O operations have to know memory layout
e page table has to be switched during context switch

- Increase in context switch time
« page tables are large, and usually kept in main memory -

page table base register, length register

¢ Extra memory traffic
¢ Must first use page number to find frame number, then

access instruction or data in memory
¢ Simple linear table adds one memory access for each

data access.

ELEC 377 — Operating Systems

Paging - TLB

« Want to minimize extra memory traffic of page
tables

« Small cache inside of MMU

¢ TLB - translation look-aside buffer
¢ associative memory

Page # Frame #

ELEC 377 — Operating Systems

TLB

« If address not in TLB, called a miss

¢ Requires one extra memory access cycle in
linear page model (one for table, one for
memory)

¢ new address added to TLB

¢ performance very sensitive to hit-ratio

« Some entries in TLB are not modifiable (kernel
addresses)

« Some TLBs support multiple processes by adding
process IDs to the TLB. This allows more than one
process in TLB at a time.
¢ otherwise TLB must be flushed on each

context switch

ELEC 377 — Operating Systems

Memory Protection

« Since memory Is no longer contiguous, base +
limit not sufficient for protection
¢ could still be used on logical address side

 memory belonging to other processes not in page
table and thus not visible!!

 OS may be in page table for quick access

« add valid-invalid bit to page table. Process can
only access valid pages

ELEC 377 — Operating Systems

Page Table Structure

* The page table can become very large.
¢ 32 bit address space, 12 bit page (4K)
give 4 Megabyte page table (allocated
contiguously)
¢ larger than some programs!!

« Want to reduce resources required by
page tables
¢ break up page table so not
contiguous
¢ reduce size of page table
¢ not all process space may be valid!!

ELEC 377 — Operating Systems

Page Table

« Middle of table is not used (Does not contain
references to physical memory frames)
« page the page table?

logical address physical address

U ~PTa] [TI1a1

ELEC 377 — Operating Systems

Hierarchical Tables

« Multiple Tables (forward-mapped page table)
¢ page number is split into one or more sections
¢ First table gives address of next table ending at
physical memory *(*(*(T1+pl) + p2)+d)

ELEC 377 — Operating Systems

Hierarchical Tables

e Can be more than two levels (Pentium has 4 levels)
« Cost of miss(assume each lookup is one access)
* 0one extra access for each extra level of table

Hashed Page Tables

« Store page entries in a hash table, hashed by page
number

« Hash table has collisions (more than one page
number might hash to a given location)

¢ Store as a linked list (variable extra cost!!)

ELEC 377 — Operating Systems

Inverted Pages

* previous schemes have separate table(s) per
process

« Just as the TLB has a combined representation,
so do page tables

 tables have empty space

 Inverted tables have one entry for each frame
¢ Stores process number and page number

corresponding to the frame

¢ Search table for <pid,page#>
¢ hash table can shorten search time

* Need to extend to handle shared memory

ELEC 377 — Operating Systems

Page Structures - Summary

* Three ways of reducing the memory requirements
of the page tables

« All of them increase the cost of converting a
logical address to a physical address
¢ TLB absorbs much of the cost
¢ Increase the cost of a TLB miss
¢ Effectiveness of TLB is more important

ELEC 377 — Operating Systems

Demand Paging

« All pages of the process are swapped out

* swap each page in as itis needed
¢ lazy swapper
¢ if page is never referenced -> never loaded!!
¢ pager vs swapper

« Hardware needs to know which pages are in
memory

ELEC 377 — Operating Systems

Logical vs Physical Address Size

Pages and Frames must be the same size
|d| same in both physical and logical spaces
But there may be more frames than pages
or more pages than frames

not necessary that |p| = |f|

[cpu [~ 0]

(<> [] O []

ELEC 377 — Operating Systems

Logical vs Physical Address Size

O
O

S S e

d =12, logical = 32, physical = 40
page/frame size = 4K

#pages = | 20 | = 1024K pages = 1M pages
- page table size (1 word per entry) = 4M
#frames = | 28 | = 256M frames

d = 10, logical = 32, physical = 24
page/frame size = 1K

#pages = |22] = 4M pages
#frames = |14| = 16K frames

- total physical memory = 16M

ELEC 377 — Operating Systems

Logical vs Physical Address Size

* how can the physical address
space be less than the logical
address space?

¢ Not all of the logical address
space Is used

¢ 32 bits =4Gb

¢ A process simple process may
only have 10 pages (not including
shared libraries)
= 80K

¢ middle is not mapped

ELEC 377 — Operating Systems

Example Translation

Logical = 32, Physical = 24, Page Size =

4K
[cpu |—EAFSIET]

175955th
entry in
page table

ELEC 377 — Operating Systems

Hierarchical Tables Example

« Program with 222k of Code and Data, 30K of Stack
¢ 32 bit address space, 1k pages, plis 12 bits
- how much space is taken by the page tables??
- assume 4 bytes for each entry of p1 table and 4 bytes
for each entry of each p2 table.

p2 = 10 bits
how many pages of code and data? -> 222 pages
how many pages for stack? -> 30 pages

How many p2 tables? -> 2 tables
how many p1l tables? -> 1 table
size of pl table = 212 % 4= 14

size of each p2 table = ,10 12

*4=2

Total table space = 214+212+212 = 214+213:16k+8k:24k

ELEC 377 — Operating Systems

Page Table

Example
Stack - 30 K

1111111117111*11711171171731*11111111117 /
1111111711111*1111100010*0000000000

Code+Data 222K

000000000000*0011011101*1111171171711
000000000000*0000000000*00000000

ELEC 377 — Operating Systems

Page Table Example

30

111111111111 entries

Empty

Empty

T

000000000
0

Empty

222
entries

ELEC 377 — Operating Systems

Sharing Pages

e Shared Libraries
« Multiple invocations of a given program (e.g. shell,
editor)
« Contiguous memory allocation makes sharing difficult
« Shared code must be reentrant
¢ Must not modify itself
¢ Must also be position independent
« Most data is not shared
- however IPC Shared Segments (lab3) now easy!!
« Page table entries for shared code and data in each
process point to the common frames
« Page table entries for private data point to different
frames

ELEC 377 — Operating Systems

Sharing Pages-Two Procs same Prog

PO P1

ELEC 377 — Operating Systems

Sharing Pages -Two Progs, 1 Shared

PO

ELEC 377 — Operating Systems

Today

e Paging Sizes

* Virtual Memory <<<<<<<
¢ Concept

¢ Demand Paging

ELEC 377 — Operating Systems

Virtual Memory

« Separation of Logical Address from Physical Address
« Each process has it's own virtual address space
¢ Thinks it has the machine to itself
* Not all of the program need be in memory at one time
¢ dynamic loading, overlays
¢ only map the needed pages to frames in memory
¢ store unused pages on the disk (similar to swap)
¢ more efficient to start a new process
« Logical address space can be bigger than physical address
space!!
¢ process can more effectively share available memory
resources

ELEC 377 — Operating Systems

Demand Paging

« All pages of the process are swapped out

« swap each page in as it is needed
¢ lazy swapper
¢ if page is never referenced -> never loaded!!
¢ pager vs swapper
¢ locality of reference

« Hardware needs to know which pages are In
memory
¢ invalid bit -> now means not in memory
¢ when a process starts, all pages are invalid
¢ generate a page-fault when the page is not in

memory.

ELEC 377 — Operating Systems

Demand Paging

Backing

Virtual Address Page Table Memory Store

012
6 7

Note: not
all pages
are valid!

ELEC 377 — Operating Systems

Demand Paging

Virtual Address Page Table Memory Backing
Store
- 012
S 6 7
4

Note: not
all pages
are valid!

ELEC 377 — Operating Systems

Demand Paging

Backin

Virtual Address Page Table Memory Store

012

ELEC 377 — Operating Systems

Demand Paging

Backin

Virtual Address Page Table Memory Store

012

ELEC 377 — Operating Systems

Demand Paging

Backin

Virtual Address Page Table Memory Store

012

Page

ELEC 377 — Operating Systems Earlt

Demand Paging

Backin

Virtual Address Page Table Memory Store

012

|

Page

ELEC 377 — Operating Systems Earlt

Demand Paging

Backin

Virtual Address Page Table Memory Store

012
/

|

Page

ELEC 377 — Operating Systems Earlt

Demand Paging

Backin
Store

Virtual Address Page Table Memory

|

Page

ELEC 377 — Operating Systems EAarlt

Demand Paging

Backin

Virtual Address Page Table Memory Store

012

ELEC 377 — Operating Systems

Demand Paging

Backin

Virtual Address Page Table Memory Store

012

ELEC 377 — Operating Systems

Demand Paging

Backin

Virtual Address Page Table Memory Store

012

Page

ELEC 377 — Operating Systems Fau It

Demand Paging

Virtual Address Page Table Memory

Page

ELEC 377 — Operating Systems Fau It

Demand Paging

Backin

Virtual Address Page Table Memory Store

Page —> Abort!!

ELEC 377 — Operating Systems Fau It

Demand Paging

 Pure demand paging (no pages to start)
* In practice, we know that at least the first code page will be
used
« Pages that are in memory are called memory resident
« Restarting the instruction may cause more page faults
¢ some instructions can access a lot of memory
— multiple indirection addressing modes
— memory copy (string move instruction on x86)
¢ text talks about restarting instructions
— undoing side effects of instructions
¢ some CPUs can suspend the instruction
— save internal registers on stack

ELEC 377 — Operating Systems

Copy on Write

« Unix fork()
¢ duplicate child process
- duplicate code
- duplicate data
- duplicate stack
* We already talked about sharing code pages, and
separate data and stack pages
* On a fork(), we could share all pages
¢ only copy a page when it is modified
¢ requires support from hardware (MMU)
¢ more efficient use of memory
¢ don’t waste cpu cycles copying memory

ELEC 377 — Operating Systems

Copy on Write

Process 1 Memory

ELEC 377 — Operating Systems

Copy on Write — after fork()

Process 1 Memory Process 2

ELEC 377 — Operating Systems

Copy on Write — after P2 changes 2

Process 1 Memory Process 2

ELEC 377 — Operating Systems

Memory Mapped Files

« Traditional I1/O
¢ library accumulates output until a buffer is filled
and then calls O/S to write the buffer to the file
¢ Input is read a buffer at a time from O/S and
then library gives it in smaller amounts
« Paging allows a different approach
« Take unmapped pages of the process space and
map them to the blocks of the file.
¢ page fault brings the block into memory
¢ when the file is closed, write all modified blocks
¢ random access to data file!
¢ files can be shared with write access!

ELEC 377 — Operating Systems

Page Replacement

« What happens when we run out of memory?

O

S OO

O

running more processes than memory (over

allocation)

no spare frames

select some other frame in physical memory
write its contents to disk

Invalidate the MMU registers that point to the
frame

reuse the frame

* Two transfers (write old contents, read new
contents)

ELEC 377 — Operating Systems

Page Replacement

« dirty bit?
¢ add another flag to the page table
¢ indicates that the page has been changed
(dirty)
¢ only write dirty pages (otherwise matches copy
on the disk)

« Code pages are mapped from the program
executable
¢ since code doesn’t change (reentrant), never
have to write code pages.
¢ Backing store only saves data and stack pages

ELEC 377 — Operating Systems

Page Replacement Algorithms

« Similar to scheduling algorithms
¢ want to minimize page faults

 FIFO
¢ Not particularly good
¢ Belady’'s Anomaly
—more memory more page faults

* Optimal
¢ similar to Shortest Job First scheduling
algorithm
¢ page that will not be used for the longest time
¢ future knowledge

ELEC 377 — Operating Systems

Page Replacement Algorithms

 LRU - Least recently used
¢ past behaviour predicts future behaviour
¢ page referenced longest ago gets replaced
— hardware support(page counters, stack)
« Approximation
¢ reference bits (history of page references)
¢ second chance algorithm (FIFO with 1 ref bit)
* Alternatives
¢ include modified bit
— prefer clean pages to dirty pages
— not as important as recently used reference
bit, breaks ties

ELEC 377 — Operating Systems

