
ELEC 377 –
Operating Systems
Week 7 – Class 2

Last Class

• Virtual Memory

◊ Page Replacement Algorithms

◊ Frame Allocation

◊ Thrashing

◊ Working Set

ELEC 377 – Operating Systems

Today

• Shell Programming

◊ Important for Testing

◊ Upper level classes (CISC 327, ELEC 498)

• System Programs

◊ extension of 2nd week.

◊ Shell and related tools...

ELEC 377 – Operating Systems

Shells

• We will be covering the bash shell.

◊ there are other shells... tcsh, zsh, ash

◊ different languages, sort of like C vs Java vs

Pascal

◊ located in /bin/bash

• general structure of commands.

◊ command arg1 arg2 arg3 arg4

◊ first word on the line is the command

◊ other words are arguments

◊ arguments starting with ‘-’ are flags or switches

ELEC 377 – Operating Systems

Commands

• examples

◊ cd lab3 change directory to lab3

◊ ls -a list everything including hidden files

◊ echo foo prints the arguments to the terminal

-- output is “foo”

• some commands have multiple behaviours

depending on style of flags. Ex Process status

◊ ps auxww no ‘-’ → bsd behaviour

 list everyting in wide format

◊ ps -ef adding ‘-’ → system V

behaviour

 list everything in different format

ELEC 377 – Operating Systems

Flags

• Some flags are multi character, some are single

character

◊ find . -print

◊ ls -l

◊ ls -lt most commands allow single character

 flags to be combined (ls -l -t)

• some flags require more information

◊ find . -name ‘*.x’ -print

-name requires a pattern

ELEC 377 – Operating Systems

Wild Cards

• arguments for files can contain wild cards.

◊ simple regular expressions

◊ * → any sequence of zero or more characters

◊ ? → any single character

◊ [xyz] → x or y or z

◊ [a-z] → any character from a to z

◊ rm *~ remove all editor backup files

◊ rm * ~ remove all files and the file named ‘~’

ELEC 377 – Operating Systems

Quoting

• spaces separate arguments, no space, no

arguments

 ◊ cd/home looks for command called

 ‘cd/home’ not the command

 ‘cd’ with the argument ‘/home’

 • How do you put spaces in an argument then?

◊ “quotes”

◊ cd “foo bar” change to a directory that has a

 space in the name

ELEC 377 – Operating Systems

Variables

• Like most computer languages, the shell language

has variables...

◊ destDir=/home/student/trd/lab4/dest

 creates the variable if it does not exist

 value is the string “/home/student/trd/lab4/dest”

◊ echo $destDir

 $ used to access the value of a variable

 -- outputs ‘/home/student/trd/lab4/dest’

◊ echo destDir

 no $, no variable value

 -- outputs destDir

ELEC 377 – Operating Systems

Environment Variables

• variables are local

◊ variables are not visible to subprocesses

◊ one shell can start another

- variables not visible to nested shells (called

subshells)

◊ export FOO=”bar”

called an environment variable

traditionally named in all CAPS (but not necessary)

variable is visible to all subprocesses (passed

through exec system call)

ELEC 377 – Operating Systems

Environment Variables

• special environment variables

◊ PATH list of directories to find commands

 separated by ‘:’

 e.g. “/usr/bin:/usr/local/bin/:.”

◊ HOME your home directory

◊ SHELL the current shell

◊ USER your user name

◊ PWD the current directory

◊ SHLVL the number of nested shells

(subshells).

ELEC 377 – Operating Systems

Subshells

• starting a subshell

 student@e377:~$ echo $SHLVL

 1

 student@e377:~$ bash

 student@e377:~$ echo $SHLVL

 2

 student@e377:~$ exit

 exit

 student@e377:~$ echo $SHLVL

 1

 student@e377:~$

ELEC 377 – Operating Systems

Quoting (revisited)

• What if we want to pass a ‘$’ as an argument

• What if we want to pass a * or ? as an argument

• Two different types of quotes -- double and single

◊ foo=bar

◊ echo “$foo” stuff inside double quotes

bar is evaluated

◊ echo ‘$foo’ stuff in single quotes

$foo is not evaluated

◊ echo ‘?’

?

ELEC 377 – Operating Systems

Quoting (revisited)

• the entire argument does not need to be quoted

◊ foo=bar

◊ echo $foo’$’”$foo”xyzzy

bar$barxyzzy

◊ echo $fooxyzzy produces nothing.

why?

ELEC 377 – Operating Systems

Variable Manipulation

• {} similar to double quotes

◊ foo=bar

◊ echo ${foo}xyzzy

barxyzzy

◊ other operations understood in {}

◊ ${var:-value} if var is empty use value

◊ ${foo:-xyzzy}

bar

◊${bat:-xyzzy} assuming bat is empty

xyzzy

ELEC 377 – Operating Systems

Variable Manipulation

• {} similar to double quotes

◊ ${#var} length of value in var

◊ ${var/pattern/replacement}

 replace first pattern with replacement

◊ ${var//pattern/replacement}

 replace every pattern with replacement

◊ foo=barr

◊ echo ${#foo}

4

◊ echo ${foo/r/t}

batr

◊ echo ${foo//r/t}

batt

ELEC 377 – Operating Systems

Initialization

• several files contain commands that are executed

whenever a new shell starts

◊ .bash_profile (read whenever a login shell starts)

◊ .bashrc (read whenever any other bash shell

starts i.e. subshells)

ELEC 377 – Operating Systems

Redirection

• In unix/Linux, all processes have three files open

by when they start

◊ stdin (file decscriptor 0) is by default a read only

file connected to the terminal window

◊ stdout (file descriptor 1) is by default a write only

file connected to the terminal window

-- used for the ‘normal’ output of the command

◊ stderr (file descriptor 2) is by default a write only

file connected to the terminal window

-- used for error and other non normal messages

ELEC 377 – Operating Systems

Redirection

• Can redirect the default files from the terminal

window and hook them up to files.

◊ ls > lsout.txt put the normal output of ls

 in the file ‘lsout.txt’

◊ mycmd < infile.txt read input for my cmd from the

 file ‘infile.txt’

◊ mycmd 2> erout.txt put the error output of

 mycmd

 in the file erout.txt

◊ mycmd > out.txt 2>&1

 put the output and error output of mycmd in

out.txt (2>&1 means point 2 at the same file as 1)

ELEC 377 – Operating Systems

Pipes

• What if we want the output of one program to be

the input of another command?

◊ ls > out.txt put the normal output of ls

 in the file ‘lsout.txt’

◊ grep ‘foo’ < out.txt search for the string foo in

 the output of ls

◊ ls | grep ‘foo’ hook the output of ls to the input

 of grep ‘foo’

◊ ls 2>&1 | grep ‘foo’ hook the output and error of ls

 to the input of grep ‘foo’

◊ /dev/null is a file that throws away everything

stored in it. Good way to ignore output.

ELEC 377 – Operating Systems

Scripts

• a file containing commands to be executed

 ◊ hello.sh contains:

 #!/bin/bash

 string=”Hello World”

 echo $string

• if file has execution bit set (chmod +x filename)

then can be executed as a command...

◊ ./hello.sh

Hello World

• Otherwise, must call shell explicitly

◊ bash hello.sh

Hello World

ELEC 377 – Operating Systems

Shell Scripts

• first line of the script is a magic number line

• exec system call looks at first few bytes of any file

that is executable that is passed as a command.

◊ if the first four bytes are the magic number

 0x7f E L F then the file contains binary code

◊ if the first two bytes are ‘#!’ then the rest of the

first line of the file is the path to a command that

be executed, and passed the name of the file as

the first argument.

◊ for shell scripts, pass the path to the shell you

wish to execute (i.e. /bin/bash).

◊ if missing, then assumes the default shell....

ELEC 377 – Operating Systems

Shell Scripting

• we have already talked about assigning variables,

reading variables, running programs.

• Other language features

◊ special variables and expressions

◊ control statements (if, while, for, switch, etc)

◊ functions

ELEC 377 – Operating Systems

Shell Variables

• special shell variables

◊ $0 name of the shell script

◊ $# number of arguments

◊ $1 the first argument (same for $2, $3

...)

◊ $* all arguments separated by spaces

◊ $? exit code of last command executed

 0 means success, anything else

 means fail

% myshell a b c d e

$0 = myshell, $#= 5 $1 = a, $2 = b, ... $*=”a b c d e”

ELEC 377 – Operating Systems

Control flow - if statement

if test command ; then

 true commands

elif another test command ; then

 otherwise true commands

else

 false commands

fi

◊ check the exit status of the test commands to

determine if the statements are executed

ELEC 377 – Operating Systems

Control flow - if statement

if test -f xxx ; then xxx exists and is a file

 cat xxx

elif test -d yyy ; then

 ls yyy

else

 echo “Neither xxx nor yyy exist!!”

fi

◊ test -f name returns 0 (success) if file name

exists, 1 otherwise.

◊ test -d name returns 0 (success) if directory name

exits, 1 otherwise

ELEC 377 – Operating Systems

Control Flow - Arithmetic

if (($LIFE == 42)) ; then

 echo “everything”

else

 echo “:-(”

fi

◊ [[7 < 22]] false - string comparison

◊ ((7 < 22)) true - numeric comparison

◊ ((X = 5 + 2)) assignment allowed, 0 = false, !0

 = true

ELEC 377 – Operating Systems

Control Flow - while

((i = 1))

while ((i < 10)) ; do

 echo $i

 ((i++))

done

◊ note that ((...)) does not require $ in front of

variables (also in if statements too!!)

◊ [[]] and commands with exit status can also be

used for while condition.

ELEC 377 – Operating Systems

Control Flow - for

for var in wordlist ; do commands; done

for p in /proc/[0-9]* ; do

 echo -n “$p: “ -n = no newline, also space in

string

 grep ‘State’ $p/status find line with State

done

output:

/proc/1: State: S (sleeping)

....

ELEC 377 – Operating Systems

Control Flow - for

shift shifts the position arguments

$2 → $1, $3 → $2, $4 → $3, etc.

while (($# > 0))

do

 echo $1

 shift

done

ELEC 377 – Operating Systems

Find Command

ELEC 377 – Operating Systems

•find command

 ◊ finds files or directories that match a pattern

 ◊ find /home/student -name ‘*.c’ -or -name ‘*.h” -print

 /home/student/trd/lab0/lab0mod.c

 /home/student/trd/lab0/lab0user.c

 /home/student/trd/lab1/lab1.c

 /home/student/trd/lab4/common.h

 ...

For and Find Command - Friends!!

ELEC 377 – Operating Systems

• want to print all c (.c and .h) files in a particular

directory

 ◊ lpr filename prints a file (or stdin if no file)

 ◊ a2ps filename converts file to postscript

for i in `find /home/student -name ‘*.c’ -or -name ‘*.h” -print`

do

 a2ps $i | lpr create a postscript version and print

done

◊ $(command) same as `command`

The path least taken…

ELEC 377 – Operating Systems

• two other useful commands

 ◊ dirname path directory name of path

 ◊ dirname /a/b/c/defg.c

 /a/b/c

 ◊ dirname defg.c

 .

 ◊ basename path extension base name of file

 ◊ basename /a/b/c/defg.c .c

 defg

