
DiffLDA: Topic Evolution in Software Projects

[Technical Report 2010-574]

July 2010

Stephen W. Thomas, Bram Adams, Ahmed E. Hassan,
and Dorothea Blostein

Software Analysis and Intelligence Lab (SAIL)
School of Computing
Queen’s University

Kingston, Ontario, Canada

Abstract

Previous research has shown that topics can be automatically dis-
covered in a software project’s source code. Topics are collections of
words that co-occur frequently in a text collection and are discovered
using topic models such as latent Dirichlet allocation (LDA). Track-
ing how topics evolve, i.e., grow and spread, over time is useful for
supporting software maintenance, comprehension, and re-engineering
activities.

The evolution of topics is typically recovered by applying LDA to
all versions of a project’s source code at once, followed by post process-
ing to map topics across versions. Although this technique works well
in applications where each version of the data is completely different,
for example in the analysis of conference proceedings, the technique
does not work well with source code, which typically changes only in-
crementally and contains significant duplication across versions. In
this paper, we present a new approach, called DiffLDA, for automat-
ically mining topic evolution in source code. The approach addresses
LDA’s sensitivity to document duplication by operating on the differ-
ences between versions of a source code document, resulting in a more
accurate, finer-grained representation of topic evolution. We validate
our approach through case studies on simulated data and two open
source projects.

1 Introduction

Topics are collections of words that co-occur frequently in a corpus of text
documents, and can be used to provide structure to an otherwise unstruc-
tured collection of text [1]. Topic models, such as latent Dirichet allocation
(LDA) [2], are statistical models used to automatically extract the topics
from a given corpus and have proven to be an effective tool for analyzing,
understanding, and describing software project artifacts [3–6].



Recently, understanding how topics evolve over time in time-stamped
or versioned text collections has gained the attention of researchers, as it
promises to be an effective way to study the history and evolution of the
collection [7–10].

However, traditional topic evolution models have the unstated assump-
tion that the documents are unique at each time period, i.e., there is no
duplication in the collection. However, this assumption does not hold in
software projects, where documents (e.g., source code files or requirements
documents) are updated incrementally and contain significant duplication
across time periods. For example, many source code documents do not
change at all between versions of a software system, and the documents
that do change are usually only incrementally fixed or updated, not written
from scratch. Requirements documents may receive small corrections and
updates between versions, but remain largely the same over time. Even
mailing list messages often contain quoted copies of previous messages to
provide context for the recipients. In this paper, we show that all of this du-
plication poses serious problems for traditional topic evolution models and
greatly affects the quality of their results.

To combat the duplication issue, we propose DiffLDA, a novel topic evo-
lution model that explicitly captures the edits between versions, effectively
eliminating the duplication issue limiting traditional LDA. DiffLDA prepro-
cesses the collection of versioned documents to compute the changes between
each version, applies LDA only to the changes, and post processes the results
to reconstruct the original documents. In this paper we show that such an
approach results in improved precision and recall of topic evolutions as well
as reduced execution time over traditional approaches.

The contributions of this paper can be summarized as follows:

1. We show that existing topic evolution models based on LDA do not
handle data duplication well. Such duplication leads misleading topic
evolution metrics.

2. We present the DiffLDA approach, which can overcome the data du-
plication issue.

3. We present case studies on simulated and real-world projects using
DiffLDA to demonstrate its effectiveness.

The rest of this paper is organized as follows. Section 2 provides a
brief background of LDA and how topic modeling has been used in software
maintenance activities. Section 3 motivates our approach with an example.
Section 4 formalizes our proposed approach, and Section 5 validates our
approach on simulated and real world data. Section 6 weighs the pros and
cons of our approach and Section 7 concludes.

2



2 Background and Related Work

In this section we describe latent Dirichlet allocation, briefly outline how
topic models have thus far been applied to software projects for mainte-
nance and comprehension tasks, and describe the state-of-the-art of topic
evolutions models.

2.1 Latent Dirichlet Allocation

LDA is a popular probabilistic topic modeling technique [2]. Topic modeling
is an automated technique designed to discover topics within a corpus of text
documents [1], where topics are collections of words that co-occur frequently
in the corpus. Due to the nature of language usage, the words that constitute
a topic are often semantically related. Documents can be represented by
the topics within them, and the entire otherwise unstructured corpus can
be structured in terms of this discovered semantic structure.

LDA models each document in a corpus as a multi-membership mixture
of T topics, and each topic as a multi-membership mixture of the words
in the corpus vocabulary. A multi-membership mixture means that each
document can contain more than one topic, and each word can be contained
in more than one topic. Hence, LDA is able to discover a set of ideas or
themes that well describe the corpus as a whole [1].

More formally, LDA produces, for each of T topics, an N -dimensional
word membership vector z(φ1:N ) that describes which words appear in topic
z, and to what extent. Additionally, for each document d in the corpus, LDA
produces a T -dimensional topic membership vector d(θ1:T ) that describes the
extent to which each topic appears in d.

2.1.1 Metrics

It is possible to compute a topic similarity between two topics z1 and
z2 by computing the KL divergence [11] between their word membership
vectors [12]:

KL(z1(φ), z2(φ)) =
N∑
i=1

z1(φi)log
z1(φi)

z2(φi)
.

It is also possible to compute a document similarity of two documents d1
and d2 by computing the Hellinger distance between their topic membership
vectors [1]:

HD(d1(θ), d2(θ)) =
T∑
t=1

(
√
d1(θt)−

√
d2(θt))

2.

3



We can compute the assignment of a topic zk across a system by sum-
ming the membership values of that topic over all documents,

A(zk) =
∑
i

di(θk),

which gives a good indication of the total volume of the topic throughout
the corpus.

2.1.2 Considerations

We note that in LDA, the number of topics T to be discovered is an input
into the model, along with document and topic smoothing parameters α and
β. As there is no standard method for choosing the values for these input
parameters beforehand, in this paper we use established heuristics that have
been shown to have reasonable performance [13,14]. An alternative approach
is to first learn the number of topics using algorithms such as the Hierarchical
Dirichlet Process [15].

We also note that LDA is a generative probabilistic model in which
exact inference is intractable, and Gibbs sampling is often used to sample
the posterior probabilities of documents and topics. As such, different sets
of sampling iterations will produce slightly different results, i.e., applying
LDA to a data set is a non-deterministic process.

2.2 Topic Modeling in Software Maintenance

LDA and related topic modeling techniques have seen widespread adoption
in software engineering, in particular in the software maintenance field.

Maskeri et al. used LDA on a single snapshot of the source code of a soft-
ware project to extract the business topics and their locations in the system,
with the goal of easing the comprehension of large systems for newcomers [3].

Latent Semantic Indexing (LSI) [5], another topic modeling technique,
has been used to incrementally update the traceability links between soft-
ware artifacts as a software system evolves over time by utilizing the results
from previous versions during the computation of the current version [16].

Poshyvanyk et al. combined LSI and formal concept analysis (FCA) to
build a concept lattice that enables concept location [17]. A user or developer
can then throw queries to the concept lattice to locate relevant source code
topics of interest.

Kuhn et al. introduced semantic clustering, a technique based on LSI
to group source code documents that share a similar vocabulary [6]. After
applying LSI to the source code, the documents are clustered based on their
underlying topical structure into semantic clusters, resulting in clusters of
documents that implement similar functionalities.

LDA has also been used to uncover software concerns, which are usually
defined as anything that a stakeholder considers as a conceptual unit [18],

4



such as high-level business logic, IO handling, GUI interaction, and authen-
tication [4].

Hindle et al. applied a windowed topic analysis approach, based on
LDA, to log messages from a project’s version control system [19]. Hindle et
al. also presented several visualization techniques to understand the results.
They argued that a windowed topic analysis provides the ability to highlight
local topics as well as to identify global trends, and they associate local topics
over time by using a top-word similarity measure.

2.3 Topic Evolution Models

Techniques have been established to automatically mine topics from a single
snapshot of a software project using, for example, basic LDA [3, 4]. How-
ever, mining the evolution of topics across snapshots is still a challenge.
Several techniques have been proposed in the natural language processing
community for modeling the evolution of topics on other types of data:

The Dynamic Topic Model [7] models time as a discrete Markov process,
where topics evolve according to a normal distribution. Such a model pe-
nalizes abrupt changes between successive time periods, making the model
inappropriate for source code data, where the changes to individual topics
between time periods could be dramatic—much more than a normal distri-
bution would allow (see below for details).

The Topics Over Time (TOT) [8] approach models time as a continuous
beta distribution, effectively removing the penalty on abrupt changes from
the Dynamic Topic Model. However, the beta distribution is still too inflex-
ible for source code, since it assumes that a topic evolution will have only a
single rise and fall during the entire project history.

Hall et al. [9] apply LDA to the entire collection of documents at once
and perform post hoc calculations based on the observed probability of each
document in order to map topics to versions. Linstead et al. also used this
approach on a software system’s version history [10]. The main advantage
of this approach is that no constraints are placed on the evolution of topics,
yielding excellent flexibility for describing large, seemingly random changes
to a corpus, which are typical in software development. We note that the
Hall approach works very well for the type of data it was designed for (i.e.,
conference proceedings).

In this paper, we only consider the Hall et al. approach, since implemen-
tations are currently unavailable for the Dynamic Topic Model and Topics
Over Time approaches (even after contacting the authors directly). We
do not expect our conclusions to be affected, as we expect the Hall et al.
approach to perform best on source code histories due the the lack of re-
strictions in the approach compared to the other approaches.

5



Linux Eclipse PSQL

Number of versions 105 22 50
SLOC in latest version 4.8M 2.9M 501K
Number of files in latest version 8K 19K 884

Median % of files changed per version 0.1 2.9 7.0
Median % of lines changed per file 0.1 1.0 1.0
Median lifetime of each file (versions) 104 10 33

Table 1: Change characteristics of three software projects.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Linux Eclipse PostgreSQL

●
●

●

Figure 1: A violin plot of the percentage of source code documents changed
between releases, for three different software projects. The white circles
show the median values, the black bars show the interquartile range, and
the gray shapes give an indication of the distribution.

3 Problem Statement

Understanding how a topic evolves over time greatly improves several soft-
ware development tasks, such as maintenance, re-engineering, and program
comprehension. For example, because of refactoring and other development
efforts that occur over time, a feature or concern is likely to become more
scattered across the source code documents, which affects the developers’
ability to locate, understand, and modify the source code related to the fea-
ture or concern of interest. By monitoring the scattering of topics over time,
developers and managers can make maintenance decisions, such as how to
propagate changes to all the right locations or determining when a refactor-
ing is necessary. Topic evolution analysis can also benefit the understanding
and organization of mailing list discussions, for example by showing project
stakeholders which topics were active during a given time period. Addition-
ally, by studying how topics evolve, we can provide new insights into the
history of software projects and the quality of certain initial designs.

Existing topic evolution models have the unstated assumption that the
documents in the corpus are not duplicated, i.e., each document is unique.

6



This assumption holds for journals, blog posts, and newspaper articles,
which are typically studied in the topic modeling literature. However, soft-
ware modules are usually updated incrementally and see tremendous overlap
between versions, although they occasionally see dramatic changes due to
refactorings, and the addition or removal of functionalities.

To quantify the extent that source code breaks the assumption of current
topic evolution models, we studied the change characteristics of three open
source systems. Table 1 summarizes our findings. We found that on aver-
age, only 0.1%–7.0% of the source code documents experience any change
between versions, measured by the number of files that had activity in the
corresponding Version Control System (VCS). In other words, on average at
least 93% of the source code files are exact copies from version to version.
Furthermore, the changed files on average only had 0.1%–1.0% of their lines
changed, as measured from the actual content of the VCS entry for each
change. Finally, each source code file has a relatively long median lifetime,
lasting for almost half or more of the lifetime of the software system.

However, the distributions in the violin plot [20] in Figure 1 show that
even though the change behavior of source code is usually infrequent and
small, there are periods with very large changes. (A violin plot shows a
box-plot along with a kernel density plot.) For example, Figure 1 shows
that Linux has on average only 0.1% of its source code files change between
versions, but on one occasion over 40% of the files changed. Such scenar-
ios can arise due to large refactorings, significantly new features that were
added, or important maintenance activities.

To illustrate how LDA performs with the change characteristics of source
code, we simulate analogous characteristics on the textual data studied by
Hall et al [9], the ACL Anthology Reference Corpus [21]. The ACL corpus
contains 10,920 conference papers between the years 1979–2004, consisting of
a total of 556,372,830 tokens, 20,465 of which are unique. We apply the stan-
dard LDA preprocessing steps, such as removing common English-language
stop words, removing words with one or two characters, and removing words
that occur less than 10 times in the entire corpus. Congruent with Hall’s
approach, we model the corpus with T = 46 topics.

Scenario A, used as a baseline, contains the original data. Scenario B,
used to illustrate the limitations of LDA, contains the original data along
with several duplications of a single, randomly-chosen document. We se-
lected C96-2099, which is an article from 1996 titled “Segmenting Sentences
into Linky Strings” that describes a method to segment sentences based on
patterns learned through a training corpus, with a case study on a Japanese-
language corpus. We create 30 copies of this document, and apply LDA to
the new corpus.

To compare the two scenarios, we will answer the following two questions:

1. What happens to the topic memberships of the document that is du-

7



Membership ID Top Words

Scenario A
0.41 27 japanese method case sentence sentences
0.20 41 word segmentation words character characters
0.09 37 word text list system dictionary string number

Scenario B
1.0 7 similarity clustering cluster vector matrix

Table 2: Top topics for C96-2099 in the two scenarios.

plicated in Scenario B? Are its topic memberships the same as in Sce-
nario A? We might initially expect that the topic memberships would
be identical, since the content of the duplicated documents is identical.

2. Is the duplicated document related to the same set of documents in
both scenarios? We use the Hellinger distance similarity for our study.
Again, we might expect that since the content of the document is
not changing between scenarios, the duplicated document should be
related to the same set of documents.

3.0.1 Analysis of the Topic Memberships

Table 2 shows the most present topics of C96-2099 after running LDA in
both scenarios. In Scenario A, the majority of C96-2099 is represented
by three topics that deal with Japanese sentences, word segmentation, and
dictionaries, respectively. In Scenario B, however, we see that C96-2099 is
now only described by a single topic, and we found that no other documents
contained this topic with a membership greater than 0.05.

3.0.2 Analysis of the Related Documents

Table 3 shows the top three documents related to C96-2099, ranked by their
Hellinger distance measure. We find that there is significant dissimilarity
between Scenario A and Scenario B, as no related documents overlap. Fur-
ther, the closest documents in Scenario B are more than twice as far from
C96-2099, as compared to Scenario A.

Document duplication significantly impacts the results of
LDA, and hence the state-of-the-art topic evolution tech-
niques.

8



Document HD Title

Scenario A
W02-1812 0.228 A Word Segmentation Method

With Dynamic Adapting To Text
Using Inductive Learning

C94-1036 0.284 Segmenting A Sentence Into
Morphemes Using Statistic Infor-
mation Between Words

C00-1084 0.288 Automatic Semantic Sequence
Extraction from Unrestricted
Non-Tagged Texts

Scenario B
P87-1023 0.586 Now Let’s Talk About Now:

Identifying Cue Phrases Intona-
tionally

W96-0308 0.586 Lexical Rules is Italicized
P81-1033 0.586 A Construction-specific Ap-

proach to Focused Interaction in
Flexible Parsing

Table 3: The top three documents related to C96-2099.

4 Approaches

In this section we present a new approach for tracking the evolution of
topics that deals with the duplication problem. Since our approach builds
on the approach described by Hall et al. (henceforth the Hall approach),
we first provide an overview of the Hall approach, followed by our proposed
approach, which we name DiffLDA. We first provide a formalization of topic
evolution modeling.

4.1 Formalization

A topic z is a tuple 〈t, φ〉 discovered by LDA, where t is the set of top
terms related to the topic and φ is the normalized word distribution over
the vocabulary.

A document d in the system is represented by 〈n, sp,w, θ〉, where n
is the name of the document, sp is the subpackage to which the document
belongs, w is the preprocessed content of the document (i.e., bag of words),
and θ is the topic membership vector discovered by LDA.

A version V of a system is a set of documents {d1, d2, ...} with the same
time-stamp t(V ). The history H of a system is the set of versions related
to the system, H = {V1, V2, ...}.

9



(a) The Hall approach applies LDA to all source
code documents at the same time.

(b) DiffLDA adds a preprocessing step to the Hall approach to explicitly
capture the edits.

Figure 2: A graphical depiction of the Hall and DiffLDA approaches.

10



Finally, the evolution E of a metricm of a topic zk is a time-indexed vec-
tor of metric values for that topic: E(zk) = [m(zk, t(V1)),m(zk, t(V2)), ...,m(zk, t(V|H|))].
Unless otherwise indicated, the metric m under consideration is the assign-
ment metric.

In the remaining sections we use the following notation. dji is the jth

document in version Vi. dj(θk) is the membership value of document dj in
topic zk. We say that there are |Vi| documents in a particular version Vi,
and a total of |H| versions in the system. To be consistent with the topic
modeling literature, we use T to describe the number of topics in a system.

4.2 Hall Approach

Figure 2(a) provides an overview of the Hall approach. Here, LDA is applied
to all source code documents in every version at once, followed by a post
processing analysis phase to compute the metrics of interest. During the
analysis phase, the assignment of a topic zk at version Vi is computed as the
aggregation of the topic’s memberships across all documents in the specified
version:

A(zk, Vi) =

|Vi|∑
j=1

dji(θk).

For example, if 100 documents in version Vi each contained a membership
of 0.5 for topic zk, we would say that zk has an assignment of 50 in Vi. Note
that the Hall approach yields an assignment measure with a granularity at
the document level.

4.3 DiffLDA Approach

In order to address the duplication issues in the Hall approach, DiffLDA
prepends a preprocessing step that only propagates the changes between
successive versions of each document, instead of the whole document at
each version. Figure 2(b) depicts our approach.

For each source code document dj in the system, we first compute the
edits between successive versions Vi and Vi′ , i

′ = i + 1 using the standard
diff utility. We classify each edit as add, change, or delete, depending on
whether the edit resulted in more, the same, or fewer lines of code, respec-
tively. For each version of each document, we create three delta documents,
δaji′ , δ

c
ji′ , and δdji′ , to capture these three types of edits. We place all the lines

added between dji and dji′ into δaji′ , all the changed lines in δcji′ , and all the

deleted lines in δdji′ . We use the notation |δaji′ | to represent the number of
words in the δaji′ delta document. The notation δxji(θk) represents the mem-
bership of topic zk in delta document δxji for x ∈ {a, c, d}. We must handle
two special cases: 1) When we first encounter a document dj at version

11



Figure 3: An example of three versions of a document. The Hall approach
applies LDA to {dj1, dj2, dj3}, which are the results of standard preprocess-
ing. DiffLDA applies LDA to {δaj1, δaj2, δaj3}, which removes duplication.

Vi (either because i = 1 or dj is a new document), we consider the entire
document as additional words, and thus we add the entire document to the
delta document δaji; and 2) when a document dj is removed at version Vi,
we consider the entire document as deleted words, and thus add the entire
document to the delta document δdji.

Next, we apply LDA to the entire set of delta documents at once, re-
sulting in a set of discovered topics and membership values for each delta
document.

Finally, we examine the output of LDA to compute the metrics of inter-
est. The corresponding assignment metric of a topic zk at version Vi for the
DiffLDA method is defined recursively as

A(zk, Vi) = A(zk, Vi−1) +

|Vi|∑
j=1

(δaji(θk)
∣∣∣δaji∣∣∣− δdji(θk)

∣∣∣δdji∣∣∣ ).
For each subsequent version in a system, the assignment metric is increased
by the topic memberships of the words that were added in the new version,
and decreased by the topic memberships of the words that were deleted.
This cumulative addition is necessary since we only model the edits at each
version.

We emphasize that the multiplication of the topic membership, δji(θk),
by the number of words in the delta document, δji(n), gives a very fine-
grained view of the topic evolution: we are computing the assignment of
each topic at the word granularity, whereas the Hall method computes the
assignment of each topic at the document granularity.

12



Even though the change delta documents are not used in the computa-
tion of the assignment metric, the change delta documents are useful during
the computation of other metrics, such as a hotness metric, which repre-
sents how much edit activity a topic zk has received in version Vi:

H(zk, Vi) =

|Vi|∑
j=1

(δaji(θk)
∣∣∣δaji∣∣∣+ δdji(θk)

∣∣∣δdji∣∣∣+ δcji(θk)
∣∣∣δcji∣∣∣ ).

Figure 3 shows an example scenario with one document changing over
three versions. The Hall approach will use dj1, dj2, and dj3 (middle row) for
the LDA execution, while DiffLDA uses δaj1, δ

a
j2, and δaj3 (bottom row). The

δaj2 document only contains the single word that changed from version 1 to
version 2 (rad), and δaj3 is empty since there are no changes between version
2 and version 3.

4.4 Discussion

In the Hall approach, misleading evolutions can occur due to the coarser
granularity of the approach. For example, suppose that the assignment of
a topic zk at version Vi has a value of 10.0. If a new document dj , with
dj(θk) = 1.0, were added into the system at version Vi+1, the value of the
assignment metric would become 11.0, regardless of the size of dj . That is,
it would not matter whether dj contained a single line of code or one million
lines of code—the assignment metric would increase by one unit. On the
other hand, the finer granularity of the DiffLDA approach captures the size
of additions and deletions to the topics in terms of individual words. In the
example above, the assignment metric would increase by 1.0×|δaj |, such that
if |δaj | is small, the assignment would not be affected much.

5 Empirical Validation of DiffLDA

Due to a lack of ground truth or benchmarks for the evaluation of topic
evolution mining techniques, comparing the output of the Hall and DiffLDA
approaches is difficult and somewhat subjective. Even matching a discov-
ered topic evolution to existing documentation (e.g., change logs and release
notes) does not guarantee an accurate evaluation, as documentation is of-
ten incomplete, vague, or out of date. Instead, we validate our approach
by first applying it to a simulated (but well-understood) software project,
followed by a more high-level analysis on two case studies on real-world (but
less-understood) software projects.

5.1 Study Setup

For each simulated scenario and case study, we preprocess the data as usual
for topic modeling by isolating identifiers and comments, tokenizing words

13



based on common naming schemes such as firstSecond and first second,
and removing common English-language stopwords such as “the”, “it” and
“on”. We use the MALLET tool [22] for the LDA computation, running
for 100,000 Gibbs sampling iterations, the first half of which are used for
parameter optimization [13]. We used standard techniques for determining
the input parameters to LDA [13, 14]. The scenarios were executed on a
machine running Ubuntu 9.10 with a 2.8GHz 16-core Intel Xeon CPU and
64Gb of main memory.

5.2 Evaluation Measures

We manually inspect the results of the Hall and DiffLDA approaches to
evaluate the quality of their results. We examine each change event in the
evolutions, where a change event can be an increase in a metric value (i.e.,
spike), decrease in a metric value (i.e., drop), or no change in a metric value
(i.e., stay) between successive versions of a document.

We classify a change event as a spike or drop, respectively, if there is at
least a 10% increase or decrease in metric value compared to the previous
time period, and as a stay otherwise. Formally, for a metric m of topic zk
at version Vi, the change c = m(zk,Vi)−m(zk,Vi−1)

m(zk,Vi−1)
is classified as

Event(zk, Vi) =


spike if c ≥ 0.10
drop if c ≤ −0.10
stay otherwise.

Thus, if an evolution contains 10 versions, then there are 10 change
events. For each change event identified by an approach, we investigate
existing documentation (for example, release notes, change logs, and source
code), looking for any notes about the topic that caused the event. If we
find any obvious mention of the topic in at least one documentation source,
we interpret the event as correct, otherwise we say that it is incorrect.

We look for the following three desirable properties:

1. Precision: Of all the change events to a discovered evolution, how
many are correct?

We calculate the precision of a discovered evolution E(zk) as

P (E(zk)) =
|{Correct events in E(zk)}|

|{Correct and incorrect events in E(zk)}|
.

In the special case that an evolution detected no events (for example,
when no spikes were discovered), we set the precision to 1.0.

2. Recall: Of all the actual (i.e., truth) events in the topic evolution,
how many were discovered?

14



We calculate the recall of a discovered evolution E(zk) as

R(E(zk)) =
|{Correct events in E(zk)}|

|{Truth events}|
.

In the case when there are no truth events (for example, when no
spikes occur in a topic evolution), we set the recall the N/A.

3. Speed: How much total execution time is required?

To compare the run-time speed of the Hall and DiffLDA approaches,
we collect the execution times of the two stages of execution (i.e.,
preprocessing and LDA execution). We execute three repetitions of
each scenario and case study and report the minimum times in effort
to counter the effect of background processes running on the machine.

5.3 In-Depth Study of Simulated Data

In order to compare in detail the results of DiffLDA to those of the Hall ap-
proach, we create a simulated software project based on the backend.access
subpackage of PostgreSQL. The backend.access subpackage contains 58
documents and 8 subdirectories, and is responsible for implementing vari-
ous functionalities, including hash tables, transactions, and NBTrees.

Our goal is to manually create scenarios with a representative variety of
specific events to the source code at specific versions, so we can determine
whether the evolutions discovered by our approach are valid.
Scenario Descriptions: We create three scenarios of increasing complex-
ity.

Scenario 1: This scenario contains 10 copies of the backend.access

subpackage, with modified timestamps from 1–10. That is, all documents
in version 1 are the same as their counterparts in version 2, which are the
same as their counterparts in version 3, etc.

Since no changes are taking place to the source code documents, we
expect this scenario to show no evolution of any of the discovered topics: we
expect the assignment metrics to remain constant over the 10 versions.

Scenario 2: This scenario is the same as Scenario 1, with the exception
that three documents from the unrelated timezone subpackage of Post-
greSQL are artificially inserted at version 5, and removed at version 6.

We expect to see a sharp increase in assignment in the time zone re-
lated topic(s) at version 5, a sharp decline at version 6, and no change in
assignment to any other topic.

Scenario 3: This scenario is the same as Scenario 2 with the following two
additions: 1) Eight documents from the ecpglib subpackage of PostgreSQL
are inserted in versions 9 and 10. The first half of each document is inserted
in version 9, while the second half of each document is inserted at version
10. 2) Five documents from the backend.regex subpackage of PostgreSQL

15



are inserted in version 1, they remain in versions 2 and 3, and are removed
at version 4.

As in Scenario 2, we expect to see a sharp increase in the assignment
metric for the time zone related topic(s) at version 5, followed by a sharp
decline at version 6. Additionally, we expect to see a steady increase in the
ecpglib related topic(s) over version 9 and 10, as well as a sharp decrease
in the backend.regex related topic(s) at version 4.

We have made both scenarios publicly available on the first author’s web
page.
Results: Figure 4 shows the evolutions identified by both approaches. For
Scenario 1, the figure shows that the Hall approach results in topics with
somewhat noisy evolutions: even though the source code does not change
between versions, the evolutions produced indicate that some changes are
occurring. On the other hand, DiffLDA correctly shows that no evolution
is occurring to any of the topics, shown by the flat evolution lines of each
topic.

For Scenario 2, Figure 4 shows that the Hall approach again produces
noisy topic evolutions. In this scenario, three unrelated files are inserted
at version 5 and no other changes are made to the source code. While the
Hall approach was able to capture the time zone-related spike at version 5
and drop at version 6, the same evolution also experiences spikes at versions
3 and 10 and a drop at version 4, when no changes actually occurred to
the source code in those versions. The set of top words for this topic is
“state printtup slot buf attr typeinfo natts tuple info portal”, which is not an
intuitive set of words for a time zone related topic. Indeed, we found that
this topic is contained in 20 documents, instead of just the three inserted
timezone documents. On the other hand, Figure 4 indicates that DiffLDA
correctly shows topic activity for only one topic. This activity is represented
by a large spike at version 5, followed by a drop at version 6. The set of top
words for this topic is “time strp year ptlim ttisp day isdst gmtoff offset week
zone” which is a more revealing list for the timezone documents. Further,
we found that this topic is only contained in the three timezone documents.

For Scenario 3, Figure 4 shows again that the Hall approach produces
noisy topic evolutions. This time, the Hall approach is able to correctly
identify a topic evolution with a spike at version 5, a drop at version 6,
and no other activity. However, the Hall approach confuses the other two
changes (i.e., the backend.regex documents in versions 1, 2, and 3, and
the ecpglib documents at versions 9 and 10) and assigns them to the same
topic. Additionally, the expected gradual change at versions 9 and 10 are
not shown; we instead see an abrupt change at version 9, followed by an
slight decrease at version 10. On the other hand, DiffLDA correctly captures
all three changes: the time-zone topic spikes and drops at versions 5 and
6, respectively; two topics related to the backend.regex documents drop
at version 4, and the topic related to the ecpglib documents gradually

16



Hall (Scenario 1)

A
ss

ig
nm

en
t (

fil
es

)

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Hall (Scenario 2)

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

Hall (Scenario 3)

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

DiffLDA (Scenario 1)

Version

A
ss

ig
nm

en
t (

lin
es

)

0

5000

10000

15000

1 2 3 4 5 6 7 8 9 10

DiffLDA (Scenario 2)

Version

0

5000

10000

15000

1 2 3 4 5 6 7 8 9 10

DiffLDA (Scenario 3)

Version

0

5000

10000

15000

1 2 3 4 5 6 7 8 9 10

Figure 4: The topic evolutions of the three simulated scenarios, as produced
by the Hall and DiffLDA approaches.

increases at versions 9 and 10.
Table 4 summarizes the results for precision, recall, and speed for each

approach and each scenario. In Scenario 1, the Hall approach discovered
several spikes and drops (namely at versions 2, 4, and 9) when none actu-
ally occurred, and thus receives a precision of 0.0 for these changes. DiffLDA
discovered all 200 events correctly. We also see that DiffLDA has an execu-
tion time that is an order of magnitude faster than Hall’s. This is because
DiffLDA results in far less data, resulting in less processing time in the LDA
execution phase.

The results for Scenario 2 are similar: the Hall approach discovered
several spike and drop events that were incorrect, yielding low precision
scores, while DiffLDA correctly discovered all events; DiffLDA also ran an
order of magnitude faster than the Hall approach.

Scenario 3 saw similar results: the Hall approach discovered several in-
correct events and ran an order of magnitude slower than DiffLDA. DiffLDA
discovered only one incorrect spike event (a slight peak in one of the con-
stant topics at version 10), resulting in a slightly penalized spike precision
and stay recall.

On our simulated data, DiffLDA improves the precision and
recall metrics while decreasing run time.

17



Hall DiffLDA

Scenario 1
Spikes P = 0.0, R = N/A P = 1.0, R = N/A
Drops P = 0.0, R = N/A P = 1.0, R = N/A
Stays P = 1.0, R = .97 P = 1.0, R = 1.0
Speed: Preprocessing 0s 1.6s
Speed: LDA Execution 5h51m 31m37s

Scenario 2
Spikes P = .17, R = 1.0 P = 1.0, R = 1.0
Drops P = .20, R = 1.0 P = 1.0, R = 1.0
Stays P = 1.0, R = .96 P = 1.0, R = 1.0
Speed: Preprocessing 0s 1.6s
Speed: LDA Execution 5h52m 32m17s

Scenario 3
Spikes P = .66, R = .66 P = .75, R = 1.0
Drops P = .33, R = 1.0 P = 1.0, R = 1.0
Stays P = 1.0, R = .96 P = 1.0, R = .99
Speed: Preprocessing 0s 1.6s
Speed: LDA Execution 5h50m 37m37s

Table 4: Results of the study on simulated data.

5.4 Real World Case Studies

We now apply both approaches to two open source software projects, Post-
greSQL and JHotDraw, to evaluate the performance of both approaches on
real-word software projects.

For each case study, we calculate the precision metric by randomly sam-
pling the set of events discovered by each approach. As we must verify each
event manually, we select just enough samples to yield a 90% confidence
level with a margin of error of 10%. Our sample size, n, for each project

and each approach is calculated as n =
(
zα/2
√

p(1−p)
B

)2
where B = 0.10 and

1 − α = 0.90, so z0.05 = 1.645 [23]. Since we have no prior knowledge on
the probability p of each event, we set p to 0.5 and thus our sample size n
is 68. As we do no have full knowledge of every possible event in these case
studies, we can not compute the recall measure.

We developed a tool that, for each software project, randomly selects
any number of discovered events. For each event selected, the tool presents
the words for the topic associated with the event, the version at which the
event occurred, and the top 10 documents associated with the topic. Armed
with this information, the first author examined the project documentation,
looking for evidence that supports the change.

18



Hall DiffLDA

PostgreSQL
Spikes and Drops P = .62± .10 P = .90± .10
Speed: Preprocessing 0s 3m12s
Speed: LDA Execution 27h40m 13h25m

JHotDraw
Spikes and Drops P = .69± .10 P = .92± .10
Speed: Preprocessing 0s 3.9s
Speed: LDA Execution 10h28m 6h22m

Table 5: Results of the two case studies.

In order to reduce bias, during the manual verification of each event, the
first author was unaware which approach produced the event. It is not until
after the verification is complete that we map the analyzed events back to
each approach.

Finally, in the analysis of the case studies, we do not consider stay events,
as they are most difficult to manually validate: the lack of a topic in docu-
mentation could very likely be due to a lack in the project’s documentation
process, as opposed to an actual stay in the source code. We also do not
differentiate between spikes and drops, since an entry in the documentation
such as “cleaned up regular expression code” could just as likely indicate an
increase or a decrease in the metric value.

Results for PostgreSQL: PostgreSQL is a large open source database sys-
tem, written in the C programming language (http://www.postgresql.org).
We study 50 release versions (7.0–8.3.5) containing a total of 31,769 source
code documents over 8 years (2000–2008). We model the history of Post-
greSQL using T = 100 topics.

Table 5 contains the values for precision and speed. We found that the
Hall approach achieved a precision of 62% with an execution time of over
27 hours, while DiffLDA was able to improve the precision by 47% to 90%,
while only requiring 50% of the execution time (about 13.5 hours).

To illustrate the topic evolutions discovered by each approach, we show
two examples in Figures 5(a) and 5(b). Figure 5(a) shows an example of
a discovered topic evolution that exhibited similar behavior in the two ap-
proaches, the word stemming topic, which involves reducing queries and
string data to their root form. The figure indicates that the evolutions
discovered by the two approaches are quite similar. However, Figure 5(b)
shows the evolution of the joining relations topic, which is responsible for
implementing the SQL JOIN clause on one or more relations. Contrary to
the previous example, these two evolutions appear to be very dissimilar in
shape, trends, and magnitudes, even though the evolutions represent the
same topic.

19



Results for JHotDraw: JHotDraw is a medium-sized, open source, 2-
D drawing framework developed in the Java programming language as an
exercise of good program design (http://www.jhotdraw.org). We study 12
public release versions (5.2.0–7.4.1) containing 5,220 source code documents
over 6 years (2000–2006). We model the history of JHotDraw with T = 46
topics.

Table 5 lists the values for precision and speed for the two approaches.
Again, DiffLDA outperforms the Hall method in both precision and speed,
with improvements of 33% and 38%, respectively, over the Hall approach.

To illustrate the topic evolutions discovered by each approach, we show
two examples in Figures 5(c) and 5(d). Figure 5(c) shows an example of
a discovered topic evolution that exhibited similar behavior in the two ap-
proaches: the undo topic, which implements the Undo design pattern [24].
The figure indicates that the evolutions discovered by the two approaches
are extremely similar. However, Figure 5(b) shows the evolutions of the
drag and drop topic, which is responsible for implementing the drag and
drop interface functionality. Contrary to the previous example, these two
evolutions appear to be very dissimilar, disagreeing when and how the topic
evolved.

DiffLDA improved precision by 33–47% and reduced run-
time by 38–50% relative to the Hall approach.

6 Discussion and Threats to Validity

6.1 Limitations of DiffLDA

When DiffLDA compares two versions of a source code document, the edits
are saved into the delta documents. Although this achieves our goal of elimi-
nating duplication and capturing the edits to the documents, we sacrifice the
context of the original documents: the words in the delta documents are no
longer contextualized by surrounding words and functions from the original
source code document. Because of this, DiffLDA works well for context-free
(i.e., unigram bag of words) topic models, such as LDA. It would be difficult,
but interesting to extend our approach to an N-gram model, which has been
shown to be a promising technique for topic modeling [25].

6.2 Limitations of Evaluation Techniques

As was mentioned previously, there is currently no benchmark data set for
topic evolution mining. As such, researchers (including ourselves) can not
compare their results to known standards, and instead must rely on ad
hoc analyses that may not fully capture the strengths and weakness of the
approach under consideration.

20



0 10 20 30 40 50

0
50

00
15

00
0

25
00

0

Version Number

A
ss

in
gm

en
t E

vo
lu

tio
n 

(D
iff

LD
A

)
7.0 7.1 7.2 7.3 7.4 8.0 8.1 8.2 8.3

Word Stemming

0
5

10
15

20
25

30
35

A
ss

in
gm

en
t E

vo
lu

tio
n 

(H
al

l)

DiffLDA
Hall

(a) The evolution of the word stemming topic
in both approaches.

0 10 20 30 40 50

10
00

0
15

00
0

20
00

0

Version Number

A
ss

in
gm

en
t E

vo
lu

tio
n 

(D
iff

LD
A

)

7.0 7.1 7.2 7.3 7.4 8.0 8.1 8.2 8.3

Joining Relations

4.
2

4.
4

4.
6

4.
8

5.
0

5.
2

A
ss

in
gm

en
t E

vo
lu

tio
n 

(H
al

l)DiffLDA
Hall

(b) The evolution of the joining relations topic
in both approaches.

5.
2.

0

5.
3.

0

5.
4.

b2

6.
0.

b1

7.
0.

7

7.
0.

8

7.
0.

9

7.
1.

0

7.
2.

0

7.
3.

0

7.
3.

1

7.
4.

1

0
10

00
30

00
50

00
70

00

A
ss

in
gm

en
t E

vo
lu

tio
n 

(D
iff

LD
A

)

Undo

10
15

20
25

30

A
ss

in
gm

en
t E

vo
lu

tio
n 

(H
al

l)

DiffLDA
Hall

(c) The evolution of the undo topic in both
approaches.

5.
2.

0

5.
3.

0

5.
4.

b2

6.
0.

b1

7.
0.

7

7.
0.

8

7.
0.

9

7.
1.

0

7.
2.

0

7.
3.

0

7.
3.

1

7.
4.

1

50
0

10
00

15
00

20
00

25
00

A
ss

in
gm

en
t E

vo
lu

tio
n 

(D
iff

LD
A

)
Drag & Drop

4
6

8
10

12
14

A
ss

in
gm

en
t E

vo
lu

tio
n 

(H
al

l)

DiffLDA
Hall

(d) The evolution of the drag and drop topic
in both approaches.

Figure 5: Example topic evolutions from the two case studies. Subfigures
(a) and (b) are produced from the PostgreSQL project, while (c) and (d)
are produced from the JHotDraw project.

In our specific case, our precision metric is not perfect. First, it is based
on human judgment as to whether a change in the evolution was justified
or not, based on corresponding documentation entries. However, the docu-
mentation could be lacking or out of date, or the human could misinterpret
the topic or the documentation. Second, even if a change in the evolution
is corroborated by documentation, it is not clear whether the magnitude of
the change is justified—documentation often does not indicate how many
lines of code were involved in a change to a topic’s implementation.

6.3 Generality of Results

Although we studied two projects from different domains, of different sizes,
and implemented in different programming languages, we cannot necessarily
generalize our results to all other projects. First, the projects we studied
were both open source, and therefore we cannot generalize our results to
closed source projects developed in the industry. Second, both projects we
studied followed fairly rigorous variable naming schemes and often used de-
scriptive comments where possible, which allowed the LDA model to work.
Should a project not follow standard naming schemes or have common com-

21



menting practices, topic modeling would not be an effective tool.

7 Conclusion

Probabilistic topic modeling techniques, such as LDA, have the unstated
assumption that the documents in the corpus are not repeated, i.e., that each
document in the corpus is unique. We have shown that version histories of
source code strongly violate this assumption, as most versions incrementally
change less than 7% of the files in the systems. We also showed that LDA
produced unexpected results when documents are repeated—topics were less
general, and as a result, documents were described by fewer topics and no
longer possessed a high similarity measure to other documents.

These results motivated us to propose a new approach for handling
source code histories, called DiffLDA, which explicitly captures only the
changes between document versions, effectively eliminating the duplication
that caused LDA to behave unexpectedly. Such an approach results in a
fine-grained representation of topic evolution, as it models the change of
each topic from version to version at the word granularity. We evaluated
our approach on simulated and real-world data and compared our approach
to the traditional LDA approach. We found that DiffLDA increases preci-
sion performance as much as 47% as well as reduces execution time by up
to 50%.

References

[1] D. Blei and J. Lafferty, “Topic models,” Text Mining: Theory and
Applications. Taylor and Francis, London, UK, 2009.

[2] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” The Jour-
nal of Machine Learning Research, vol. 3, pp. 993–1022, 2003.

[3] G. Maskeri, S. Sarkar, and K. Heafield, “Mining business topics in
source code using latent dirichlet allocation,” in Proc. of the 1st India
Software Engineering Conf. ACM, 2008, pp. 113–120.

[4] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya, “A
theory of aspects as latent topics,” SIGPLAN Not., vol. 43, no. 10, pp.
543–562, 2008.

[5] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman,
“Indexing by latent semantic analysis,” Journal of the American society
for information science, vol. 41, no. 6, pp. 391–407, 1990.

22



[6] A. Kuhn, S. Ducasse, and T. Gı́rba, “Semantic clustering: Identifying
topics in source code,” Information and Software Technology, vol. 49,
no. 3, pp. 230–243, 2007.

[7] D. Blei and J. Lafferty, “Dynamic topic models,” in Proc. of the 23rd
Intl. Conf. on Machine Learning. ACM, 2006, p. 120.

[8] X. Wang and A. McCallum, “Topics over time: a non-Markov
continuous-time model of topical trends,” in Proc. of the 12th Intl.
Conf. on Knowledge Discovery and Data Mining. ACM, 2006, p. 433.

[9] D. Hall, D. Jurafsky, and C. Manning, “Studying the history of ideas
using topic models,” in Proc. of the Conf. on Empirical Methods in Nat-
ural Language Processing. Association for Computational Linguistics,
2008, pp. 363–371.

[10] E. Linstead, C. Lopes, and P. Baldi, “An Application of Latent Dirichlet
Allocation to Analyzing Software Evolution,” in Proc. of the 7th Intl.
Conf. on Machine Learning and Applications. IEEE Computer Society,
2008, pp. 813–818.

[11] T. Cover and J. Thomas, Elements of information theory. Wiley, 2006.

[12] L. AlSumait, D. Barbará, and C. Domeniconi, “On-line LDA: Adaptive
Topic Models for Mining Text Streams with Applications to Topic De-
tection and Tracking,” in Proc. of the 2008 IEEE Intl. Conf. on Data
Mining. IEEE Computer Society, 2008, pp. 3–12.

[13] T. Griffiths and M. Steyvers, “Finding scientific topics,” Proc. of the
National Academy of Sciences, vol. 101, p. 5228, 2004.

[14] H. M. Wallach, “Structured topic models for language,” Ph.D. disser-
tation, University of Cambridge, 2008.

[15] Y. Teh, M. Jordan, M. Beal, and D. Blei, “Hierarchical dirichlet pro-
cesses,” Journal of the American Statistical Association, vol. 101, no.
476, pp. 1566–1581, 2006.

[16] H. Jiang, T. Nguyen, I. Chen, H. Jaygarl, and C. Chang, “Incremen-
tal latent semantic indexing for effective, automatic traceability link
evolution management,” Proc. of 23rd IEEE/ACM ASE, vol. 8.

[17] D. Poshyvanyk and A. Marcus, “Combining formal concept analysis
with information retrieval for concept location in source code,” in Proc.
of the 15th IEEE Intl. Conf. on Program Comprehension. IEEE Com-
puter Society, 2007, pp. 37–48.

23



[18] M. P. Robillard and G. C. Murphy, “Concern graphs: finding and de-
scribing concerns using structural program dependencies,” in Proc. of
Intl. Conf. on Software Engineering, 2002, pp. 406–416.

[19] A. Hindle, M. W. Godfrey, and R. C. Holt, “What’s hot and what’s
not: Windowed developer topic analysis,” in Proc. of the 25th IEEE
Intl. Conf. on Software Maintenance. IEEE, September 2009, pp.
339–348.

[20] J. Hintze and R. Nelson, “Violin Plots: A Box Plot-Density Trace Syn-
ergism.” The American Statistician, vol. 52, no. 2, 1998.

[21] S. Bird, R. Dale, B. Dorr, B. Gibson, M. Joseph, M. Kan, D. Lee,
B. Powley, D. Radev, and Y. Tan, “The ACL anthology reference cor-
pus: A reference dataset for bibliographic research in computational
linguistics,” in Proc. of the 6th Intl. Conf. on Language Resources and
Evaluation Conference, 2008, pp. 1755–1759.

[22] A. K. McCallum, “Mallet: A machine learning for language toolkit,”
2002, http://mallet.cs.umass.edu.

[23] R. Scheaffer and J. McClave, Probability and statistics for engineers.
Duxbury Press Boston, Massachusetts, USA, 1995.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: el-
ements of reusable object-oriented software. Addison-Wesley, Reading,
MA, 1995.

[25] X. Wang, A. McCallum, and X. Wei, “Topical n-grams: Phrase and
topic discovery, with an application to information retrieval,” in Proc.
of the 7th IEEE Intl. Conf. on Data Mining, 2007, pp. 697–702.

24


