
ELEC 377 –
Operating Systems
Week 7 – Class 1

Last Class

ELEC 377 – Operating Systems

• Virtual Memory

◊ Concept

◊ Demand Paging

ELEC 377 – Operating Systems

Hierarchical Tables Example
• Program with 222k of Code and Data, 30K of Stack

 ◊ 32 bit address space, 1k pages, p1 is 12 bits

 - how much space is taken by the page tables??

 - assume 4 bytes for each entry of p1 table and 4 bytes

 for each entry of each p2 table.

 p2 = 10 bits

how many pages of code and data? -> 222 pages

how many pages for stack? -> 30 pages

(Given and used below) How many p2 tables? -> 2 tables

(Given and used below) How many p1 tables? -> 1 table

size of p1 table = 212
 * 4 = 214

size of each p2 table =
2
10

 * 4 = 2
12

Total table space = 2
14

+2
12

+2
12

 = 2
14

+2
13

=16k+8k=24k

Today

• Virtual Memory

◊ Page Replacement Algorithms

◊ Frame Allocation

◊ Thrashing

◊ Working Set

ELEC 377 – Operating Systems

ELEC 377 – Operating Systems

Page Replacement

• What happens when we run out of memory?

◊ running more processes than memory (over

allocation)

◊ no spare frames

◊ select some other frame in physical memory

◊ write its contents to disk

◊ invalidate the MMU registers that point to the

frame

◊ reuse the frame

• Two transfers (write old contents, read new

contents)

ELEC 377 – Operating Systems

Page Replacement

• Dirty Bit?

◊ add another flag to the page table

◊ indicates that the page has been changed

(dirty)

◊ only write dirty pages (otherwise matches copy

on the disk)

• Code pages are mapped from the program

executable

◊ since code doesn’t change (reentrant), never

have to write code pages.

◊ Backing store only saves data and stack pages

ELEC 377 – Operating Systems

Page Replacement Algorithms
• Similar to scheduling algorithms

◊ Want to minimize page faults

◊ Each page fault represents 1 or two disk transfers

• FIFO (First In First Out)

◊ Page that is replaced is the oldest page

◊ Not particularly good

◊ Belady’s Anomaly

 – more memory, more page faults

• Optimal

◊ similar to Shortest Job First scheduling algorithm

◊ page that will not be used for the longest time

◊ future knowledge - provides a baseline

ELEC 377 – Operating Systems

Page Replacement Algorithms
• LRU - Least recently used

◊ past behavior predicts future behavior

◊ page referenced longest ago gets replaced

 –hardware support(page counters, stack)

• Approximation

◊ reference bits (history of page references)

◊ second chance algorithm (FIFO with 1 ref bit)

• Alternatives
◊ include modified bit

 – prefer clean pages to dirty pages

 – not as important as recently used reference bit,

 breaks ties

ELEC 377 – Operating Systems

Page Reference Strings

• A list of the pages that are referenced over time

 e.g. 1,2,3,4,1,2,5,1,2,3,4,5

◊ determine how many page faults for each algorithm

◊ draw the page frames allocated

 ex. 3 pages, FIFO

 1 2 3 4 1 2 5 1 2 3 4 5

 1

ELEC 377 – Operating Systems

Page Reference Strings

• A list of the pages that are referenced over time

e.g. 1,2,3,4,1,2,5,1,2,3,4,5

◊ determine how many page faults for each algorithm

◊ draw the page frames allocated

ex. 3 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1

 2

ELEC 377 – Operating Systems

Page Reference Strings

• A list of the pages that are referenced over time

e.g. 1,2,3,4,1,2,5,1,2,3,4,5

◊ determine how many page faults for each algorithm

◊ draw the page frames allocated

ex. 3 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1

 2 2

 3

ELEC 377 – Operating Systems

Page Reference Strings

• A list of the pages that are referenced over time

e.g. 1,2,3,4,1,2,5,1,2,3,4,5

◊ determine how many page faults for each algorithm

◊ draw the page frames allocated

ex. 3 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4

 2 2 2

 3 3

ELEC 377 – Operating Systems

Page Reference Strings

• A list of the pages that are referenced over time

e.g. 1,2,3,4,1,2,5,1,2,3,4,5

◊ determine how many page faults for each algorithm

◊ draw the page frames allocated

ex. 3 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4

 2 2 2 1

 3 3 3

ELEC 377 – Operating Systems

Page Reference Strings

• A list of the pages that are referenced over time

e.g. 1,2,3,4,1,2,5,1,2,3,4,5

◊ determine how many page faults for each algorithm

◊ draw the page frames allocated

ex. 3 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4

 2 2 2 1 1

 3 3 3 2

ELEC 377 – Operating Systems

Page Reference Strings

• A list of the pages that are referenced over time

e.g. 1,2,3,4,1,2,5,1,2,3,4,5

◊ determine how many page faults for each algorithm

◊ draw the page frames allocated

ex. 3 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5

 2 2 2 1 1 1

 3 3 3 2 2

ELEC 377 – Operating Systems

Page Reference Strings

• A list of the pages that are referenced over time

e.g. 1,2,3,4,1,2,5,1,2,3,4,5

◊ determine how many page faults for each algorithm

◊ draw the page frames allocated

ex. 3 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5 5

 2 2 2 1 1 1 3

 3 3 3 2 2 2

ELEC 377 – Operating Systems

Page Reference Strings

• A list of the pages that are referenced over time

e.g. 1,2,3,4,1,2,5,1,2,3,4,5

◊ determine how many page faults for each algorithm

◊ draw the page frames allocated

ex. 3 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5 5 5

 2 2 2 1 1 1 3 3

 3 3 3 2 2 2 4

ELEC 377 – Operating Systems

Page Reference Strings

• A list of the pages that are referenced over time

e.g. 1,2,3,4,1,2,5,1,2,3,4,5

◊ determine how many page faults for each algorithm

◊ draw the page frames allocated

ex. 3 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 4 4 5 5 5

 2 2 2 1 1 1 3 3

 3 3 3 2 2 2 4

9 page faults

ELEC 377 – Operating Systems

Belady’s Anomaly

• ex. 4 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1

 2 2 2

 3 3

 4

ELEC 377 – Operating Systems

Belady’s Anomaly

• ex. 4 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 5

 2 2 2 2

 3 3 3

 4 4

ELEC 377 – Operating Systems

Belady’s Anomaly

• ex. 4 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 5 5

 2 2 2 2 1

 3 3 3 3

 4 4 4

ELEC 377 – Operating Systems

Belady’s Anomaly

• ex. 4 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 5 5 5

 2 2 2 2 1 1

 3 3 3 3 2

 4 4 4 4

ELEC 377 – Operating Systems

Belady’s Anomaly

• ex. 4 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 5 5 5 5

 2 2 2 2 1 1 1

 3 3 3 3 2 2

 4 4 4 4 3

ELEC 377 – Operating Systems

Belady’s Anomaly

• ex. 4 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 5 5 5 5 4

 2 2 2 2 1 1 1 1

 3 3 3 3 2 2 2

 4 4 4 4 3 3

ELEC 377 – Operating Systems

Belady’s Anomaly

• ex. 4 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 5 5 5 5 4 4

 2 2 2 2 1 1 1 1 5

 3 3 3 3 2 2 2 2

 4 4 4 4 3 3 3

ELEC 377 – Operating Systems

Belady’s Anomaly

• ex. 4 pages, FIFO

1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 1 5 5 5 5 4 4

 2 2 2 2 1 1 1 1 5

 3 3 3 3 2 2 2 2

 4 4 4 4 3 3 3

10 page faults

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7

 0 0

 1

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2

 0 0 0

 1 1

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2

 0 0 0

 1 1

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2

 0 0 0 0

 1 1 3

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2

 0 0 0 0

 1 1 3

ELEC 377 – Operating Systems

Page Reference Strings

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2

 0 0 0 0 4

 1 1 3 3

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 4

7 7 7 2 2 2

 0 0 0 0 4

 1 1 3 3

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2

 0 0 0 0 4 0

 1 1 3 3 3

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 3

7 7 7 2 2 2 2

 0 0 0 0 4 0

 1 1 3 3 3

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 2

 0 0 0 0 4 0 0

 1 1 3 3 3 1

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1 2

7 7 7 2 2 2 2 2

 0 0 0 0 4 0 0

 1 1 3 3 3 1

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 2 7

 0 0 0 0 4 0 0 0

 1 1 3 3 3 1 1

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, Optimal

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 2 2 2 7

 0 0 0 0 4 0 0 0

 1 1 3 3 3 1 1

9 page faults

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, LRU

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7

 0 0

 1

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, LRU

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2

 0 0 0

 1 1

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, LRU

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2

 0 0 0

 1 1

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, LRU

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2

 0 0 0 0

 1 1 3

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, LRU

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2

 0 0 0 0

 1 1 3

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, LRU

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 4

 0 0 0 0 0

 1 1 3 3

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, LRU

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 4

 0 0 0 0 0

 1 1 3 3

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, LRU

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 4 4

 0 0 0 0 0 0

 1 1 3 3 2

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, LRU

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 4 4

 0 0 0 0 0 0

 1 1 3 3 2

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, LRU

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 4 4 4

 0 0 0 0 0 0 3

 1 1 3 3 2 2

ELEC 377 – Operating Systems

Page Reference Strings

e.g. 7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0,1

ex. 3 pages, LRU

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

7 7 7 2 2 4 4 4 0 1 1 1

 0 0 0 0 0 0 3 3 3 0 0

 1 1 3 3 2 2 2 2 2 7

12 page faults

• Both Optimal and LRU are stack algorithms

◊ set of resident pages for n frames is always a

subset of the set of resident pages for n+1 frames.

ELEC 377 – Operating Systems

Frame Allocation

• Minimum Number of Frames is Architecture

Dependent

◊ Instructions may straddle two pages

◊ Data referenced by instruction may straddle

two or more pages

◊ Indirection may also require more pages

• How do we allocate to more than one process??

◊ equal allocation?

◊ proportional allocation

 – number of frames proportional to size of

process

 – priority?

ELEC 377 – Operating Systems

Frame Allocation

• global vs local

• local

◊ choose from a frame already owned by

process

◊ number of frames remains fixed!!

◊ cannot surrender extra pages

• global

◊ processes can steal frames from other

processes

◊ allows pages to be reshuffled

◊ more commonly used

ELEC 377 – Operating Systems

Thrashing

• amount of memory less than locality of reference

◊ always paging out a page that you will need

very soon!

◊ CPU utilization goes down (lots of I/O)

◊ OS adds another process

• Thrashing

◊ high paging activity, low CPU utilization

◊ system spends all its time swapping pages

ELEC 377 – Operating Systems

Thrashing
• locality of reference (related storage locations being

frequently accessed) - changes over time

• reasonable minimum number of frames

◊ not absolute minimum

◊ loops + functions called from loop

 …

 int x,y;

 …

 while (x) {

 x = f(y);

 y = y+1;

 }

 …

 int f(int){

 …

 }

ELEC 377 – Operating Systems

Working Set
• amount of memory for locality of reference

◊ given a period of time (# of memory

references)

 – working set window

◊ The pages referenced over that time

◊ if the window is too small, then working set is

not entire locality of reference

◊ if window is too large, then more than locality

• Thrashing

◊ If the total size of all of the working sets is

bigger than available memory

◊ suspend one of the processes

ELEC 377 – Operating Systems

Page Fault Frequency

• instead of calculating working set, look at effect

◊ thrashing – high level of paging activity

• Monitor page fault frequency of processes

◊ set min and max rate for page faults

◊ if page fault rate is too small, then take frames

away

◊ if page fault rate is too large, then give process

more frames

◊ may have to suspend another process to give

more frames

 – over commitment of memory

ELEC 377 – Operating Systems

Segmentation
• not the same as previous segmentation

 ◊ not: text segment, data segment stack segment

• A segment is a separate logical address space.

 ◊ used for various elements of the program process

 - code, variables, heap, stack, shared libraries

 -- all get their own segment...

 - different logical entities

 ◊ Segments can be different sizes/different

 permissions (execute, modify)

◊ Segment address space is translated to a linear logical

(virtual) address.

◊ Linear logical address is passed to the paging unit

ELEC 377 – Operating Systems ELEC 377 – Operating

Segmentation

CPU
logical Seg

Unit
Page
Unit

linear

MMU
physical

Ram

ELEC 377 – Operating Systems

CPU
logical

address

limit

check

linear

address

+

s d

limit base

Segmentation

ELEC 377 – Operating Systems

Segmentation

• Used in some embedded systems

• Used in AS/400 (to some extent)

• Segment values are often stored in segment

registers.

• Not really used in many consumer systems

 C language

 Pointers are castable, single address space model

ELEC 377 – Operating Systems

Segmentation
• Intel Architecture has Segmentation

 - required

 ◊ stack operations access stack

 segment

 ◊ instruction fetches use code segment

 ◊ memory register loads use data

 segment

 - one set of segments for OS

 - one set of segments for each user programs

 - all overlay each other

 - not a separate address space for each

 segment.

 - can’t tell in advance that pointer is

 code/data/stack

