
A Comparison Framework for Simulink Model Clone Detection
Matthew Stephan, Manar Alalfi, James Cordy, Tom Dean, Andrew Stevenson

Software Technology Lab, Queen’s University, Kingston, Ontario

Model Clone Detection

Finding duplicate or similar fragments in higher-level representations

Figure 1. Example from Simulink automotive example model set showing, like code clones, model clones can cross

structural and hierarchical levels.

Model Sets

Publicly
Available

Models

• “Matlab Central” Repository

• 5 Projects + Others

Industrial
Partner’s

Models
• Automotive Industry

Initial Results

Acknowledgements

This work is supported in part by NSERC, as part of the NECSIS Automotive

Partnership with General Motors, IBM Canada and Malina Software Corp. Benjamin

Hummel has been very helpful in providing advice and the assistance with model

sets and ConQAT.

Figure 4.

Venn diagram of SIM

communication system

Existing Approaches

 Graph-Based

1. ConQAT

2. eScan,aScan

3. Naïve Clone

Detector

 Text-Based

1. Simone (Our Tool)

Figure 2. Graphical representation of model clone

Figure 3 Textual representation of a Simone

model system clone

Purpose of Investigation & Evaluation Areas

Strengths

Weaknesses

Evaluate Simone

Particularly interested in which methods

are better suited to identify frequent sub-

model patterns in large model sets, a goal

of our industrial partners.

Relevance

Performance

Clone Detection Type

User Interaction Required

Adaptability

Model Pattern Granularity

Challenges Faced

Of all the system clones in existence, how
many of them will be found by each respective
tool.

Recall

Nature of reported clones may differ:

*One enforces (sub-)system
 boundaries while the other does not;

*Nested clones as shown in Figure ->

Nature

The representation of the resulting clone classes
and instances from each tool may be different
and require some form of normalization

Representation

Proposed Solution –

Extend Framework with Mutation Analysis

Use mutation operators that will introduce variations of the 3 clone types and look for

the resulting mutations, explicitly. Some sample mutation operators we have begun

working with include:

Rename
Block or Line

Changing a
Block’s Value

Changing a
Block’s Type

Adding or
Deleting a

Source Block

Adding or
Deleting a

Destination Block

Simone:

