
ELEC 377 –
Operating Systems
Lab 3 Tutorial

ELEC 377 – Operating

Systems

• Purpose 1 – implement synchronization

• Purpose 2 – shared memory on Unix

• Purpose 3 – separate compilation

Lab 3

ELEC 377 – Operating

Systems

Lab 3

• Skeleton Code is in SVN and on the handouts page

of the web site

 ◊ 6 files:

 -producer.c, consumer.c

 -common.h, common.c

 -makefile, meminit.c

• Makefile is used to simplify building systems

 make - with no args builds entire system

 make xxx - builds xxx

ELEC 377 – Operating

Systems

Lab 3 - User Level Code

• Programs run at the user level

• Not Kernel dependent

• Can be done on any version of Unix with shared

memory segments

 - Linux

 - Sun

 - Mac Os X

ELEC 377 – Operating

Systems

Lab 3 - System Structure

• Producer, Consumer

• Producer reads a file of characters and passes it to the

consumer through the shared memory

• Consumer reads characters through the shared

memory and prints them out

ELEC 377 – Operating

Systems

Lab 3 - System Structure

producer

shared queue

consumer

characters

test11.txt

ELEC 377 – Operating

Systems

Lab 3 - System Structure

producer

shared queue

consumer

characters

test11.txt synchronization

variables

shared memory

ELEC 377 – Operating

Systems

Lab 3 - Compile Time Structure

• mutexes are common code

◊ same code for both producer and consumer

◊ put in a common file so that both can use

 same routines

• also need to impose structure on the share memory

◊ shmat returns void *

 - pointer to arbitrary memory

◊ both consumer and producer have to have the same

view of the shared memory

 - structure definition is common to producer and

consumer

ELEC 377 – Operating Systems

Lab 3 - Compile Structure

producer.c consumer.c common.h

common.c

producer.o common.o consumer.o

producer consumer

ELEC 377 – Operating Systems

Lab 3 - Shared Memory Structure

struct shared {

 /* synchronization variables */

 int turn[2];

 int flag[2];

 int endOfFile;

 /* queue variables */

 char buffer[BUFFSIZE];

 int in;

 int out;

 int count;

}

ELEC 377 – Operating Systems

Lab 3 - Common.c

void getMutex(int pid){

}

void releaseMutex(int pid){

}

use the shared pointer to get at the shared sychronization

control variables!!

pid is the same as i in the algorithm

ELEC 377 – Operating Systems

Lab 3 - When to stop

• Use a flag in the shared memory structure to indicate

when the data is finished

• Producer reads until end of file, then sets the end of file

marker.

• Consumer

◊ When the queue is empty, check the end of file marker.

ELEC 377 – Operating Systems

Lab 3 - What you have to do
• common.c
◊ write getMutex and releaseMutex based on Bakery

solution
• producer.c
◊ read data from file
◊ add data to queue
• consumer.c
◊ read data from queue
◊ write to std out
• Transfer data one item at a time
• Nested Loops in both producer and consumer
• All access to shared data is guarded by the mutex
• No I/O in the critical section!!

ELEC 377 – Operating Systems

Lab 3 -Testing

• Think about your data

 ◊ your data should prove that

 - all of the data is transferred

 - only the data is transferred

 - the order of the data is preserved

 - no duplicates are introduced.

