
University of Waterloo
Software Engineering

“Analysis of Rational ClearCase as an
Extreme Programming Tool”

CIBC Mortgages Inc.
Toronto, Ontario

Created By:

Matthew Stephan
ID xxxxxxx
mdstepha

2B Software Engineering
May 10, 2004

Matthew Stephan
X
X
X

May 10, 2004

Professor Joanne Atlee
Director of Software Engineering
University of Waterloo
Waterloo, Ontario
N2L 3G1

Dear Professor Atlee:

The following report, entitled “Analysis of Rational ClearCase as an Extreme
Programming Tool”, has been prepared for CIBC Mortgages Inc. as my 2A work
report. This is the second work report that I have completed. The purpose of
the report is to analyze the effectiveness of the software tool Rational ClearCase
when it is used in conjunction with the Extreme Programming development
methodology. The report was written with the intention of allowing people who
possess a fundamental understanding of software development to be easily able
to grasp and retain the concepts and ideas presented in this report. Sufficient
information will be provided regarding Rational ClearCase and Extreme
Programming, thus ensuring that the audience indicated will not find the
material overwhelming.

CIBC Mortgages Inc. provides mortgages and money lending to a significant
amount of consumers in order to allow these people to purchase homes without
having all the required capital necessary to obtain a house.

My placement at the company was with the Intranet/Internet team, and I was
under the direct supervision of Mirek Zyskowski. As part of the CIBC
Mortgages Inc. Information Technology department, my team was responsible
for amending and maintaining the Intranet and Internet sites for each of the
individual departments that belong to CIBC Mortgages Inc.

I would like to acknowledge Mirek Zyskowski of CIBC Mortgages Inc. for
furthering my understanding of Rational ClearCase and its applicability to
developing software efficiently. I would also like to thank Frankie Stephan for
the assistance she provided via proofreading this report.

I hereby confirm that I have received no help other than what is mentioned
above in writing this report. I also confirm this report has not been previously
submitted for academic credit at this or any other academic institution.

Sincerely,

Matthew Stephan
ID xxxxxxx

iii

Contributions

The Information Technology department at CIBC Mortgages Inc.

(CMI) consists of approximately two hundred employees. This

department is comprised of numerous different teams, each run by the

team’s respective manager or project leader. Some teams have a very

active role in selling mortgages to customers via creating and

maintaining the software that the CMI mortgage sellers use when

acquiring a customer, while other teams perform a more passive function

by means of providing internal support to other departments and

ensuring that all hardware and software is operating within normal

parameters.

My duties at CMI entailed me joining one of the more passively

involved teams, the Intranet/Internet team. This team consisted of three

members: my supervisor, another university level student, and myself.

The Intranet/Internet team was responsible for ensuring that both the

Intranet and Internet Web sites for each of the departments that

comprise CMI were updated and maintained as frequently as needed.

The Intranet sites were the Web pages that could be viewed only by

employees of CMI, while the Internet sites were the Web pages that were

visible to everyone. The team had to respond to requests from different

departments regarding a myriad of different issues, ranging from adding

an application, amending documents, or modifying the aesthetical

appearance of a site. The overall team goal was to respond quickly and

efficiently to any problems or updates that the other departments

deemed necessary for our attention. Since the other departments that

encompass CMI were, in fact, the team’s customers, a related goal was to

ensure that our customers were dealt with pleasantly and were

encouraged to maintain an open line of communication regarding each

update that was being performed.

iv

In the past, the Intranet/Internet team at CMI had never utilized

university students, thus forcing my supervisor to assume full and sole

responsibility of both the Intranet and Internet sites. This implied that he

was forced to perform his normal development tasks while performing

the Intranet/Internet team tasks as well. This was deemed too

overwhelming for one person to cope with and it was decided that it

would be prudent to bring in university students to join the team. My

responsibilities were to assume a significant amount of the related tasks

that the team received in order to help alleviate the pressure that was

plaguing my supervisor. I performed a considerable amount of updates

daily, including creating and modifying interactive Web forms, updating

Web pages for both aesthetics and content, developing and maintaining

the software required to run the pages, and a multitude of other tasks.

Since multiple members of the CMI Intranet/Internet team work

on the same files at different times throughout the course of a project or

a task, it is quite logical that the team would utilize some sort of tool to

ensure that the correct version of the files are being worked on and that

synchronicity is achieved throughout the project. The particular tool

that the team, and many other departments within CMI Information

Technology, used to satisfy these concerns was Rational ClearCase (or

ClearCase). An issue that arose when a tool such as ClearCase is used is

the question of whether or not the tool is compatible with the specific

software development methodology that the team chooses to employ.

The methodology that the Intranet/Internet team utilized was the

Extreme Programming (XP) methodology. Working with both ClearCase

and XP it became quite apparent to me that there were both benefits and

shortcomings that arose when the two were used in conjunction with

each other, and thus spawned the basis for this report.

v

The majority of departments in the CMI Information Technology

group utilize ClearCase for the purpose of ensuring that consistency is

maintained regarding files, and most of the departments utilize some, if

not all, of the XP practices. Thus, the work and analysis that is

accomplished in this report will allow the company to re-evaluate the way

that they are using ClearCase, and subsequently, make the changes

necessary to guarantee that ClearCase is used as efficiently and correctly

as possible when working in conjunction with XP.

vi

Executive Summary

The following report scrutinizes the utilization of ClearCase when it

is used in conjunction with the Extreme Programming (XP) software

development methodology. Background information is provided on XP

and ClearCase in order to facilitate a better understanding of the

analysis that is provided. Once that has been accomplished, the XP

practices that are affected by ClearCase are examined and the benefits

and shortcomings of each are considered. Conclusions are then drawn

regarding ClearCase’s ability to act as an XP tool. Lastly,

recommendations are made regarding the way that ClearCase’s

inadequacies concerning XP can be diminished.

The principal objective of this report is to provide developers and

project managers a basis for determining whether or not they should use

ClearCase in their XP projects. Although the benefits overshadow the

shortcomings, the developers or the managers may determine that the

deficiencies are too severe to compensate for. Since the majority of

departments situated in CIBC Mortgages Inc. use ClearCase and XP, the

scope of this report reaches the bulk of the company. Project managers

and lead developers will find the report the most relevant, because they

are the ones who oversee the execution of the XP practices. The scope of

the report only touches on the four XP practices that are affected by the

use of ClearCase.

For each of the four practices analyzed, the advantage of using

ClearCase pertaining to those practices is quite evident. The testing

practice is facilitated by allowing developers the ability to easily acquire

the most recent versions of the tests, as well as use the ClearCase

version history feature to view recent changes that may have affected test

results. Refactoring using ClearCase is efficient because ClearCase has a

vii

merge feature that allows multiple users to simultaneously work on a file

and be able to merge it after both developers are finished making their

amendments. The continuous integration XP practice is practically

performed automatically by ClearCase, which is a significant benefit.

The collective ownership practice is also performed inherently, because

ClearCase is based upon allowing multiple users to work on the same

files.

Notable weaknesses that ClearCase has for an XP project include

the need to constantly retrieve the newest versions of the tests, the way

that many teams neglect application and user testing due to lack of a

integration machine, the requirement of updating developer’s projects

each time refactoring is performed, and the fact that all developers are

able to modify the system’s tests. Despite these failings, ClearCase still

proves to be an effective and useful XP tool.

The respective recommendations for dealing with the

aforementioned weakness is to have tests modified by specific people at

certain times only, make an integration machine mandatory for all

development teams at CMI, have refactoring performed only in a refactor

phase of a project or during emergencies, and have restrictions placed on

the modification of the system’s tests.

Since CMI already uses ClearCase and the XP development

methodology, they must attempt to rectify the shortcomings as hastily

and correctly as possible if they wish to minimize the problems that can

occur when the two are used in conjunction.

viii

Table of Contents

Contributions..iii
Executive Summary ..vi
List of Figures ...ix
List of Tables..x
1. Introduction .. 1
2. Background Information.. 4

2.1 Rational ClearCase ... 4
2.2 Extreme Programming .. 6

2.2.1 Testing .. 7
2.2.2 Refactoring.. 8
2.2.3 Continuous Integration ... 8
2.2.4 Collective Ownership ... 9

3. Analysis: ClearCase as an XP Tool ... 10
3.1 Testing.. 10

3.1.1 Benefits... 11
3.1.2 Shortcomings .. 12

3.2 Refactoring ... 12
3.2.1 Benefits... 13
3.2.2 Shortcomings .. 13

3.3 Continuous Integration ... 14
3.3.1 Benefits... 15
3.3.2 Shortcomings .. 16

3.4 Collective Ownership... 16
3.4.1 Benefits... 17
3.4.2 Shortcomings .. 17

4. Conclusions .. 18
5. Recommendations ... 19
References... 21
Acknowledgements.. 22
Appendix A: The 12 Practices of XP ... 23

ix

List of Figures

Figure 1: The ClearCase Development Cycle. ... 6
Figure 2: XP Testing Phase being accomplished via ClearCase 10
Figure 3: Continuous Integration and ClearCase.. 15
Figure 4: Synergy between the XP Practices... 24

x

List of Tables

Table 1: Basic Features of a SCM Tool ... 2
Table 2: Underlying Steps in the ClearCase Process............................... 5
Table 3: Summarization of the 12 XP Practices 23

1

1. Introduction

Understandably, when various developers are working together on

common files, it is a logical progression to realize that many conflicts can

occur regarding file synchronicity and version problems. Without

protection against such conflicts, developers can accidentally edit the

wrong version of a file, amend or delete a file while another programmer

is using that file, or have an application/program that functions

differently than another developer due to an inconsistency of files

between the two members of the team. These problems make developing,

managing, and testing software significantly more onerous than it should

be.

Recognizing that these issues needed to be addressed, makeshift

solutions were created and used by many developing teams. An example

of such a solution was to have one or more members, of the team acting

as the project “librarian”. This person distributed the software that was

to be amended to other team members, meticulously took down which

team members were working on which files, and recorded the new

versions as soon as people had submitted their changes back to the

librarian. [4] This process was flawed and proved to be inefficient and

impractical, especially considering the demand of the fast-paced

environment that is frequently associated with software development. As

the complexity and magnitude of software projects continued to increase

so did the need for an effective way to deal with these problems. This

instigated the creation of a new genre of software tools, known as

Software Configuration Management (SCM) Tools.

An SCM tool combats problems associated with maintaining file

consistency and version regularity. It automates a substantial amount of

the processes that are required to perform effective SCM. Projects are

2

becoming so immense and intricate that “an SCM tool is an essential

part of every software engineer’s tool kit today.”[4] Table 1 displays the

basic features inherent in any SCM tool. These features are the

fundamental and defining criteria for a SCM tool to be successful and are

the main focus of early SCM tools, such as the source code control

system (SCCS) and the revision control system (RCS). [4] Both the SCCS

and the RCS implement the basic version-control features shown in

Table 1, thus eliminating the need for having a member of the team act

as a librarian. For many of the elaborate and substantial projects that

exist today, the SCM necessary to have a project run as smoothly as

possible requires an SCM tool that is more functional than the SCCS or

the RCS. More advanced SCM tools must allow larger project teams to

be able to deal with the new and multifaceted problems that face

developers today.

Basic Version-Control Feature

To maintain a library or repository of files

To create and store multiple versions of files

To provide a mechanism for locking files

To identify collections of files

To extract/retrieve versions of files from the file repository

 Table 1: Basic Features of a SCM Tool. Taken from [4]

One such tool that has become exceedingly popular among

software development teams, including the teams at CIBC Mortgages Inc.

(CMI), is the Rational Software product entitled ClearCase. ClearCase is

a SCM tool that not only provides the basic functions for file consistency,

but also is a product that is able to work in conjunction with project

management tools and third-party development utilities. [3] ClearCase,

in conjunction with Rational Software’s ClearQuest, is a major

3

component of the unified change management (UCM) method, which

entails bringing together all the tasks that relate to changing software

and tracking the changes of a project. [4] The utilization of ClearCase is

becoming extremely wide spread. Developers and managers continue to

ascertain whether or not the software development strategy that they are

using is compatible with ClearCase.

A development methodology that is often used concurrently with

ClearCase is Extreme Programming (XP). XP, original conceived of by

Kent Beck, is one of the fastest growing and new-age software

development approaches that are in use today. [1] The fundamental

ideology behind XP is that it takes the 4 software development activities:

coding, testing, listening, and designing, and attempts to perform these

activities constantly and immensely. [2] XP utilizes 12 practices in order

to accomplish its goal of deliver software both proficiently and swiftly.

SCM tools are not applicable to all of the 12 practices that

comprise XP, but since such a high emphasize is placed on having the

practices work in harmony, it is imperative that the SCM tool that is

being used ensures that the related practices are being executed

effectively. As was noted in CMI’s use of ClearCase and XP, this is not

always the case. Variances in the way ClearCase is utilized can cause

practices to be neglected or hindered and can seriously damage the

effectiveness of a team.

This report will provide a summary of ClearCase, and XP. An

analysis of ClearCase’s effectiveness as an XP tool will be presented and

elaborated upon. Conclusions will be made concerning the analysis, and

lastly, recommendations will be stated that will allow ClearCase to be

used optimally as an XP device.

4

2. Background Information

2.1 Rational ClearCase

ClearCase is a SCM tool that allows developers to make numerous

amendments to files situated within a project without having to worry

about problems like file synchronization and file version inconsistencies.

It is compatible with a significant amount of systems, including, the two

industry standards, Microsoft Windows and Unix. It has proven effective

in a myriad of different types of software projects including application

software, Web projects, financial applications, and many more. [4]

Having the ClearCase Administrator properly setup ClearCase is

paramount to the success of any ClearCase implementation. The

administrator tends to be a person who has a thorough comprehension

of the system architecture and the overall design structure of the project.

The setup of ClearCase entails defining and organizing the structure of a

ClearCase view. A view can be described as a layout of all the directories

and files situated in a project. [3] It is analogous to taking a photograph

of the project’s data and allowing this information to be perused and

retrieved by developers.

Once the view is setup, the true ClearCase process is ready to

commence. Table 2 provides a summarization of the ClearCase

progression as it applies to a standard development project. Steps 1 and

2 of the table are preliminary steps that are done by the ClearCase

Administrator and the Project Manager, respectively. The developers and

the ClearCase Administrator accomplish the remaining steps. This set of

steps, steps 3 to 8, can often be done out of order or repeatedly if the

need to do so arises.

5

Description of Step

1. Software files and directories are organized into versioned

components.

2. Project managers create projects and assign project teams to work on

these components.

3. Developers make changes to components, files, and directories based

on assigned activities.

4. New file and directory versions are collected during development and

associated with activities.

5. Activities and their associated change sets are delivered and

integrated in a shared project integration area.

6. New component baselines are created, tested, and promoted.

7. Component baselines are assembled into a system.

8. Systems are tested and released.

Table 2: Underlying Steps in the ClearCase Process, Acquired from [4]

One of the most advantageous and noteworthy features of

ClearCase is that, after the ClearCase application has properly been

setup and configured, it is extremely easy to use and is also quite helpful

to developers. As seen in Figure 1, after a developer joins a project, they

enter a straightforward and efficient cyclic process. The Make Changes

element of the cycle has the developer “check out”, or reserve, the file or

files that they wish to work on, and then institute the amendments they

desire. To ensure file synchronization, ClearCase ensures that only the

most recent version of the file is accessed and modified and that the file

is not checked out or reserved by any other developer on the team. That

is, ClearCase informs the user that they must update the local version of

the view that is on their machines, also known as a workspace. This

updating is what is done in the Update Workspace component of the

cycle. Whenever a developer decides it is time to update their workspace,

ClearCase determines the variances between the files and updates the

user’s workspace accordingly by adding, changing, or removing files that

6

comprise the view. The Deliver Changes part of the cycle has a developer

finish their alterations to a file or a directory, and then “check in”, or

return, their modification in order for the view to be updated. That

element is now available for all the other members of the team to amend,

assuming they first update their view. Developers are able to continually

navigate through this cycle without being concerned with the main

problems associated with SCM.

Figure 1: The ClearCase Development Cycle. Taken from [4]

2.2 Extreme Programming

One software development approach that has proved successful in

a multitude of different projects, including the ones conducted at CMI, is

XP. A relatively new and radical methodology, XP’s main philosophy is to

take the 4 basic software creation activities and perform them to the

extreme. [2] These activities are coding, testing, listening, and designing.

Coding involves the actual creation of code that is used when

manufacturing a program. This activity is the constructing and

documenting of the code required to have an application function.

Testing entails producing and executing the tests necessary to ensure

that a program is functioning as expected. The listening activity

necessitates having the developers or the developer’s manager listen and

communicate with the business side of a project in order to guarantee

that the program fits well with the customer’s needs. The final activity is

designing which requires the project manager and lead developer to get

7

together and work out how the project’s resources can be effectively and

practically managed. [1]

In order to perform the 4 basic development activities as intensely

as possible, XP exploits 12 practices that are to be performed while

developing software. Table 3 in Appendix A contains a brief description

of each of the 12 practices. These practices are the true crux of XP and

are the justification that the methodology is considered so revolutionary.

It is crucial that these practices are followed as closely as possible

because, as exhibited in Figure X located in Appendix A, “the practices

support each other. The weakness of one is covered by the strengths of

others.” [2] This implies that if one of the practices is neglected then all of

the other practices will be hindered in terms of success. This

interdependency between the practices is what sets XP apart from all

other development methodologies and is what causes XP to be especially

successful, when executed correctly. [1]

Since ClearCase only relates to and affects a subset of the XP

practices, it is prudent to elaborate on only those practices. Although

Appendix A contains a summarization of all 12 practices, having a better

understanding of the practices that are affected by ClearCase will

facilitate the comprehension of the analysis that is being presented.

2.2.1 Testing

The testing practice in XP entails having a developer create

automated tests for each of the software components before the code is

actually written. The tests do not cover every aspect of an application;

rather the tests envelop “only production methods that could possibly

break.” [2] Once the tests are created, any changes made to a project

component must pass these tests. If amendments cause the software to

8

fail the test, then the modifications are not incorporated in the main

software repository. By creating the tests before the software is created,

developers are easily able to identify where and when problems have

arisen, and are capable of attaining a new level of confidence regarding

the functionality and correctness of their code.

2.2.2 Refactoring

The XP practice of refactoring involves having a developer

determine if there is a way to simplify an existing feature in a program

that will still allow the tests for that program to run successfully. [2]

Since each of the application’s tests already exists, refactoring can be

performed without being concerned about unduly modifying a system’s

functionality. Refactoring is performed after a feature has been added, or

if it has become necessary to duplicate code, thus implying that

simplification is warranted. [1] This practice ensures that the project’s

code is both simple and functional.

2.2.3 Continuous Integration

The continuous integration process necessitates the amalgamation

of all of the recent code amendments to a dedicated integration machine

at least once a day. This machine hosts the most recent version of the

entire application and allows user and efficiency testing to be performed.

Each member of the team integrates their recent changes into the

machine, and then guarantees that all of the system’s tests pass. [1]

Since only one person integrates their changes at a time, any failures in

the system’s tests are conspicuously the fault of the person currently

integrating, especially since the person who integrated previous left the

system’s tests at 100%. [2] Continuous integration ensures that all of the

project’s components successfully interact with each other.

9

2.2.4 Collective Ownership

Collective ownership is as much an idea as it is a practice. What it

entails is having every member on the team be equally responsible for

every component of the project. In the previous software development

methodologies ownership of code was the sole responsibility of the

member who created it. If other members of the team saw fit to change

that code, they were forced to contact the owner and submit a

request. [2] The XP concept of ownership allows any member of the team

to simplify code if an opportunity to do so presents itself. Since all

members of the team have at least a basic understanding of every

component in the system, they should be able to ascertain whether an

amendment is warranted. Since tests must run successfully after the

modifications to the code, the other members of the team do not have to

be concerned with the possibility of a change in functionality.

10

3. Analysis: ClearCase as an XP Tool

Although ClearCase is often used in conjunction with the XP

methodology, the effect that ClearCase has on the individual practices is

rarely considered due to the popularity and availability of the product. It

is quite probable that the structure and processes involved with

ClearCase may, in fact, hinder one or more of the practices. Thus, the

appropriate practices are analyzed below.

3.1 Testing

ClearCase facilitates the XP practice of testing by having

programmers add the component and the component’s respective tests

into the software repository. As exhibited in Figure 2, testing occurs on

a continual basis via having the developer “check out” the component

that they desire with ClearCase, then performing amendments on the file

and ensuring that those amendments pass all tests, and lastly, placing

the file back into the file repository through ClearCase. As seen in the

figure, the aforementioned cycle does not begin until the tests and the

code itself has been positioned inside the file repository.

Figure 2: XP Testing Phase being accomplished via ClearCase

11

3.1.1 Benefits

Once the initial code and tests are placed in the repository, testing

using ClearCase becomes extremely rudimentary. ClearCase facilitates

XP testing by allowing developers to easily obtain the latest versions of

the tests and code frequently without having to be apprehensive about

having an incorrect version of the files. If ClearCase was not being

utilized, it is very feasible that two developers would be working on the

same component at the same time.

Another advantage of ClearCase in regards to the XP testing

practice is the version history that ClearCase provides. The version

history feature allows a member of a ClearCase project to view the list of

people who have modified an individual file. It also shows the respective

changes that each person made. This proves advantageous in a number

of situations. The first situation is when a developer decides that the

functionality of a program should change, and thus, changes the tests

and code for that component accordingly. If the original creator of that

code views the newly modified code and tests, they may not be aware of

what instigated the change in functionality. They could then contact the

team member who modified the code and ascertain what the justification

for the amendment was. The second situation that the version history

feature proves worthwhile is in the rare instance that a developer has

modified code without certifying that all the tests for that component

have passed. In this instance, that developer can be tracked down and

informed of their mistake in order for them to rectify it.

A more abstract benefit of ClearCase concerning the XP testing

practice, is that it provides developers a clear-cut way of determining the

appropriate procedure for performing their code changes. A project that

does not utilize ClearCase may not run their tests consistently or at the

12

appropriate time. However, with ClearCase, developers are well aware

that all of the application’s tests must be run and successfully passed

before the changes are checked in to the file repository.

3.1.2 Shortcomings

The most notable failing that ClearCase has pertaining to the XP

testing phase is the requirement of all the developers to continually

update the files situated in their view in order to guarantee that the tests

they have are consistent with the other members of the team. This

implies that every time a programmer needs to run their modified code

against the system’s tests, they need to retrieve the latest version of

those tests and all components relating to the modified component.

While this may appear trivial at first glance, for large projects that

contain 10 team members and an inordinate amount of code, this flaw

becomes increasingly detrimental. Depending on the size of a view,

ClearCase updates can take as long as 20 minutes. [4] For developers

who run multiple tests a day, the effect of this can seriously hinder

productivity.

3.2 Refactoring

The XP practice of refactoring is rather straightforward when being

accomplished using ClearCase. Developers have the ability to check out

current versions of any of the files located in the project. Once this has

been completed, developers are then able to simplify and optimize the

components as they see fit, assuming the amendments made do not

cause the code to fail the tests. Since the functionality of the application

is not affected by refactoring, members of the team can continually check

out, run tests, and check in files without being concerned with the

repercussions.

13

3.2.1 Benefits

One benefit of using ClearCase for refactoring in an XP project is

that ClearCase has a merge feature. This feature allows a developer to

work on a component of a project that is already checked out by another

member of the team. This is quite effective in situations where different

team members are working on different elements of a single project

component. A prominent example is if one programmer is documenting

some code while another programmer is appending functionality to the

program. Although the person changing the actual code would have the

file checked out, the developer who is performing the documentation will

be able to run a merge and add their documentation to the newest

version of the file.

Another advantage of using ClearCase for refactoring is

ClearCase’s ability to view the past history of a single file. This enables

developers to see the entire evolution that a file has gone through; thus,

facilitating the ability for developers to ascertain what refactoring steps

may still be required. Having the file history also helps developers find

out what changes, if any, were made to a file they may have originally

created.

3.2.2 Shortcomings

One shortcoming that exists when using ClearCase in conjunction

with the XP refactoring practice is that ClearCase maintains software

consistency via only allowing one user to truly modify a project element

at a time. While the merging feature is more than an acceptable solution

for minor or trivial changes, complex and intricate amendments to a

component need to be accomplished by separate developers at different

times. This may not be a problem in the earlier stages of production, due

to the multitude of different tasks that a developer may be responsible

14

for early on, but if it is near the end of the development cycle and a single

component is not functioning correctly, then the need to have only one

developer amend a component at one time becomes a considerable

hindrance to efficiency.

A more conspicuous inadequacy regarding ClearCase and the XP

refactoring process is that there is a direct correlation between the

quantity of project components that are modified and the number of

updates that a developer must perform on their view. Although updates

must be executed irrespective of whether refactoring is being

accomplished, refactoring still results in the modification of a system.

Since a change has been made to the application, a developer will have to

update their view in an instance where they may not have necessarily

done so before. The XP practice of refactoring entails a user simplifying

code whenever an opportunity presents itself [2], but ClearCase’s

requirement of having developers update their own views causes this

practice to be notable obstructed.

3.3 Continuous Integration

XP’s continuous Integration practice is executed slightly differently

when it is being accomplished with ClearCase. XP dictates that the team

members upload their code to the software repository and test it every

few hours. [2] One of ClearCase’s functions is integrating all of the new

system components together; thus actual integration is not performed.

As exhibited in Figure 3, continuous integration is implemented with

ClearCase by having individual members of the team log on to the

integration machine and use ClearCase to upload that machine with the

changes that have recently performed every few hours. Although these

modifications have passed the component’s individual tests, it is at this

time that all of the system’s tests are run against the changes, which, as

seen in the figure, occurs after the build machine receives the source.

15

The developer can also utilize this opportunity to run the actual

application to determine if the program is functioning as expected,

despite the new amendments. Although this is performed by the

customer in the figure, developers often assume the role of developer.

Figure 3: Continuous Integration and ClearCase. Taken from [1]

3.3.1 Benefits

The most evident advantage concerning the use of ClearCase and

the continuous integration practice is the fact that ClearCase automates

the process by integrating all software that is checked in. Developers

need only to update their local project views in order to obtain the newest

version of the application. If a development team chooses to have a

machine dedicated to testing, then that machine can simply obtain the

latest version via ClearCase. Integration is constantly performed, which

fits ideally with what this particular XP practice strives for.

Another benefit of using ClearCase in regards to continuous

integration is ClearCase has an option of baselining a project. Baselining

16

can be defined as creating an exact duplicate of an entire project and

then storing that project and information regarding that project in a

separate location inside of the view. Rather than actually copying that

project and storing it in memory somewhere else, baselining stores that

information in a view and makes it accessible to the appropriate users.

Project managers then set certain dates that the baselining of an

application will occur, and that baseline is considered a stage in a

project. This process is relatively seamless, and it assists in the XP

practice of continuous integration because ClearCase enables baselining

to occur with no consequences for the developers. Unlike other SCM

tools, ClearCase allows developers to integrate their code regardless of

when a baseline occurs.

3.3.2 Shortcomings

The main problem that arises when using ClearCase concurrently

with the continuous integration practice is that, in instances where the

code being developed is not for an application, the concept of having an

integration machine becomes superfluous and, as a result, many

development teams choose not to have a machine dedicated to

integration. Although this may not initially appear as a negative, it

influences teams more heavily than they sometimes realize. When

project teams no longer go through the exercise of uploading and testing

their code on a third-party machine, whole system and application unit

testing often becomes neglected.

3.4 Collective Ownership

ClearCase affects the XP practice of collective ownership by

allowing all members of a development team to check out and modify any

files situated in a view. Project members are able to examine any

17

component of the project by updating their local view and scrutinize the

files by opening them.

3.4.1 Benefits

The facilitation of continuous integration via ClearCase is

accomplished quite clearly. The very nature of the product supports

multiple users working on the same product. Developers can learn

about the entire system through viewing files that are situated on their

views. Once an adequate understanding of the project components is

obtained, they then take responsibility for the whole view, as dictated by

the practice. [2] All developers are encouraged to check out and refactor

any files situated in the view as long as the code passes the tests. Thus,

collective ownership is achieved.

3.4.2 Shortcomings

The one failing that ClearCase has regarding collective ownership

is that only a ClearCase administrator can disallow a file to be edited. In

XP, it is usually not recommended to edit a system’s tests after they have

been completed and implemented. The instigation of modifying one or

more tests should occur only when there is a serious amendment in the

functionality of a program. It would be prudent to lock these tests files

in such a way that only the owners of the test would be able to modify

them. For security reasons, the majority of projects allow only ClearCase

administrators to modify file permissions in the aforementioned manner.

Since most project teams do not have a ClearCase administrator present,

at least in big companies, any member of the team can modify the tests

without informing the other developers. The XP practice dictates that by

changing the tests, you are changing the functionality. [1] Since a

modification of functionality is not a trivial matter, this situation can

generate some detrimental results to an application.

18

4. Conclusions

It is evident that the benefits of utilizing ClearCase in an XP

implementation notably outweigh the weaknesses; thus, ClearCase is an

effective and practical XP tool. Once ClearCase has been correctly

integrated into a project using the XP methodology, each of the 4

practices that it affects is facilitated in such a way that the developers

are barely aware that they are performing them. This ensures that these

4 practices are accomplished seamlessly and effectively. Although the

advantages of using ClearCase in an XP project are considerable, there

are also a number of failings that must be acknowledged.

The shortcomings that arise when using ClearCase in conjunction

with a project that is using the XP software development methodology are

sometimes disregarded due to the blatant advantages that exist. To

ignore the inadequacies in ClearCase regarding XP would be a mistake.

Significant deficiencies that develop are the need to obtain the latest

versions of the tests whenever a component is being added or modified,

the tendency of project teams to neglect the integration process due to

ClearCase’s functionality, the requirement of updating a view each time a

developer performs refactoring on any component in the project, and the

entire team’s ability to use ClearCase to change the tests and program

functionality when it may not be appropriate or necessary. These issues

must be addressed by CMI in order to ensure that the synergy between

ClearCase and XP is maintained.

19

5. Recommendations

The shortcomings associated with using ClearCase alongside the

XP development methodology must be addressed. If they are overlooked,

then problems may cultivate to such an extent that the XP process will

be seriously hindered.

The first issue that must be dealt with is the requirement of

obtaining the latest version of a component’s tests whenever a developer

chooses to append or modify a file. The best solution to this would be to

have only specified members of the CMI’s development teams modify the

tests at precise times. This will allow developers to be able to retrieve the

system tests at a defined interval, say every two weeks, thus eliminating

the need for continually verifying that one’s tests are consistent with the

latest version of the application.

Another shortcoming that is common among big project teams,

such as the ones at CMI, is the failure to accomplish adequate and

continually integration. The way this can be rectified is by having a

machine that is dedicated to integration and testing, as defined in the XP

practice. This machine should be mandatory for all development teams

as a means of ensuring that sufficient system and user testing is

performed.

Although there is no definitive way of dealing with the quantity of

ClearCase view updates required when developers refactor components of

a system, the effect can be somewhat negated by having developers only

perform refactoring when absolutely necessary or as a phase of project.

Even though it is prudent to perform refactoring on a continual basis,

the amount of time saved performing ClearCase view updates would

make for an equitable trade.

20

The last concern that should be dealt with is finding a way to

restrict a developer’s ability to modify a component’s test when it is not

essential or suitable. Companies that have only a few ClearCase

administrators, like CMI, should give at least one member of the team,

probably the head developer, administrator permissions for the purposes

of allowing some restrictions to be placed on when and which files are

edited.

Any other conflicts that arise between ClearCase and XP should be

dealt with swiftly and seriously by CMI in order to ensure that the

interaction between ClearCase and XP is as successful as possible.

21

References

[1] S. Baird, Sams Teach Yourself Extreme Programming in 24 Hours,
Sams Publishing, 2003.

[2] K. Beck, Extreme Programming Explained: Embrace Change,
Addison-Wesley, 2000.

[3] Rational Software Corporation, “Developing Software”, 2003;
http://publibfp.boulder.ibm.com/epubs/pdf/12653230.pdf
(current April 29, 2004)

[4] B.A. White, Software Configuration Management Strategies and
Rational ClearCase: A Practical Introduction, Addison-Wesley, 2000.

22

Acknowledgements

At this time, I would like to acknowledge Mirek Zyskowski of CIBC

Mortgages Inc. for increasing my comprehension of Rational ClearCase

and the way it can be used to efficiently create software. Furthermore,

I’d like to thank him for teaching me the way software development is

accomplished in larger companies.

I would also like to thank Frankie Stephan for the assistance she

provided via proofreading this report.

23

Appendix A: The 12 Practices of XP

The main idea behind the XP software development methodology is

taking pre-existing development activities and performing them as

intensely as possible. This is achieved via the 12 XP practices that are

not revolutionary individually; rather, it is the conjunction of all these

practices that makes XP unique. Table 3 provides a summarization of all

these practices as defined by XP’s creator, Kent Beck. These practices

are not new, but they have been modified in such a way that they fit with

the XP methodology. [2] An example of an XP variation on a practice is

instead of testing after code is completed, testing is executed all the time.

Practice Description
The Planning Game Quickly determine the scope of the next release by

combining business priorities and technical
estimates. As reality overtakes the plan, update the
plan.

Small releases Put a simple system into production quickly, then
release new versions on a very short cycle.

Metaphor Guide all development with a simple shared story of
how the whole system works.

Simple design The system should be designed as simply as possible
at any given moment. Extra complexity is removed
as soon as it is discovered.

Testing Programmers continually write unit tests, which
must run flawlessly for development to continue.

Refactoring Programmers restructure the system without
changing its behaviour to remove duplication,
improve communication, simplify, or add flexibility.

Pair programming All production code is written with two programmers
at one machine.

Collective ownership Anyone can change any code anywhere in the system
at a given time.

Continuous integration Integrate and build the system many times a day,
every time a task is completed.

40-hour week Work no more than 40 hours a week as a rule. Never
work overtime a second week in a row.

On-site customer Include a real, live user on the team, available full-
time to answer questions.

Coding standards Programmers write all code in accordance with rules
emphasizing communication through the code.

Table 3: Summarization of the 12 XP Practices. Taken from [2].

24

XP emphasises performing 12 practices that, as seen in Figure 4,

interact and depend on each. If one practice is performed well than other

practices will be affected positively, and if one practice is neglected than

the rest of the practices are affected negatively. Creating and

maintaining this synergy is essential to the success of any XP project.

 Figure 4: Synergy between the XP Practices. Taken from [2]

