
ELEC 377 –
Operating Systems
Week 6 – Class 3

Last Class

ELEC 377 – Operating Systems

• Memory Management

◊ Memory Paging

◊ Paging Structure

Today

• Paging Sizes

• Virtual Memory

◊ Concept

◊ Demand Paging

ELEC 377 – Operating Systems

ELEC 377 – Operating Systems

Page Table

• address generated by CPU is divided into two parts

◊ page number(p) - index into page table

◊ page offset(d) – location within the page

CPU p d f d

logical address physical address

f

{

ELEC 377 – Operating Systems

Memory is mapped by Page Tables

Process1

Logical

Address

Space
page0

page1

pageF

Process2

Logical

Address

Space
page0

page1

pageF

Memory (Physical Address)

Frame 0 P2pg1

P1pg0

P1pg1

P2pg0

P1pgF

P2pgF

Frame 1

Frame 2

Frame N

ELEC 377 – Operating Systems

Page Tables

• Each process can have its own logical address

space

 ◊ exception: Mac OS 7 had a single page table

 for all processes (no memory protection

 between processes)

• Thus each process has its own page table

• Thus each process has its own mapping to

physical memory

ELEC 377 – Operating Systems

Paging
• frame table - keeps track of allocated and free frames

• I/O operations have to know memory layout

• page table has to be switched during context switch

 - increase in context switch time

• page tables are large, and usually kept in main memory -

page table base register, length register

◊ Extra memory traffic

◊ Must first use page number to find frame number, then

access instruction or data in memory

◊ Simple linear table adds one memory access for each

data access.

ELEC 377 – Operating Systems

Paging - TLB
• Want to minimize extra memory traffic of page

tables

• Small cache inside of MMU

◊ TLB - translation look-aside buffer

◊ associative memory

Page # Frame #

ELEC 377 – Operating Systems

TLB

• If address not in TLB, called a miss

◊ Requires one extra memory access cycle in

linear page model (one for table, one for

memory)

◊ new address added to TLB

◊ performance very sensitive to hit-ratio

• Some entries in TLB are not modifiable (kernel

addresses)

• Some TLBs support multiple processes by adding

process IDs to the TLB. This allows more than one

process in TLB at a time.

◊ otherwise TLB must be flushed on each

context switch

ELEC 377 – Operating Systems

Memory Protection

• Since memory is no longer contiguous, base +

limit not sufficient for protection

 ◊ could still be used on logical address side

• memory belonging to other processes not in page

table and thus not visible!!

• OS may be in page table for quick access

• add valid-invalid bit to page table. Process can

only access valid pages

ELEC 377 – Operating Systems

Page Table Structure

• The page table can become very large.

 ◊ 32 bit address space, 12 bit page (4K)

give 4 Megabyte page table (allocated

contiguously)

 ◊ larger than some programs!!

• Want to reduce resources required by

page tables

◊ break up page table so not

contiguous

◊ reduce size of page table

◊ not all process space may be valid!! Code

Data

Stack

ELEC 377 – Operating Systems

Page Table

• Middle of table is not used (Does not contain

 references to physical memory frames)

• page the page table?

CPU p d f d

logical address physical address

ELEC 377 – Operating Systems

Hierarchical Tables
• Multiple Tables (forward-mapped page table)

◊ page number is split into one or more sections

◊ First table gives address of next table ending at

physical memory *(*(*(T1+p1) + p2)+d)

p1 p2 d

d f

…

…

{
{

Hierarchical Tables
• Can be more than two levels (Pentium has 4 levels)

• Cost of miss(assume each lookup is one access)

 • one extra access for each extra level of table

p1 p2 d

d f

…

…

{
{

p3

…

…

{

ELEC 377 – Operating Systems

Hashed Page Tables

• Store page entries in a hash table, hashed by page

number

• Hash table has collisions (more than one page

number might hash to a given location)

◊ Store as a linked list (variable extra cost!!)

p d

f d

… f p

H

ELEC 377 – Operating Systems

Inverted Pages

• previous schemes have separate table(s) per

process

• Just as the TLB has a combined representation,

so do page tables

• tables have empty space

• Inverted tables have one entry for each frame

◊ Stores process number and page number

corresponding to the frame

◊ Search table for <pid,page#>

◊ hash table can shorten search time

• Need to extend to handle shared memory

ELEC 377 – Operating Systems

Page Structures - Summary

• Three ways of reducing the memory requirements

of the page tables

• All of them increase the cost of converting a

logical address to a physical address

◊ TLB absorbs much of the cost

◊ Increase the cost of a TLB miss

◊ Effectiveness of TLB is more important

ELEC 377 – Operating Systems

Demand Paging

• All pages of the process are swapped out

• swap each page in as it is needed

◊ lazy swapper

◊ if page is never referenced -> never loaded!!

◊ pager vs swapper

• Hardware needs to know which pages are in

memory

ELEC 377 – Operating Systems

Logical vs Physical Address Size

• Pages and Frames must be the same size

◊ |d| same in both physical and logical spaces

• But there may be more frames than pages

◊ or more pages than frames

• not necessary that |p| = |f|

CPU p d f d

f

Logical vs Physical Address Size

• d = 12, logical = 32, physical = 40

◊ page/frame size = 4K

◊ #pages = | 20 | = 1024K pages = 1M pages

 - page table size (1 word per entry) = 4M

◊ #frames = | 28 | = 256M frames

• d = 10, logical = 32, physical = 24

◊ page/frame size = 1K

◊ #pages = |22| = 4M pages

◊ #frames = |14| = 16K frames

 - total physical memory = 16M

ELEC 377 – Operating Systems

ELEC 377 – Operating Systems

Logical vs Physical Address Size

• how can the physical address

space be less than the logical

address space?

◊ Not all of the logical address

space is used

◊ 32 bits = 4Gb

◊ A process simple process may

only have 10 pages (not including

shared libraries)

 = 80K

◊ middle is not mapped

Code

Data

Stack

ELEC 377 – Operating Systems

Example Translation

CPU 2AF53 3F7

Logical = 32, Physical = 24, Page Size =

4K

3F7

175955th

entry in

page table

3EC

3EC

ELEC 377 – Operating Systems

Hierarchical Tables Example
• Program with 222k of Code and Data, 30K of Stack

 ◊ 32 bit address space, 1k pages, p1 is 12 bits

 - how much space is taken by the page tables??

 - assume 4 bytes for each entry of p1 table and 4 bytes

 for each entry of each p2 table.

p2 = 10 bits

how many pages of code and data? -> 222 pages

how many pages for stack? -> 30 pages

How many p2 tables? -> 2 tables

how many p1 tables? -> 1 table

size of p1 table = 212
 * 4 = 214

size of each p2 table =
2
10

 * 4 = 2
12

Total table space = 2
14

+2
12

+2
12

 = 2
14

+2
13

=16k+8k=24k

ELEC 377 – Operating Systems

Page Table

Example

Code

Data

Stack Stack - 30 K

111111111111*1111111111*1111111111

111111111111*1111100010*0000000000

Code+Data 222K

000000000000*0011011101*1111111111

000000000000*0000000000*0000000000

ELEC 377 – Operating Systems

Page Table Example

Code

Data

Stack 30

entries

222

entries

111111111111

00000000000

0

Empty

Empty

Empty

ELEC 377 – Operating Systems

Sharing Pages
• Shared Libraries

• Multiple invocations of a given program (e.g. shell,

editor)

• Contiguous memory allocation makes sharing difficult

• Shared code must be reentrant

 ◊ Must not modify itself

 ◊ Must also be position independent

• Most data is not shared

 - however IPC Shared Segments (lab3) now easy!!

• Page table entries for shared code and data in each

process point to the common frames

• Page table entries for private data point to different

frames

ELEC 377 – Operating Systems

Sharing Pages-Two Procs same Prog

P0 P1

ELEC 377 – Operating Systems

Sharing Pages -Two Progs, 1 Shared

P0 P1

ELEC 377 – Operating Systems

Today

• Paging Sizes

• Virtual Memory <<<<<<<

◊ Concept

◊ Demand Paging

ELEC 377 – Operating Systems

Virtual Memory
• Separation of Logical Address from Physical Address

• Each process has it’s own virtual address space

 ◊ Thinks it has the machine to itself

• Not all of the program need be in memory at one time

◊ dynamic loading, overlays

◊ only map the needed pages to frames in memory

◊ store unused pages on the disk (similar to swap)

◊ more efficient to start a new process

• Logical address space can be bigger than physical address

space!!

◊ process can more effectively share available memory

resources

ELEC 377 – Operating Systems

Demand Paging

• All pages of the process are swapped out

• swap each page in as it is needed

◊ lazy swapper

◊ if page is never referenced -> never loaded!!

◊ pager vs swapper

◊ locality of reference

• Hardware needs to know which pages are in

memory

◊ invalid bit -> now means not in memory

◊ when a process starts, all pages are invalid

◊ generate a page-fault when the page is not in

memory.

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

i

Backing

Store

Note: not

all pages

are valid!

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

i

Backing

Store

Note: not

all pages

are valid!

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

i

Backing

Store

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

i

Backing

Store

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

i

Page

Fault

Backing

Store

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

i

Page

Fault

Backing

Store

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

i

Page

Fault

0

Backing

Store

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

v

Page

Fault

0

4

Backing

Store

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

v

0

4

Backing

Store

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

v

0

4

Backing

Store

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

v

0

4

Backing

Store

Page

Fault

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

v

0

4

Backing

Store

Page

Fault

ELEC 377 – Operating Systems

Demand Paging

Virtual Address

7

6

5

4

3

2

1

0

i

i

i

i

i

i

i

Page Table

0 1 2

6 7

Memory

v

0

4

Backing

Store

Page

Fault
Abort!!

ELEC 377 – Operating Systems

Demand Paging
• Pure demand paging (no pages to start)

• In practice, we know that at least the first code page will be

used

• Pages that are in memory are called memory resident

• Restarting the instruction may cause more page faults

◊ some instructions can access a lot of memory

 – multiple indirection addressing modes

 – memory copy (string move instruction on x86)

◊ text talks about restarting instructions

 – undoing side effects of instructions

◊ some CPUs can suspend the instruction

 – save internal registers on stack

ELEC 377 – Operating Systems

Copy on Write
• Unix fork()

◊ duplicate child process

 - duplicate code

 - duplicate data

 - duplicate stack

• We already talked about sharing code pages, and

separate data and stack pages

• On a fork(), we could share all pages

◊ only copy a page when it is modified

◊ requires support from hardware (MMU)

◊ more efficient use of memory

◊ don’t waste cpu cycles copying memory

ELEC 377 – Operating Systems

Copy on Write

7

6

5

4

3

2

1

0

0

1

7

2

Process 1 Memory

ELEC 377 – Operating Systems

Copy on Write – after fork()

Process 1

7

6

5

4

3

2

1

0

Memory

0

1

7

2

Process 2

7

6

5

4

3

2

1

0

ELEC 377 – Operating Systems

Copy on Write – after P2 changes 2

Process 1

7

6

5

4

3

2

1

0

Memory

0

1

7

2a

Process 2

7

6

5

4

3

2

1

0

2

ELEC 377 – Operating Systems

Memory Mapped Files
• Traditional I/O

◊ library accumulates output until a buffer is filled

and then calls O/S to write the buffer to the file

◊ input is read a buffer at a time from O/S and

then library gives it in smaller amounts

• Paging allows a different approach

• Take unmapped pages of the process space and

map them to the blocks of the file.

◊ page fault brings the block into memory

◊ when the file is closed, write all modified blocks

◊ random access to data file!

◊ files can be shared with write access!

ELEC 377 – Operating Systems

Page Replacement

• What happens when we run out of memory?

◊ running more processes than memory (over

allocation)

◊ no spare frames

◊ select some other frame in physical memory

◊ write its contents to disk

◊ invalidate the MMU registers that point to the

frame

◊ reuse the frame

• Two transfers (write old contents, read new

contents)

ELEC 377 – Operating Systems

Page Replacement

• dirty bit?

◊ add another flag to the page table

◊ indicates that the page has been changed

(dirty)

◊ only write dirty pages (otherwise matches copy

on the disk)

• Code pages are mapped from the program

executable

◊ since code doesn’t change (reentrant), never

have to write code pages.

◊ Backing store only saves data and stack pages

ELEC 377 – Operating Systems

Page Replacement Algorithms

• Similar to scheduling algorithms

◊ want to minimize page faults

• FIFO

◊ Not particularly good

◊ Belady’s Anomaly

 –more memory more page faults

• Optimal

◊ similar to Shortest Job First scheduling

algorithm

◊ page that will not be used for the longest time

◊ future knowledge

ELEC 377 – Operating Systems

Page Replacement Algorithms
• LRU - Least recently used

◊ past behaviour predicts future behaviour

◊ page referenced longest ago gets replaced

 – hardware support(page counters, stack)

• Approximation

◊ reference bits (history of page references)

◊ second chance algorithm (FIFO with 1 ref bit)

• Alternatives

◊ include modified bit

 – prefer clean pages to dirty pages

 – not as important as recently used reference

bit, breaks ties

