Decision Problems for Restricted Variants of Two-Dimensional Automata
CIAA 2019

Taylor J. Smith
Joint work with K. Salomaa
School of Computing
Queen’s University
Kingston, Ontario, Canada

July 22, 2019
Table of Contents

Introduction
 Two-Dimensional Automata
 Restricted 2D Automata
 Decision Problems

Language Emptiness
 Unary Three-Way Nondeterministic
 Two-Way Nondeterministic

Language Equivalence
 Two-Way Deterministic

Row/Column Projection

Conclusions
Table of Contents

Introduction
- Two-Dimensional Automata
- Restricted 2D Automata
- Decision Problems

Language Emptiness
- Unary Three-Way Nondeterministic
- Two-Way Nondeterministic

Language Equivalence
- Two-Way Deterministic

Row/Column Projection

Conclusions
Two-Dimensional Automata

- A two-dimensional (2D) automaton is a generalization of a one-dimensional automaton.
- Two major differences:
 1. Different input word
 2. Different transition function
A two-dimensional (2D) automaton is a generalization of a one-dimensional automaton.

Two major differences:

1. **Different input word**
2. Different transition function

```
#  #  #  ⋅⋅⋅  #  #
#  a_1,1  a_1,2  ⋅⋅⋅  a_1,n  #
#  a_2,1  a_2,2  ⋅⋅⋅  a_2,n  #
⋅  ⋅  ⋅  ⋅⋅⋅  ⋅  ⋅
#  a_m,1  a_m,2  ⋅⋅⋅  a_m,n  #
#  #  #  ⋅⋅⋅  #  #
```
A two-dimensional (2D) automaton is a generalization of a one-dimensional automaton.

- **Two major differences:**
 1. Different input word
 2. **Different transition function**

\[
\delta : (Q \setminus q_{\text{accept}}) \times (\Sigma \cup \{\#\}) \rightarrow Q \times \{U, D, L, R\}
\]

Deterministic four-way
(2DFA-4W)

Nondeterministic four-way
(2NFA-4W)
Remark
A note on notation...

2DFA-nW

- dimension of input word
- # of input head moves

Notation like “4DFA” is found in literature discussing 2DFA-4W.
2D automata do not have to be four-way automata.

Restrict the transition function to get:

- Three-way (3W) automata: \{D, L, R\}
- Two-way (2W) automata: \{D, R\}

Three-way automata cannot return to a row after moving downward, but they can read symbols multiple times in a row.

Two-way automata are “read-once”.

- Similar to a one-way one-dimensional automaton.
Decision Problems

<table>
<thead>
<tr>
<th></th>
<th>2DFA-4W</th>
<th>2NFA-4W</th>
<th>2DFA-3W</th>
<th>2NFA-3W</th>
<th>2DFA-2W</th>
<th>2NFA-2W</th>
</tr>
</thead>
<tbody>
<tr>
<td>membership</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>emptiness</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>universality</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>?</td>
</tr>
<tr>
<td>equivalence</td>
<td>✗</td>
<td>✗</td>
<td>?</td>
<td>✗</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Decision Problems

<table>
<thead>
<tr>
<th></th>
<th>2DFA-4W</th>
<th>2NFA-4W</th>
<th>2DFA-3W</th>
<th>2NFA-3W</th>
<th>2DFA-2W</th>
<th>2NFA-2W</th>
</tr>
</thead>
<tbody>
<tr>
<td>membership</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>emptiness</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
<td>✔️†</td>
<td>✔️*</td>
<td>✔️*</td>
</tr>
<tr>
<td>universality</td>
<td>✗</td>
<td>✗</td>
<td>✔️</td>
<td>✗</td>
<td>✔️</td>
<td>?</td>
</tr>
<tr>
<td>equivalence</td>
<td>✗</td>
<td>✗</td>
<td>?</td>
<td>✗</td>
<td>✔️</td>
<td>?</td>
</tr>
</tbody>
</table>

- 0: new decidability result
- *: new complexity bound over general alphabets
- †: new complexity bound over unary alphabets
Decision Problems

<table>
<thead>
<tr>
<th></th>
<th>2DFA-4W</th>
<th>2NFA-4W</th>
<th>2DFA-3W</th>
<th>2NFA-3W</th>
<th>2DFA-2W</th>
<th>2NFA-2W</th>
</tr>
</thead>
<tbody>
<tr>
<td>membership</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>emptiness</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓†</td>
<td>✓*</td>
<td>✓*</td>
</tr>
<tr>
<td>universality</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>equivalence</td>
<td>✗</td>
<td>✗</td>
<td>?</td>
<td>✗</td>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

- ○: new decidability result
- ✓: new complexity bound over general alphabets
- †: new complexity bound over unary alphabets
- ○: new decidability result, post-publication
Table of Contents

Introduction
 Two-Dimensional Automata
 Restricted 2D Automata
 Decision Problems

Language Emptiness
 Unary Three-Way Nondeterministic
 Two-Way Nondeterministic

Language Equivalence
 Two-Way Deterministic

Row/Column Projection

Conclusions
Language Emptiness

- Language emptiness asks: given an automaton \mathcal{A}, is $L(\mathcal{A}) = \emptyset$?
- Known to be decidable for three-way 2D automata.
 - Also PSPACE-hard for general alphabets.
- Easily seen to be decidable for two-way 2D automata.
 - Simply guess an accepting computation.
The emptiness problem for two-way 1D automata is NP-complete.
▶ See Galil (1976).
▶ A unary two-way 1D automaton is a special case of a unary three-way 2D automaton.
▶ The 2D problem is at least NP-hard.

Theorem
The emptiness problem for unary 2NFA-3W is NP-complete.

Proof Sketch
Given a unary 2NFA-3W automaton A, replace all downward moves with “stay-in-place” moves. Call the new automaton A'. Evidently, $L(A) = \emptyset$ iff $L(A') = \emptyset$. This is equivalent to deciding emptiness for a unary two-way 1D automaton.
Language Emptiness: 2NFA-2W

- The proof of decidability of emptiness for two-way nondeterministic 2D automata is also a proof that the problem is in NP.
- It is possible to improve this bound.

Theorem

The emptiness problem for 2NFA-2W is in P.

Proof Sketch

Via a reachability procedure. If q_{accept} is reachable, then the language is not empty. Given a 2NFA-2W automaton \mathcal{A} with n states, we can check reachability in polynomial time without nondeterminism.
The proof of decidability of emptiness for two-way nondeterministic 2D automata is also a proof that the problem is in NP.

It is possible to improve this bound.

Corollary

The emptiness problem for 2DFA-2W is in P.
Table of Contents

Introduction
- Two-Dimensional Automata
- Restricted 2D Automata
- Decision Problems

Language Emptiness
- Unary Three-Way Nondeterministic
- Two-Way Nondeterministic

Language Equivalence
- Two-Way Deterministic

Row/Column Projection

Conclusions
Language Equivalence

- Language equivalence asks: given two automata \mathcal{A} and \mathcal{B}, is $L(\mathcal{A}) = L(\mathcal{B})$?
- Known to be undecidable for four-way 2D automata.
 - See Blum/Hewitt (1967).
- Known to be undecidable for three-way nondeterministic 2D automata.
 - See Inoue/Takanami (1980).
- Unknown if decidable for three-way deterministic 2D automata.
What about two-way 2D automata?
- Seems like it should be decidable.
- The argument is not very straightforward, though.

Theorem
The equivalence problem for 2DFA-2W is decidable.

Proof Sketch
Via a technical lemma.
Lemma

Let A and B be 2DFA-2W with m and n states, respectively. Denote $z = m \cdot n \cdot |\Sigma|^2 + 1$ and $f(z) = z^2 \cdot (z^2 + z - 1)$. If $L(A) - L(B) \neq \emptyset$, then $L(A) - L(B)$ contains a 2D word with at most $f(z)$ rows and $f(z)$ columns.

- In what follows, assume we have a word $W \in L(A) - L(B)$.
- Intuitively speaking:
 - Suppose A has an accepting computation C_A on W.
 - Suppose B has a rejecting computation C_B on W.
 - The lemma uses a pumping property to reduce the dimension of W by removing shared states of C_A and C_B.
 - This gives a witness word of bounded dimension separating $L(A)$ and $L(B)$.
Proof Sketch

Case 1: \(C_A \) and \(C_B \) share at least \(z \) positions.
At least two of these shared positions must have been reached from the same states of \(A \) and \(B \) on the same symbol.
We can reduce dimension by identifying/removing these positions.
Proof Sketch (cont’d)

Case 2: C_A and C_B share fewer than z positions.
There exists some subword Z consisting of $z \cdot (z^2 + z - 1)$
consecutive complete columns of the input word where C_A and C_B
do not intersect.
Proof Sketch (cont’d)

Case 2: C_A and C_B share fewer than z positions.
There exists some subword Z consisting of $z \cdot (z^2 + z - 1)$
consecutive complete columns of the input word where C_A and C_B
do not intersect.

Case 2(a): One or both of C_A and C_B do not enter Z.
We can reduce dimension without affecting C_A or C_B.
Proof Sketch (cont’d)

Case 2: C_A and C_B share fewer than z positions.
There exists some subword Z consisting of $z \cdot (z^2 + z - 1)$ consecutive complete columns of the input word where C_A and C_B do not intersect.

Case 2(b): Both C_A and C_B enter Z without visiting all columns. Assume that C_A is above C_B and that C_A continues to the last row of Z.
We can reduce the columns without affecting C_A and C_B.
Proof Sketch (cont’d)

Case 2: \(C_A \) and \(C_B \) share fewer than \(z \) positions.
There exists some subword \(Z \) consisting of \(z \cdot (z^2 + z - 1) \) consecutive complete columns of the input word where \(C_A \) and \(C_B \) do not intersect.

Case 2(c): \(C_A \) has a vertical drop of \(z \) steps within \(Z \), or \(C_A \) finishes computation at least \(z \) positions higher than \(C_B \).
We can reduce the rows without affecting \(C_A \) and \(C_B \).
Proof Sketch (cont’d)

At this point, we know that:

▶ C_A is above C_B within Z; and
▶ the vertical distance between each computation at the end is at most z.

Let \max_Z denote the maximal vertical difference of C_A and C_B at any fixed column in Z.
Proof Sketch (cont’d)

Case 2(c)(i): Assume $\max_{Z} z \geq z^2 + z$.
Suppose the leftmost column of maximal vertical distance is k.
There must exist z columns between k and the last column of Z where vertical distance monotonically decreases or stays the same.
In two of these columns, the states of C_A and C_B and corresponding alphabet symbols coincide.
We can reduce the columns without affecting C_A or C_B.

\[
\begin{align*}
\text{max}_Z z & \geq z^2 + z \\
k & \quad \quad \quad \\
C_A & \quad \quad \quad \\
C_B & \quad \quad \quad
\end{align*}
\]
Proof Sketch (cont’d)

Case 2(c)(ii): Assume $\max Z \leq z^2 + z - 1$.
Since Z consists of $z \cdot (z^2 + z - 1)$ columns, there must exist z columns within Z where vertical distance stays the same.
In two of these columns, the states of C_A and C_B and corresponding alphabet symbols coincide.
We can reduce the columns without affecting C_A or C_B.
The previous cases give a method to reduce the columns of the input word.

The method to reduce rows is analogous.

Altogether, the lemma gives a brute-force algorithm to decide equivalence by focusing only on input words up to a given dimension.
Benefits of Approach

▶ The same argument also works for the inclusion problem.
▶ The inclusion problem is therefore decidable for 2DFA-2W.

Detriments of Approach

▶ The algorithm given by the technical lemma is inefficient.
▶ The same argument cannot be used for 2DFA-3W.
Table of Contents

Introduction
 Two-Dimensional Automata
 Restricted 2D Automata
 Decision Problems

Language Emptiness
 Unary Three-Way Nondeterministic
 Two-Way Nondeterministic

Language Equivalence
 Two-Way Deterministic

Row/Column Projection

Conclusions
Row/column projections are operations on 2D words.

The row (resp., column) projection of a 2D language \(L \) is the 1D language consisting of all first rows (resp., columns) of 2D words in \(L \).

\[
\begin{array}{cccccc}
\# & \# & \# & \# & \# & \#
\\
\# & 1 & 0 & 1 & \# &
\\
\# & 0 & 1 & 0 & \# &
\\
\# & 1 & 1 & 1 & \# &
\\
\# & 0 & 0 & 0 & \# &
\\
\# & \# & \# & \# & \#
\end{array}
\]

\[\downarrow\text{ (row proj.)}\]

\[
\begin{array}{cccc}
\# & 1 & 0 & 1 & \#
\end{array}
\]
Row/Column Projection

- Row/column projections over four-way 2D automata do not always produce regular languages.
 - This model can recognize words of dimension $2^n \times 2^n$.
 - Doesn’t work even for a unary alphabet.
- What about three-way/two-way 2D automata?
 - These models cannot recognize exponential-dimension words.
Theorem
The row projection language $L(A)$ of a unary 2NFA-3W A is regular.

Proof Sketch
Replace downward moves with “stay-in-place” moves, as mentioned earlier.
Theorem
The column projection language $L(\mathcal{A})$ of a unary 2DFA-3W \mathcal{A} is not always regular.

Proof Sketch
Construct a unary 2DFA-3W whose language is equal to

$$L_{\text{composite}} = \{a^m | m > 1 \text{ and } m \text{ is not prime}\}.$$
Theorem
The row projection language $L(A)$ of a general-alphabet 2NFA-2W A is regular.

Proof Sketch
Construct a one-way nondeterministic 1D automaton B with “stay-in-place” moves to simulate the computation of A. B nondeterministically guesses symbols that A reads when it moves downward and rightward. B measures the number of rightward moves it made and the length of remaining input, and checks if there exists a matching accepting computation of A.
Corollary

The column projection language $L(\mathcal{A})$ of a general-alphabet 2NFA-2W \mathcal{A} is regular.
Row/Column Projection

<table>
<thead>
<tr>
<th></th>
<th>2DFA-4W</th>
<th>2NFA-4W</th>
<th>2DFA-3W</th>
<th>2NFA-3W</th>
<th>2DFA-2W</th>
<th>2NFA-2W</th>
</tr>
</thead>
<tbody>
<tr>
<td>row projection</td>
<td>✗</td>
<td>✗</td>
<td>✓*</td>
<td>✓*</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>column projection</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

✓: always regular
✗: sometimes non-regular
*: unary alphabets only
Table of Contents

Introduction
- Two-Dimensional Automata
- Restricted 2D Automata
- Decision Problems

Language Emptiness
- Unary Three-Way Nondeterministic
- Two-Way Nondeterministic

Language Equivalence
- Two-Way Deterministic

Row/Column Projection

Conclusions
Conclusions

- 2D automata can be restricted to move in fewer than four directions.
- This restriction brings about interesting decidability properties.
- Language emptiness is NP-complete for unary 2NFA-3W.
- Language emptiness is in P for 2DFA-2W/2NFA-2W.
- Language equivalence is decidable for 2DFA-2W.
- Row projections are always regular over unary three-way 2D automata.
- Row/column projections are always regular over two-way 2D automata.
Future Work

▶ For general-alphabet three-way 2D automata, is the emptiness problem in PSPACE?
▶ Does there exist an efficient algorithm to decide equivalence for 2DFA-2W?
▶ Is the equivalence problem decidable for 2DFA-3W?
▶ What else can we study about restricted 2D automaton models?

