
ELEC 377 –
Operating Systems
Week 8 – Class 2

Last Class

ELEC 377 – Operating Systems

• File Systems

◊ Directory Structure

◊ Mounting

• File System Implementation

◊ Introduction

Admin

ELEC 377 – Operating Systems

• No class next Monday or Tuesday

• There IS A lab, still: Lab 4 – Part 1

• Quiz #3 moved to Thursday November 8th

ELEC 377 – Operating Systems

Today

• File System Implementation

• I/O Hardware

ELEC 377 – Operating Systems

File System Implementation

• The file system is composed of several levels

◊ logical file system

 - directory structure, protection, permission

 - metadata

◊ file organization level

 - logical block management

◊ basic file system

 - reads and writes blocks

◊ I/O control

◊ devices

ELEC 377 – Operating Systems

Disk Devices

Track

Physical Block/

Sector

• Cylinder - the same track on all platters

ELEC 377 – Operating Systems

Disk Drives

• logical blocks (Macintosh), or clusters (MS-DOS),

is operating system concept

◊ disks are divided into partitions (usually on

cylinder boundaries)

◊ blocks within partition are numbered by most

operating systems

 - logical block number

◊ HFS and FAT limited to 16 bit numbers -

 65536 logical blocks

◊ 2 G partition has 4294967296 physical blocks

◊ 16K physical blocks per logical block

◊ logical block for 2G partition is 8K in size

ELEC 377 – Operating Systems

On Disk Structures

• boot control block

◊ block containing code to start the operating

system

◊ small- not big enough to hold operating system

• partition control block

◊ controls information inside of the partition

◊ free block list and counters

◊ number and size of blocks

◊ superblock (Unix), MasterFileTable (ntfs)

• Directory Structure

• File Control Block (1 for each file)

◊ contains information about the file

◊ NTFS stores in Master File Table

ELEC 377 – Operating Systems

Opening a File
• Search Directory Structure

◊ may be cached in memory

◊ find file

• See if FCB is already in memory (System FCB table)

◊ copy into memory, if not

◊ do any special inits (such as truncate file on open

for write)

◊ increment counter

• Allocate entry in process FCB table

◊ point to System FCB table

◊ allocate buffers

◊ initialize current file position

 !return pointer or index to process FCB table.!

ELEC 377 – Operating Systems

Process 1

fd: 1

Process 2

fd: 4

stdout foo

Kernel

FILE

Process 1

PCB

Process 2

PCB

1 4

arrays of struct file

File system Module

Opening a File

ELEC 377 – Operating Systems ELEC 377 – Operating

Sequential Reading From a File
• Use pointer or index to access process FCB table

• Is current position pointer at end of the current block

buffered in memory?

◊ copy data to user buffer, if not

◊ if more data, or the position pointer is at end of

the currently buffered block, ask file system for

next block

◊ use pointer from process FCB to get System FCB

 - for continuous files, read next block on disk

 - for linked files, find the link and access

 - for indexed table go to index node (in memory)

and get next block

◊ return pointer-buffered block to process level

◊ copy rest of data to user memory.

ELEC 377 – Operating Systems ELEC 377 – Operating

Closing a File

• use pointer or index to access process FCB

• use pointer from process FCB to find system FCB

◊ decrement counter

◊ if counter is 0 (last process with file open) then

mark FCB for deletion

 - will be flushed when out of system FCBs and

we have to reuse system FCBs. Otherwise still

in memory if another file opens it before we

reclaim the block

 - lazy tends to do well in OS.

• free process FCB

ELEC 377 – Operating Systems

Virtual File Systems

• As mentioned earlier, most operating systems

support more than one file system

◊ multiple local file systems

◊ multiple network file systems

• Virtual File System

◊ layer above file system

◊ maps file system specific view to operating

system view

• Unix inode concept

◊ does not exist in SMB file sharing (Windows)

◊ SMB to VFS interface requires generation and

caching of inode information

ELEC 377 – Operating Systems

Directory Implementation

• Linear list of names with reference to data block

◊ simple

◊ time-consuming for large directories

• Hash Table

◊ decrease directory search time

◊ fixed size

◊ collisions

• B-Tree

◊ stores indexed records on disk (Index files)

◊ records contain a parent id (used to build the

directory hierarchy)

ELEC 377 – Operating Systems

Allocating Disk Blocks to Files

• Contiguous

◊ IBM VM/CMS - Data Set, Partitioned Data Set

◊ blocks for a file are contiguous

◊ directory contains starting block, length

◊ fast for read/write

◊ direct access is easy

◊ problems with size, fragmentation (same as

memory)

ELEC 377 – Operating Systems

Allocating Disk Blocks to Files

• Indexed Allocation

◊ Use one or more disk block for the file that

contains the pointers to the data bocks

◊ more overhead

◊ direct access into file is easy

◊ May need more than one index block

 - linked list

 - tree (internal nodes are index, leafs are data)

 - combined (Unix)

 - 80 - 20 distribution

ELEC 377 – Operating Systems

Allocating Disk Blocks to Files

File

Attributes

Data

Data

Data

Data

ELEC 377 – Operating Systems

Free Space Management

• Reclaim lost space

◊ Mainframes take easy way out (Track

allocation, regeneration)

◊ keep track of free blocks (file alloc, file delete)

• Bit Vector (like FAT link map)

◊ one or more blocks (overhead)

◊ each bit represents a data block on the system

◊ easy to get contiguous space

◊ OK for smaller disks

• Linked List

◊ link all free blocks into a list

◊ no overhead

ELEC 377 – Operating Systems

Free Space Management
• Grouping

◊ lists of pointers (multi level)

◊ link free blocks into a tree, group by disk

location

• Counting

◊ blocks often allocated and released in groups

◊ usually several blocks together

◊ First free block contains count of the number of

contiguous blocks and a pointer to next group

5

3 3

ELEC 377 – Operating Systems

Efficiency and Performance
• Efficiency

◊ dependent on use of system

◊ 80 – 20 (% indexing)

◊ fragmentation (three meanings)

• Performance

◊ disk cache/page cache

 – unified virtual memory

◊ unified buffer cache

◊ sequential read - FIFO buffer replacement

 -free behind - free the page as soon as next page

is accessed

 - read ahead - read next page before it is

accessed

◊ ram disk

ELEC 377 – Operating Systems

Recovery
• Consistency checking

◊ fsck on unix

◊ walk file system and make sure no errors

 - blocks both in file and on free list

 - inodes with incorrect dates

• Journaled File Systems

◊ transaction based

◊ reliable log is used

 – usually several data blocks in the file system

 – actions are written to log and put on disk before

action is taken, then removed from log

 – don’t have to check entire disk, just look at files

who have entries in the log

ELEC 377 – Operating Systems

I/O Hardware
• Large Varieties of I/O devices

• Common Concepts

◊ ports

◊ Bus

 - daisy chain

 - shared direct access

◊ Controller

• I/O instructions control the devices

• Devices have addresses

◊ direct I/O instructions

◊ memory mapped I/O

◊ mixture

ELEC 377 – Operating Systems

I/O Hardware

• Many buses that interact with each other

◊ PCI bus

◊ SCSI bus

◊ IDE bus

• Communicate with controllers

◊ Registers

 - status register

 - control/command register

 - input register(s)

 - output register(s)

ELEC 377 – Operating Systems

Polling - busy waiting

• Status Register

◊ busy bit - controller is busy

• Command Register

◊ command ready bit

Device driver loops checking busy bit

◊ origin of term busy wait

◊ only useful if device is fast. If device is slow,

then a lot of CPU cycles are wasted

ELEC 377 – Operating Systems

Interrupts
• Interrupt current process on CPU

◊ transfer to interrupt- handler

• Usually multiple interrupt vectors

◊ limited number of interrupt vectors so some devices

have to share the vector (handler chaining)

◊ don’t have to check status register of every device

• Multiple levels of interrupts

◊ priority of interrupts

◊ some interrupts can be masked (disabled)

◊ multiple level interrupts (used to divide handlers)

• Interrupts also used for exceptions (divide by zero) and traps

are system calls.

ELEC 377 – Operating Systems

DMA
• Direct Memory Access

◊ some devices (Disk Drives, Network Controllers)

transfer data in blocks

• Transferring the data in and out of the controllers one

byte at a time is waste of CPU cycles

◊ give the controller access to the memory bus

◊ DMA controller for the bus mediates the transfer

◊ Controller tells DMA controller ready to transfer

data, DMA holds memory bus for controller

◊ CPU is interrupted when memory transfer is done

• DMA steals cycle from CPU access

◊ slows down current process

◊ gain from hardware (especially for VM)

ELEC 377 – Operating Systems

DMA

• DMA controller might use physical address

◊ OS does translation of addresses when

loading DMA registers

◊ buffers must be contiguous in physical memory

• DMA might use logical address

◊ MMU between DMA controller and memory

 – buffers might not be contiguous in memory

ELEC 377 – Operating Systems

Device Driver Interface
• View to the application program

◊ view to OS

• Devices are abstracted into several classes of

devices

◊ abstract differences in devices

 – IDE disk vs SCSI disc

 – many “equivalent” devices

◊ common I/O commands for other parts of OS

(e.g. file system) and application programs

◊ extend with mechanism for issuing special

commands (ioctl in UNIX)

◊ different approaches between different

operating systems

ELEC 377 – Operating Systems

Types of Devices

• Character Devices

◊ byte at a time

◊ USB, modem, keyboard, mouse

• Block devices

◊ minimal unit of transfer is a block

◊ ideal for DMA use

◊ disk drives, tape drives, network interfaces

ELEC 377 – Operating Systems

Other Parameters

• Sharable/Dedicated

◊ more than one process can access at a time

• Device Speed

◊ very wide range of speed

• I/O direction

◊ CD-ROMs are read only.

◊ Other devices are write only (some printers)

ELEC 377 – Operating Systems

Network Interface
• Low level device driver is block driven (packets)

• Application level is character stream driven

(TCP/IP)

◊ sockets

◊ look like files

• Application level is also block driven (UDP/IP)

• select()

◊ In UNIX terminals look like files

◊ programs had to read from more than one

terminal at a time

◊ extended to networks

• All other sorts of interfaces (FIFO’s, streams,

queues, mailboxes, etc.)

ELEC 377 – Operating Systems

Clocks and Timers

• Real Time

◊ current time

◊ usually only read at startup

◊ elapsed time

◊ INTERRUPTS

• OS Schedules timer interrupts

◊ limited number of timers

◊ Round Robin Scheduler need the timer as well

◊ Used to run the OS Clock

