
ELEC 377 –
Operating Systems
Week 8 – Class 1

Last Class

ELEC 377 – Operating Systems

• Shell Scripting

Admin

ELEC 377 – Operating Systems

• No class next Monday or Tuesday

• There IS A lab, still: Lab 4 – Part 1

• Quiz #3 moved to Thursday November 8th

ELEC 377 – Operating Systems

Today

• File Systems

◊ Concept

◊ Attributes, Operations, Types

◊ Structure

◊ Access

◊ Directory Structure

ELEC 377 – Operating Systems

File System

• Abstract Layer above secondary storage

◊ don’t worry about physical characteristics of

actual media

◊ IDE, SCSI, SNA, doesn’t matter

• Smallest allotment of secondary storage

◊ all user data is stored in files

◊ actual representation of storage is usually left

to operating system

ELEC 377 – Operating Systems

File Attributes
• Name

• Identifier

◊ unique tag, identifies the file within the file

system

◊ real name of the file

• Type

• Location

• Size

• Protection

◊ read/write/execute (UNIX)

◊ access control lists

• Time, date, user identification

◊ security

ELEC 377 – Operating Systems

File Operations

• Create

• Write

• Read

• Reposition (seek)

• Delete

• Truncate

• Open

 - implicit/explicit

 - count (per process/ system wide)

• Close

ELEC 377 – Operating Systems

File Types

• All files have some type associated with them

• OS enforced

◊ TOPS, VMS, MVS

◊ name interaction

• Program Enforced

◊ UNIX, MS-DOS, Windows

◊ File name extension is convention; only some

are enforced (.EXE, .BAT)

• Mixed

◊ Mac OS

ELEC 377 – Operating Systems

File Structure

• None (Unix/MS-DOS)

◊ Some structure recognized (executable file,

directory)

◊ sequence of bytes

• Record Structure

◊ line

◊ fixed/variable

• Mapping to Physical Devices

◊ Usually OS

◊ IBM Mainframes - can specify physical format of

files

◊ logical record size, block size

◊ fragmentation

ELEC 377 – Operating Systems

File Access

• Sequential (simple)

◊ read (updates i/o pointer)

◊ write (appends)

◊ tape model

• Direct Access

◊ read n

◊ write n

◊ goto n

◊ read next

◊ write next

n is relative block number

ELEC 377 – Operating Systems

Indexing

• Used for database style applications

• IBM BDAM/ISAM

• Implemented in libraries for OS that don’t have

record based files (dbm, gdbm on Unix, etc.)

• one file contains keys and relative block numbers

of records in the file that contains the actual data

◊ may be more than one level

◊ top level stays in memory

◊ don’t have to search the entire file, only a few

blocks

ELEC 377 – Operating Systems

Directory Structure

• Organize Files

• Partitions

• Directory maps file names to physical files

◊ stores attributes

• Operations

◊ search for a file

◊ create a file

◊ delete a file

◊ list

◊ rename a file

◊ traverse file system

ELEC 377 – Operating Systems

Directory Structure

• Single Level Directory

◊ Commodore 64, Early Dos, TRS-80, Apple II

◊ Organization difficult (small disks)

• Two Level Directory

◊ top level is directory

◊ second level is user file directory

◊ files are in user directories

◊ path concept

◊ search paths

◊ little grouping capability

ELEC 377 – Operating Systems

Directory Structure

• Tree Structured

◊ what we are all familiar with

• MS-DOS, Windows, Unix, Macintosh

• Current Directory (working directory)

◊ unique/per disk

• relative and absolute path names

◊ c:foo.txt ../a/b/c

◊ c:\foo.txt /usr/local/bin/acroread

• long path names

• search paths

ELEC 377 – Operating Systems

Directory Structure
• Acyclic – shared subdirectories

• More than one path to a directory or file

• Unix

◊ files can be shared, directories not shared

◊ directories have a unique parent

◊ symbolic links

 –file with special attributes

 –contains path (relative or absolute) to real file

or directory

• Acyclic restriction allows sharing, but simplifies

traversal

• General graph directories possible, but not really

used

ELEC 377 – Operating Systems

Mounting

• Before a directory is accessible it must be

mounted

• Operating system checks the disk to make sure it

has a valid file system on it (corrupted disk,

uninitialized disk)

• Loads information about the file system into

internal structures for future access

◊ sets up buffers

• Automatic in some operating systems (Mac, MS-

DOS)

◊ when media is detected (Mac)

◊ when file system access is attempted

(Microsoft)

ELEC 377 – Operating Systems

Mounting - explicit
• UNIX - mounting is explicit

◊ ftab file

• A file accessed through a mount point

◊ Mount points in Windows are drive letters

◊ Mount points on Mac and Amiga are file system

volume names (both are two level)

◊ Mount points in Unix are directories

◊ First mounted system is mounted at location ‘/’

 - known as the root of the file system

◊ Any directory can be used as a mount point

◊ traditional mount points are /, /usr, /usr/local,

/home, /tmp, /var

ELEC 377 – Operating Systems

Mounting - Unix

/

bin boot home usr tmp var lib

/bin/mkdir

ELEC 377 – Operating Systems

Mounting - Unix

/

bin boot home usr tmp var

bob dean fred

lib

/bin/mkdir

/home/dean/assignment1/ass1.java

ELEC 377 – Operating Systems

Mounting - Unix

/

bin boot home usr tmp var

bob dean fred bin

lib

lib local share

/bin/mkdir

/home/dean/assignment1/ass1.java

ELEC 377 – Operating Systems

Mounting - Unix

/

bin boot home usr tmp var

bob dean fred bin

lib

lib local share

bin lib share

/bin/mkdir

/home/dean/assignment1/ass1.java

/usr/local/bin/

ELEC 377 – Operating Systems

Mounting - Unix

/

bin boot home usr tmp var

bob dean fred bin

lib

lib local share

bin lib share

spool log

mail lpr

/bin/mkdir

/home/dean/assignment1/ass1.java

/usr/local/bin/

/var/log/httpd/access.log

ELEC 377 – Operating Systems

File System Implementation

• Most operating systems support more than one file

system

◊ Windows 2000 – FAT, NTFS, FAT32, ISO9660

◊ MacOS - HFS, HFS+, FAT, FAT32, ISO9660

◊ Linux - FAT, NTFS, HFS, FAT, FAT32, ISO9660,

HPFS, others

ELEC 377 – Operating Systems

File System Implementation

• The file system is composed of several levels

◊ logical file system

 - directory structure, protection, permission

◊ file organization level

 - logical block management

◊ basic file system

 - reads and writes blocks

◊ I/O control

◊ devices

ELEC 377 – Operating Systems

On Disk Structures
• boot control block

◊ block containing code to start the operating system

◊ small-not big enough to hold operating system

◊ On PCs also contains the partition table for the disk

• partition control block

◊ controls information inside of the partition

◊ number free block list and counters

◊ number and size of blocks

◊ superblock (Unix), MasterFileTable (ntfs)

• Directory Structure

• File Control Block (1 for each file)

◊ contains information about the file

◊ NTFS stores in Master File Table

ELEC 377 – Operating Systems

In Memory Structures
• Partition Control Block

◊ for mounted file systems

◊ may have more information than on disk

version

• Directory information

◊ current directory

◊ recent directories (locality of reference)

• System wide file table

◊ every open file

◊ other accounting information

• Per process file table

◊ points to system wide file table

◊ buffers and current file position for this process

ELEC 377 – Operating Systems

Opening a File
• Search Directory Structure

◊ may be cached in memory (load if not)

◊ find file identifier

• See if FCB is already in memory (System FCB table)

◊ copy into memory if not

◊ do any special inits (such as truncate file on open

for write)

◊ increment counter

• Allocate entry in process FCB table

◊ point to System FCB table

◊ allocate buffers

◊ initialize current file position

 !return pointer or index to process FCB table.!

ELEC 377 – Operating Systems

Process 1

fd: 1

Process 1

fd: 4

stdout foo

Kernel

FILE

Process 1

PCB

Process 2

PCB

1 4

arrays of struct file

File system Module

Opening a File

ELEC 377 – Operating Systems

Virtual File Systems

• As mentioned on the first slide, most operating

systems support more than one file system

◊ multiple local file systems

◊ multiple network file systems

• Virtual File System

◊ layer above file system

◊ maps file system specific view to operating

system view

• Unix inode concept

◊ does not exist in SMB file sharing (Windows)

◊ SMB to VFS interface requires generation and

caching of inode information

ELEC 377 – Operating Systems

Directory Implementation

• Linear list of names with reference to data block

◊ simple

◊ time-consuming for large directories

• Hash Table

◊ decrease directory search time

◊ fixed size

◊ collisions

ELEC 377 – Operating Systems

Allocating Disk Blocks to Files

• Contiguous

◊ IBM VM/CMS - Data Set, Partitioned Data Set

◊ blocks for a file are contiguous

◊ directory contains starting block, length

◊ fast for read/write

◊ direct access is easy

◊ problems with size, fragmentation (same as

memory)

ELEC 377 – Operating Systems

Allocating Disk Blocks to Files

• Linked Allocation

◊ directory gives first and maybe last block in file

◊ each block has a pointer to next block

◊ less data stored in each block (alt. FAT)

◊ direct access is not nearly as easy (follow

chain)

Directory

ELEC 377 – Operating Systems ELEC 377 – Operating

Systems

ELEC 377 – Operating

Systems

Allocating Disk Blocks to Files
• Linked Allocation

◊ Fat Allocation

◊ blocks grouped together into clusters (MS-DOS)

◊ 16 bit - 65536 clusters

◊ 128K reserved for link table (small enough to keep in

ram)

◊ table is indexed by block number, and gives the next

block in the chain

◊ data block now contains only data

ELEC 377 – Operating Systems

Allocating Disk Blocks to Files

• Indexed Allocation

◊ Use one or more disk block for the file that

contains the pointers to the data bocks

◊ more overhead

◊ direct access into file is easy

◊ May need more than one index block

 - linked list

 - tree (internal nodes are index, leafs are data)

 - combined (Unix)

 - 80 - 20 distribution

ELEC 377 – Operating Systems

Allocating Disk Blocks to Files

File

Attributes

Data

Data

Data

Data

