
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

The Journal of Systems and Software 84 (2011) 1114–1129

Contents lists available at ScienceDirect

The Journal of Systems and Software

journa l homepage: www.e lsev ier .com/ locate / j ss

Procedural security analysis: A methodological approach

Komminist Weldemariam ∗, Adolfo Villafiorita
Center for Scientific and Technological Research, Fondazione Bruno Kessler, via Sommarive 18, Trento 38123, Italy

a r t i c l e i n f o

Article history:
Received 22 May 2010
Received in revised form
15 December 2010
Accepted 31 January 2011
Available online 1 March 2011

Keywords:
Security assessment
Formal specification and verification
Electronic voting

a b s t r a c t

This article introduces what we call procedural security analysis, an approach that allows for a systematic
security assessment of (business) processes. The approach is based on explicit reasoning on asset flows
and is implemented by building formal models to describe the nominal procedures under analysis, by
injecting possible threat-actions of such models, and by assuming that any combination of threats can
be possible in all steps into such models. We use the NuSMV input language to encode the asset flows,
which are amenable for formal analysis. This allows us to understand how the switch to a new techno-
logical solution changes the requirements of an organization, with the ultimate goal of defining the new
processes that ensure a sufficient level of security.

We have applied the technique to a real-world electronic voting system named ProVotE to analyze
the procedures used during and after elections. Such analyses are essential to identify the limits of the
current procedures (i.e., conditions under which attacks are undetectable) and to identify the hypotheses
that can guarantee reasonably secure electronic elections. Additionally, the results of the analyses can be
a step forward to devise a set of requirements, to be applied both at the organizational level and on the
(software) systems to make them more secure.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Often risks and attacks not only depend upon the security levels
software and hardware systems offer, but also on the procedures
and controls regulating the way in which they are operated. In
such cases, introducing technical security mechanisms—such as
Adida (2006), Sastry et al. (2006) and Yee (2007)—is not sufficient.
To fill this gap, we focus on the definition of methodologies and
techniques to model and formally verify procedures and systems
processes. This requires not only the definition of adequate mod-
eling convention, but also the definition of general techniques for
the injection of attacks, and for the transformation of business pro-
cesses into representations which can be given as input to model
checkers. For this purpose, we have defined a methodology that
allows one to perform security assessment on the procedures. The
underlying approach that we follow lies on the intersection of three
areas, namely, Business Process Engineering and Re-engineering
(BPR), security, and formal methods.

1.1. Motivation

We all take actions to avoid security risks in our daily life. They
may be as simple as locking the office door when leaving for a day.

∗ Corresponding author.
E-mail addresses: sisai@fbk.eu, komminist@gmail.com (K. Weldemariam).

For our home computer, maybe it is sufficient to activate the fire-
wall and keep updated on relevant security patches. The situation
becomes more complex and difficult if the system we need to pro-
tect is a major information system that performs critical steps of
complex business processes, whose execution might also require
several manual actions to be carried out.1 This is exactly the case
of (voting and) e-voting: even in those countries that have adopted
a high level of automation, procedures and controls performed by
people on physical assets (e.g., printouts of the digital votes) remain
an integral and unavoidable part.

In order to ensure a sufficient level of security, therefore, there
is a need for a thorough security risk analysis methodology that
considers procedures as part of the modeling and analysis process.
The approaches discussed so far, e.g., Fovino and Masera (2006),
Basin et al. (2003) and Hogganvik (2007), say little or are otherwise
ineffective on these procedurally rich scenarios. With “procedurally
rich” we denote situations in which software systems are just part
of a complex organizational setting, in which procedures have to be
executed on security-critical assets that belong both to the digital
and physical realms.

We address (some of) the issues above by dealing with the iden-
tification, modeling, establishment, and enforcement of security
policies about the procedures that regulate access and manipula-

1 In the rest of the paper we use the terms business processes, processes, proce-
dures, and workflows as synonyms.

0164-1212/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jss.2011.01.064

Author's personal copy

K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129 1115

Fig. 1. A reference scenario for procedural security analysis.

tion of critical assets. The breach of security objectives during the
execution of the procedures or usage of systems is known as threat
to the procedures (or procedural threats). We call procedural secu-
rity analysis the process of understanding the impact and effects of
procedural threats, namely courses of actions that can take place
during the execution of the procedures, and which are meant to
alter, in an unlawful way, the assets manipulated by procedures.

The reference scenario is shown in Fig. 1. Our target of evalu-
ation, a term borrowed from Common Criteria (Common Criteria,
2007), is a (complex) organizational setting in which procedures
transform and elaborate assets. Assets might be made of bits (such
as, for instance, an electronic vote stored in a voting machine) or live
in the physical world (like, for instance, the paper trail of a voting
machine). The procedures and organization are meant to add value
to the assets and protect valuable assets from attacks. Think, for
instance, of paper ballots: before an election a ballot is a replace-
able piece of paper.2 After a vote has been cast, the same ballot
represents the decision of a voter, that needs to be appropriately
accounted for and protected.

Attacks in our model might either come from external sources
or from insiders, as shown in the figure, where the shaded actors
represent a set of adversaries, whereas the non-shaded represent
trusted actors.

We distinguish, in particular, the following kinds of attacks:

1. Attacks on digital assets (item 1 and item 3 in Fig. 1). These attacks
are meant to alter one or more digital assets of an organiza-
tion. Attacks can either be carried out by external sources (the
environment), by internal sources, or a combination of both.
Opportunities for attacks are determined by the organizational
setting and by the security provided by the digital systems. At
attacker, in fact, might need to get access to a digital resource
(possibly by circumventing existing control procedures) and
overcome the software/hardware protections put in place to
protect the digital assets.

2. Attacks on other kind of assets (item 2 and item 4 in Fig. 1). These
attacks are meant to alter one or more non-digital assets of
an organization. Attacks can either be carried out by external
sources (the environment), by internal sources, or by a combi-
nation of both. Opportunities for attacks are determined by the
organizational settings only. The attacks may lead to compro-
mise digital assets as well (e.g., stealing a password provides
access to digital assets).

Existing security assessment methodologies, like Fovino and
Masera (2006) and Hogganvik (2007), usually focus on understand-

2 Simplifying quite a bit. In fact, by stealing a blank ballot it is possible to imple-
ment an attack that allows to control voters.

ing items 1 and 3, namely, types and effects of attacks on (software)
systems. We propose a tool-supported methodology to tackle also
points 2 and 4, namely attacks on assets that are not necessar-
ily digital and that derive from the way in which procedures are
implemented and carried out.

1.2. Technical elements of the approach

In order to achieve the goal stated above, we approach the prob-
lem by reasoning about the procedures and controls that regulate
the usage of systems:

• Provide models of the procedures under evaluation. During which
we provide models that describe the procedure or procedures to
be analyzed. In order to ease the task of translating the models
into executable assets flows, we stick to a subset of the Unified
Modeling Language (UML) notations (Booch et al., 2005).

• Extend model. During which we generate an extended model from
the models defined in the previous step. The extended model is
generated by injecting3 threat actions into the nominal flow of
the procedures. Thus, in the extended model, not only assets are
modified according to what the procedures define, but they can
also be transformed by the (random) execution of one or more
threat actions.

• Encode the asset flows. During which we transform the model
obtained at the previous step into asset-flows—namely exe-
cutable specification written in the NuSMV input language
(Cimatti et al., 2002), that describe the evolution of assets. The
NuSMV model of the asset flows is based on the definition
of program counters that ensure that procedures are executed
according to the specifications, and by defining one module per
asset with one state variable per asset feature. The state variables
encode how features change during the execution of the proce-
dures. Accessory information, such as actors responsible for the
different activities can be used, e.g., to enrich the language used
to express security properties. The necessity of modeling actors
roles in NuSMV depends upon the target of the security analysis.

• Specify security properties to model check. During which we spec-
ify the (un-)desired (procedural) security properties—namely,
the security goals that have to be satisfied or violated are then
encoded using Linear Temporal Logic (LTL) or Computational
Tree Logic (CTL) (Pnueli, 1977) formulas. These, together with
the model, are given as input to NuSMV.

• Perform analysis and results analysis. During which we run the
model checker to perform analyses. If a property is proved to be
false, NuSMV generates a counterexample which opens up fur-
ther discussion. Counterexamples of security properties encode
the sequence of actions that have to be executed in order to carry
out an attack on an asset.

With this approach analyzing attacks is reduced to a model
checking problem in which the required final state of some key
assets is expressed using LTL/CTL and the counterexample gen-
erated by executing the extended model contains the sequence of
threat-actions causing the final state not to be reached. The model
checker takes care of pruning useless threats, namely threats which
do not lead to any successful attack. Analogously to what happens
in safety analysis when analyzing, e.g., the loss of critical functions,
enhancing the procedures results in reducing the probability of an
attack or making the attack more complex, rather than eliminating

3 Note that by fault injection we mean the extension of the assets-flow model
with a specification of the possible threat-actions. We adopt this terminology, which
is standard in safety analysis, even though it may not be fully appropriate in our
domain. See, e.g., Bozzano and Villafiorita (2007).

Author's personal copy

1116 K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129

Fig. 2. A class diagram depicting the characteristics of an asset.

it Bozzano and Villafiorita (2007), Manian et al. (1998) and Hsiung
et al. (2007).

1.3. Benefits of the approach

The benefits that the proposed methodology brings are twofold.
First of all, it helps identifying the security boundaries, that is, the
conditions under which procedures can be carried out securely.
More specifically it is possible to understand what are the hypothe-
ses and conditions under which a given security goal is achieved
or breached. Second, it helps devising a set of requirements to
be applied both at the organizational level and on the (software)
systems used to make systems and system processes secure. This
can be achieved by analyzing the counterexamples generated by
NuSMV, since they provide information useful to modify the exist-
ing procedures and take care of the security breaches.

Thus, this work build upon the motivations for procedural secu-
rity discussed in Xenakis and Macintosh (2004) and Xenakis and
Macintosh (2005). Additionally, we believe that the outputs of the
analyses could also be used to familiarize actors (e.g., election offi-
cials or polling officers) with the possible procedural threats and
attacks that could happen during an election; thus, it complements
works like Volkamer and McGaley (2007) and Volkamer (2009).

1.4. Paper organization

The rest of the article is organized as follows. In the next sec-
tion, we present the conceptual framework for the approach we
propose. Section 3 presents the technical elements of the method-
ology in detail. In Section 4, we demonstrate the approach using
examples taken from ProVotE e-voting system (Villafiorita et al.,
2009). Finally, we discuss related work in Section 5 and we outline
our conclusions in Section 6.

2. Conceptual framework: understanding an asset under
analysis

Fig. 2 represents the main concepts we model in our framework.
The starting point is a set of processes, that are performed by actors
with different roles (left hand side of the figure). The explicit rep-
resentation of actors is an important feature of the model. In fact,
it allows us to represent security breaches related to opportunities
for insiders (e.g., an actor participating in different activities might
have access to all the different resources needed to carry out an
attack) and the security boundaries of the procedures (e.g., what
actors do I need to carry out a specific attack?).

In the figure, a process can have zero or more inputs, that is, the
assets required for the execution of the process. It can have zero
or more outputs, that is, the assets that the process produces or
transforms. We call features all the structural characteristics of an
asset. Processes read and transform assets’ features. For the anal-
yses we wish to carry out, in particular, we characterize assets
with the following features: nature, value, location, content, a set of
domain and security specific properties, and number of instances.
In our experience, this characterization is sufficient to understand
possible weaknesses of the procedures and the impact of attacks.

The nature of an asset can be primitive (this is the case of assets
such as names, symbols, keywords, passwords, electronic ballots,
and electronic data in general) or container, when the asset can
also contain other assets (e.g., a memory support that can contain
electronic ballots). The nature of an asset is immutable, namely
it cannot be changed during the execution of the procedures. The
value of an asset (which we represent qualitatively, e.g., “no value”,
“high value”) allows one to reason about the impact of threats (e.g.,
an attack to an asset with no value does not cause any harm). The
initial value of assets is assigned in the model by a domain analyst,
and it may change upon the execution of an activity. The value of
container assets is determined by their intrinsic value (determined
by the analyst), together with the value of the assets they contain.

In our methodology, assets are situated in a location (e.g., an
electoral office, a safe, a container asset). Breaking into a location or
being able to access a container is a mean to lead an attack against a
(contained) asset (e.g., stealing a memory support containing elec-
tronic ballots allows to attack the electronic ballots and can cause
a discrepancy among the election outcomes). The initial locations
are determined by the analyst and can be changed by the execution
of an activity. The location of primitive assets corresponds to the
location of the containers in which they reside. Furthermore, a con-
tainer asset can be a relative location for another container asset.
This allows us to speak about which kind of (sensitive) information
an asset has at a certain (discrete) point in time, which we call con-
tent of an asset. The content of an asset can be known in advance or
determined by the execution of a workflow activity—e.g., an envelop
that is used to ship the voting kits to polling station may contain
all relevant information needed to run the election, such as the
election software, PIN, etc.

We allow to characterize an asset also by means of a set of
properties that describe the current situation of the asset such as
the security measures that are enacted (e.g., a safe can be closed, a
file can be plain or encrypted). While for any domain there can be
domain-specific states of the asset, we are particularly interested
in security states such as open, closed, unsigned, signed, encrypted,
plain, etc.

Author's personal copy

K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129 1117

In addition to the mentioned qualities, a number of copies
(called number of instances) is particularly relevant in the elec-
toral domain because the same asset can be replicated many times.
When printing the ballots, for instance, copies go through different
responsible people. This is also important to estimate the effects
of a threat on an asset, for instance before or after a duplicating
operation.

Finally, we call state of an asset the values of the features of
an asset (i.e., value, location, number of instances, and properties)
at a given instance, whereas asset-flow is the sequence of states
through which an asset goes during the execution of a process. Even
though an asset can have multiple instances, we focus on how a sin-
gle asset instance can evolve from some initial state through other
states as the result of the execution of workflows. An example:
the abstract concept of ballot box (class) is associated with several
instances which describe its evolution during processes execution,
like a state change from “open” (e.g., during the voting phase) to
“closed & sealed” (e.g., right after the election is over), and also its
value changes accordingly, which is “low” when the ballot box is
empty (before the election) but which becomes “very high” after
voter deposits a marked ballot.

2.1. Asset threats and attacks

The information reported previously is sufficient to describe
non-trivial flows of the assets in terms of state transition systems in
the nominal case—i.e., when all assets “flow” as expected. However,
this is not always the case, because attacks can often be carried out
“bypassing” the procedures. The key question is how flexible and
complete our methodology is in describing such attacks (see, e.g.,
Bishop (2002) and Xu and Nygard (2005)).

Typically, an attack model describes the intents a malicious actor
might have (e.g., modify the election software before the election,
sabotage election result), the types of malicious actors (e.g., elec-
tion officials, poll workers, messengers, or voters), the privilege to
each type (of malicious) actors (e.g., who has read/write access to a
critical asset), and the location where malicious actors can possibly
implement the attack.

For our purpose, it is enough to assume Fig. 1 as our reference
attack model, since it distills the essential characteristics of a pro-
cedural rich scenario. As noted in the figure, as a minimum, we
distinguish two types of assets (digital and physical assets), the
attackers’ nature (insiders and outsiders), and the environment in
which the procedure transforms the assets under analysis. Domain-
specific formalizations typically provide additional details on top of
the ones we just mentioned.

In principle, an attacker might wish to pursue any kind of goal,
such as financial gain or political interest (e.g., see Jones (2003),
Lambrinoudakis et al. (2003) and Sastry (2007)). We consider the
following goals: compromising data integrity (e.g., produce incor-
rect vote counts), compromising the availability of a system causing
a denial of service attack (e.g., block some or all voters from vot-
ing in key polling site, delay the announcement of election results),
compromising the confidentiality of the system (e.g., allow voters
to cast doubt on the legitimacy of the election results). The dimen-
sions of attacks we considered are those described in Kohno et al.
(2004) and Balzarotti et al. (2008).

2.1.1. Asset threats and attacks
By assigning each asset a value and a location we can highlight

in a model where a threat may be implemented and how much
harm it can cause. A denial of service, for instance, could be caused
by deleting a valuable asset (an asset whose content value is not
null) when the asset is in a given location. The notation used previ-
ously, however, does not allow to represent the how, e.g., the flow
of actions causing termination of the procedures in some undesired

Fig. 3. The Delete threat Action and an Example. (a) The Delete Threat-action. It
changes the state of the asset from si to sj . (b) Instance of Delete threat action.

state nor to reason about composition of threats—that is, what hap-
pens if multiple assets are attacked simultaneously. To tackle this,
we propose the concepts of asset threats and attacks.

We define a threat (or threat-action) to an asset as an action that
alters feature(s) of the assets or allows some actors privileges (e.g.,
a “read” privilege) on some assets. That is, it is what an adversary
might try to do to an asset in a system and it is described by a
sentence like “adversary does something to the asset”. Like workflow
activities, threat-actions can transform assets or their state or both.
Unlike the workflow activities, however, they transform assets to
non-nominal situation, that is, the assets are in undesired states
due to the effect of the threat-action.

To differentiate between the nominal and non-nominal behavior
of assets, we enlarge the set of processes and assets by distinguish-
ing between:

• malicious processes, we identify some of the possible operations
that an adversary may conduct against an asset, and

• malicious assets, we describe all the instruments and data built or
obtained by an adversary to achieve his/her goal(s).

Malicious processes can require as input some particular assets,
produce new assets to complete other wicked activities, and modify
the original assets to alter the asset flow. To give an example, a snif-
fer could be considered as a malicious asset needed by the adversary
for capturing the password and the result is a new malicious asset:
the unauthorized password copy in plain to use for other purposes.
This further led us to distinguish between threat-actions into:

• basic threat-actions, are usually considered to be elementary if
no decomposition will reveal any further information of interest.

• composed threat-actions, are obtained by composing actions to
produce more complex behaviors.

Both basic and composed threat-actions can alter, e.g., the con-
tent of an asset, its state or both. Some actions might be executed
just to access a resource, which in turn could trigger other more
risky actions that can directly modify the asset. Examples of basic
threat-actions include: delete (see also Fig. 3), read, write (or update),
and create. Notice that we always distinguish threat-actions from
intended actions by using the threat or threat-action along with
the action name (e.g., “delete” and “delete threat-action” refer two
different intents.)

Replace is an example of a composed threat-action. It substitutes
an asset with another (malicious) asset. It takes as input two assets,
that is, the original asset and the malicious asset and produces one
output, namely the malicious asset. In its basic form, Replace is com-
posed of delete and write; the action, however, can also include a
copy operation, to simplify the alteration of some parameters of the
original asset.

Author's personal copy

1118 K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129

Work flow Activity

triggers

-status
-location
-value
-content
...

Asset class and Asset flow

Fig. 4. An asset-flow view of a business process model.

Notice that in our approach we use the NuSMV input lan-
guage to encode the threat-actions while extending the nominal
assets-flow models. An alternative approach is using first order
logic and first order reasoning to formalize coordination of attacks;
see Koubarakis and Plexousakis (2000) and Braynov and Jadiwala
(2003) for more details.

Finally, to carry out an asset threat the adversary may need
to execute one or more (more elementary) threat-actions or a
sequence of asset-threats against other asset—e.g., adversary reads
“password” and signs “data”. Therefore, we define an attack as a
sequence of asset-threats that lead to an undesired state, that is,
one or more assets are in an undesired asset-state.

3. A methodology for procedural security

As mentioned earlier, we developed a precise methodology to
perform formal procedural security analysis. In the following, we
discuss each element of the methodology in detail.

3.1. Formal model of asset-flows

The first activity in our security analysis of a procedure consists
of providing models of the assets-flow, which are represented using
transition systems. Such models describe the assets to be analyzed,
and the way in which their features are transformed by procedures.
The key elements in the model include assets, (workflow) activities,
and transition semantics.

Fig. 4 shows high-level representation of the lifecycle of assets.
Unlike the classical UML Activity Diagrams (UML ADs) (Booch et al.,
2005), the perspective shown in the figure offers three views: work-
flow, assets class, and state machine. In the workflow diagram view,
workflow activity sequences are defined. The state machine view
describes the behavior of an asset in terms of a transition system
in which transitions are enabled due to explicit execution of work-
flow activities. The activities in the workflow are transformation
functions that influence the behaviors of the assets. A finite state
transition diagram for each feature of an asset constitutes the global
state machine for that asset.

3.1.1. Formalization of the models
The formalization allows the model to be more amenable to

formal analysis, since it removes the strategic flavor of the (busi-
ness) process models and shifts the focus to dynamic aspects of
the assets, and hence procedures under analysis. Our formalism
borrows and extends the approaches proposed in Gerede and Su
(2007),Bhattacharya et al. (2007) and Hull (2008). However, we
differ on the interpretation of some concepts and on the analysis
goals we wish to perform. In fact, our approach moves forward the
cited works (in which the authors provide formal model for busi-
ness artifacts and analyze them for better construction of business
operations and processes) by complementing the their approach
with security analysis.

To begin with, we assume the following notations and their
definitions.

• Tp be a set of primitive types, such as bounded integer and
boolean;

• C be a set of asset classes (names);
• A be a set of attributes (names);
• IDC be a set of identifiers that describes the identifiers for each

asset class C ∈ C;
• S is a set of assets states, where each s∈S is a truth assignment

over the variables values.

Note that all the above sets are finite, which is essential for the
model checking process.

A typeT is an element of the primitive types Tp and the class iden-
tifiers C; namely, T = Tp ∪ C (we assume that Tp and C are disjoint).

Definition 3.1. An asset class signature is a triple 〈C, A, 〉 where
C ∈ C, A∈A is a a set of attributes for the asset class C, and : A →
T is a total function that maps each attribute of an asset into its
corresponding type.

Definition 3.1 represents the asset class signature that speci-
fies assets that are present in the domain. In the definition, besides
the features of an asset discussed previously, the specification of
the attributes can comprise of domain specific or assets specific
attributes.

Notation 3.1. We write � to denote the set of all possible assets
classes that exist in the domain, including malicious assets that can
be introduced by an adversary.

Without loss of generality, we assume a fixed interpretation
domain associated to each T type. That is the domain of each type
t ∈ T, denoted Dt , is defined in the following way: if t ∈ Tp is a prim-
itive type, then the domain Dt is some known set of values of type
(e.g., integer or boolean); if t ∈ C an identifier type, then Dt defines
existing instances of an asset class identifier for t (i.e., Dt = IDt).
We require all variables must have their corresponding values all
along their life. For undefined location and unassigned content of
an asset, we use an undefined and a null constant values, respec-
tively. The interpretation is that the location is not known and the
content value is not either assigned yet or reset to contain null. For
instance, the content of a memory support (such as USBKey) can be
null prior to loading the election software by a responsible actor
(e.g., by a technician or an election official).

Definition 3.2. An asset instance is a triple 〈IDC, C, �〉, where
IDC ∈ ID is a class identifier and � a partial function, given an
instance of a class C, that assigns each variable a ∈ AC of type t ∈ T a
value in Dt (i.e., �(a) = Dt((a))).

Notation 3.2. We use SC ⊆ S to denote all the possible states (i.e.,
both nominal and non-nominal states) of an asset class C ∈ C.

An asset can have multiple instances. We denote the set of asset
instances by 	OC,C ∈ C and 	O for all instances over�. Duplicating the
election software for each polling station, for example, creates as
the number of polling stations instances where each of this instance
can behave differently after duplicating operation in place. As we
noted previously, in this work, we mainly focus on how a single
asset instance I ∈ 	OC can evolve from some initial state through to
other states. The set of variable-value pairs for I defines the state of a
given asset. The state of an asset is, therefore, the current situation
called “snapshot” of an asset instance I and its value is the truth
assignment over the variables. An asset is initial, if all the variables
are in their initial state and � is undefined for some attributes and
final, if all the variables values do not change anymore.

Author's personal copy

K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129 1119

F ormal model of workflow specification. The initial values for
the variables of an asset can be assigned at the time of the instance
creation or otherwise assigned by an analyst. However, only due
to the execution of a workflow activity over these variables can
change the initial configuration of the asset. Roughly speaking, a
workflow activity is described by input assets, preconditions, and
effects of the activity over the assets (a similar interpretation can be
found in Koubarakis and Plexousakis (2000), Gerede and Su (2007)
and Bhattacharya et al. (2007)). The effect of a workflow activity
is regarded as a change in state of the input assets. Not all assets
change their states thought, since it is not always the case that an
execution of a workflow activity enables state transition to all the
input assets (e.g., reading the content of the election software does
not change its state).

For each executable workflow activity, moreover, we specify
which actors participate in the workflow with predefined privileges
or responsibilities or both. These information – we call accessory
information – not only allows to describe who does what during
the execution of an activity, but, more importantly in the con-
text of procedural security analysis, who manages what data and
with what privileges. Such information are static, namely they are
known before executing a workflow and are encoded in our model
to describe a workflow scenario. We, therefore, use these infor-
mation along with the activities to describe a workflow model as
a deterministic finite state machine in which the states are con-
structed by a set of activities and the transitions are described
by the current state and a matching condition over the accessory
information. Formally, we define the workflow model as follows.

Definition 3.3 (W). A workflow model is a quadruple 〈P, s0, sf, C,
�〉 where P is a set of activities or processes (names); s0, sf ∈ P are
initial and final activities of the workflow respectively; C is guard
expression over accessory information, and�⊆ P × C × P is a transi-
tion relation between a current activity and its successor activities
in which a transition is labelled with a condition over accessory
information.

The above definition is meant to express the fact that there exist
a set of activities within a particular workflow, that describes a
procedure under analysis, thereby by knowing the current state
of the workflow, and if a condition is met, it should be obvious
to determine the next state of the workflow. We call an instance
of a workflow model a program counter ‘ ‘pc”, which contains the
value of the current state (i.e., the active activity) in the workflow.
There is one program counter ‘ ‘pc” for each workflow model at
run time. In actual business process or workflow specification, in
fact, it is possible to have multiple activities that can run in syn-
chronous or asynchronous mode. We focus on sequential execution
of a workflow in this work.

Formal model of asset-flow specification. The state of an asset is
specified by the assignments of values to variables—or simply val-
uations. This, in turn allows to describe the evolution of an asset,
and is expressed by the sequence of states through which an asset
undergoes during the execution of a process. It makes sense to
encode the state of each variable as a finite state machine, since the
state of an asset is described by the valuations over its variables.
The workflow instances, along with some matching conditions,
define transitions for modeling the lifecycle of the assets. Thus, an
asset-flow can easily be modeled using a transition system, thereby
facilitating the sformal analysis.

We now define our notion of assets-flow models more formally
as,

Definition 3.4. An asset-flow model (AFM) is a 5-tuple
〈AS, I,W�, C�,��〉 where

• AS ∈S is a finite set of assets’ (instances) states;

• I ⊆ AS is an initial states of the assets;
• W� is a set of workflow instances;
• C� is a set of conditions constructed over the attributes represent-

ing the matching construct as a guard, that specify the condition
must meet for the state to be changed, along with the current
activity;

• �� ⊆ AS ×W� × C� × AS is a transition relation between a cur-
rent state of an asset and its successor states in which a transition
is labelled with an activity and a condition.

A collection of individual AFM constitutes assets-flow models,
and is represented by M1. Therefore, M1 is regarded as the global
configuration of the domain of interest, namely the procedures
under analysis. The semantic of the global configuration M1 can
be interpreted in the following way. Each m∈M1 is regarded as
an abstract state machine, which has three major components:
a workflow activity sequence (possibly maintained in a queue), a
workflow activity dispatcher, and an activity processor. Workflow
activities are added to the end of the activity queue. The activity
dispatcher chooses, dequeues, and provides the next ‘ ‘pc” (i.e., an
activity) to the activity processor. Each ‘ ‘pc” is then used as a trans-
formation function that can possibly change the state of an asset by
modifying or changing one or more variables values of the asset.
One state machine per feature variable encodes the lifecycle of that
state variable (e.g., see Fig. 7). A set of such state machines consti-
tutes the global state machine for the corresponding asset instance.
By defining a semantic for the state machines corresponding to each
feature of an asset and linking it with m∈M1, therefore, we have
implicitly defined how M1 behaves.

3.2. Model extension

The formal model we presented earlier represent the nominal
behavior of the assets (M1)—that is, the model describing the stan-
dard procedures, e.g., what is prescribed by the law. In order to
analyze what are the possible attacks of a given (set of) procedures,
we need to encode asset threats in the nominal model and generate
the extended model M2. Structurally, in fact, there is no differ-
ence betweenM1 and the extended modelM2. However, the main
difference lies on the assets state set and on the transitions spec-
ification. This means that, the extended model possibly will have
more states than the other due to the execution of threat-actions
that can change the state of an asset but into undesired state.

On the transitions side, on the other hand, the definition did
specify the fact that transitions are triggered only by nominal work-
flow activities. We need to incorporate inM2 the fact that an asset
could be in any possible states and that such states can also be
changed by the execution of malicious processes. However, it is
pretty straightforward from the definition we gave and by extend-
ing the definition of the workflow model (e.g., Definition 3.3) to
include all the malicious processes that an adversary might exe-
cute. Thus, in M2, assets are not only manipulated according to
what should happen in the nominal case (i.e., according to the elec-
toral laws), but can also be transformed by the execution of one or
more assets threat-actions.

3.3. Encoding the assets-flow models in NuSMV

Assets-flow models M can become executable specification to
allow formal analysis through verification tools on their evolution,
including their malicious evolution due to threat-actions. Our aim
here is to represent the modelM into executable specification using
NuSMV input language. The NuSMV semantic (see in Cimatti et al.
(2002)) is based on a state-based formalism in which the behavior
is defined by Kripke transition systems. However, the above defi-
nition for M is an action-based formalism in which the behavior

Author's personal copy

1120 K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129

is defined by (a sort of) labelled transition systems. Thus, we need
to rearrange the previous definition to align with the semantic of
Kripke structure so that the encoding of NuSMV specifications can
be tackled.

Definition 3.5 (AFM, MK). Let APs are set of atomic propositions
ranged over some boolean expressions on the valuations of the vari-
ables. An asset flow model (AFM) is a Kripke structure over a set of
atomic propositions AP defined by a quadruple 〈ASK, IK ,�K,LK 〉
where

• ASK is a finite set of assets (instances) states;
• IK ⊆ ASK is set of initial states;
• �K ⊆ ASK × ASK is a transition relation between a current state of

an asset and its successor states;
• LK : ASK → 2AP is the labeling function which returns the set of

atomic propositions which hold in a state.

Therefore, the encoding ofM in the NuSMV input language can
be treated as a problem of defining a mapping between the two
structures, i.e., between the structure specifying the model M and
the Kripke structure.4

In general, the translation is performed as follows:

1. We define a module that works as the program counter, which
encodes the sequence of activities defined by the workflow. The
transition from one activity state to the next is determined by the
current state of the activity and some accessory information such
as role(s), which encodes the relationship between the workflow
activity and actors who are assigned to perform the execution of
the workflow.

2. A module is defined for each asset that it is specified in the assets-
flow models (or specified in the process diagram). Each feature
of the asset is defined as a state variable within the module. The
transition from one asset state to the next is determined by the
program counter (which represents the execution of an action of
the workflow) and some boolean expressions over the current
state of the asset;

3. We define some boolean appendage variables to capture mali-
cious flows of assets and the execution of threat actions to form
the extended model. That is to say, these variables help for the
encoding of both malicious assets and threat actions to derive
the extended NuSMV model. Additionally, we introduce a state
variable in workflow module to capture malicious processes.

The above general strategies are spilt into a number of rules.
More specifically, the following encoding rules can be used to map
M into the NuSMV counterpart.

Rule 1 The workflow model is encoded in NuSMV as a special
module, and each workflow activity pi ∈ P fori = 1, . . ., n representing
the domain activities (i.e., processes) inWare encoded in the NuSMV
input language as a scalar variable program counter (pc) in which
pi are its symbolic values.

Rule 1 defines the special module that works as the program
counter. In particular, it specifies the workflow model (W) and the
declaration of state variable pc under the module, where all domain
activities in the workflow are the scalar values of pc. The pc ensures
that the order in which activities are executed is the one defined
by the workflows.

4 We should be clear that this kind of rearrangement is not new, e.g., a similar
work can be found (Lam and Padget, 2004).

Table 1
Examples of accessary information as predicates.

Predicate Meaning NuSMV variable

AssignR(a,r) assignment of actor a ∈ Actor to role
r ∈ Role

assign a r

AssignA(a,p) assignment of actor a ∈ Actor to an
activity p ∈ P

assign a p

r Active for a role r ∈ Role is active for actor a ∈ A activefor a r
ExecA(a,p) actor a ∈ A executes an activity p ∈ P exec a p

In order to determine the state transition of the program
counter, we introduce some predicates (see Table 1). Notice that
these information can easily be inferred by looking at the process
diagrams. They are mainly associated with the accessory informa-
tion, such as actor-role and actor-activity (i.e., RAP) assignments.
The table also shows the corresponding state variables in NuSMV
input language.

Rule 2 The accessory information are encoded in the NuSMV
input language within the Workflow module in the following way
(see also Table 1):

• For each actor-role assignment, we introduce a variable
assign a r. assign a r is true iff the predicate AssignR(a,r) is true
for an actor a ∈ Actor and a role r ∈ Role;

• For each actor-process assignment, we introduce a variable
assign a p. assign a p is true iff the predicate AssignA(a,r) is true
for an actor a ∈ Actor and an activity p ∈ P;

• For each role activation r Active for a, we define a state variable
Activefor a r;

• Similarly, we define a variable Exec a p for every actor perform-
ing an activity, i.e., iff ExecA(a,p) is true.

Rule 2 defines accessory information for the transition relation
of pc state variable. Notice that activities can only be executed if the
activity instance in question is assigned to an actor—i.e., ExecA(a,p)
⇒ AssignA(a,p). Moreover, a group of actors can perform the same
activity.

Rule 3 For each asset instance in 	O, a NuSMV module is defined:

Rule 4 An asset with no content inM1 is mapped to a symbolic
value “null” in NuSMV. Similarly, an asset whose current location
is not known or unspecified in M1 is mapped to a symbolic value
“unspecified” in NuSMV.

Rule 5 The location, which represents all the possible places of an
asset, is encoded in the NuSMV input language as scalar variables
loc in which loci for i = 1, . . ., n and “undefined′′ are its symbolic
values. The content, representing all the contents of an asset at a
particular point of time, is encoded in the NuSMV input language as
content in which contenti for i = 1, . . ., n and “null′′ are its symbolic
values. The value, representing all security risk values for an asset,
is encoded in NuSMV input language as value in which noValue,
low, high and critical are its symbolic values. Finally, each domain
specific property of an asset in an asset-flow model is encoded as
a boolean value in NuSMV.

. . .
Rule 3 states that a module is defined for each asset (instance)

in M1. In Rule 5, whereas each feature of the asset is defined as a
state variable within the asset module specification. An unknownl

Author's personal copy

K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129 1121

ocation and a nullvalue are both encoded by symbolic values as
defined by Rule 4.

Rule 6 The transition specification for each state variable is
encoded by the current value of the program counter and some
boolean expressions over the current state of the asset. The below
code shows a template for a transition specification for each state
variable.

The above rule (i.e., Rule 6) encodes the transition specifications.
The transition from one asset state to the next is determined by
the current value of the pc and some condition over the current
state of the asset instance. That is, the current state of the pc –
which is passed as a parameter to each asset module – along with
boolean expression, bool expr, is encoded as a boolean expression
like pc.pc = activity&bool expr from W� × C� .

Model extension. Since all the above rules are related to the
encoding of M1, we need to provide additional rule for encoding
M2. The model extension corresponds to proving an extension in
the NuSMV model with one or more applicable attack-actions. That
is, a specification of how the assets can be in undesired states. This
can be done by associating threat-actions with variables defined
inside the module per asset instance. Moreover, the Workflow
module should also need to be extended in order to include the
malicious process executions.

Note that attacks depend on what threat-actions are carried
out, the effectiveness of the analysis depends upon the injection
strategy that is chosen. It turns out that the best injection strat-
egy consists of injecting all possible threat-actions at all possible
steps of the nominal procedures and let the model checker to find
the possible combination of the sequences that lead to undesired
state for an asset flow. Therefore, the problem of encoding of asset
threats corresponds to extending the nominal assets-flow specifi-
cation with threat actions.

In particular, the model extension can be done by using the
following strategies:

• by defining a scalar state variable to encode all the possible
malicious process within the Workflow module. Therefore, the
program counter does not only have values from nominal work-
flow activities but also from possible set of malicious workflow
activities;

• by defining a transition specification for each activation of a
threat-action on asset instance under the corresponding asset
module in NuSMV, where the malicious activity (i.e., the current
value of the pc) is in place for enabling the transition;

• by defining boolean variable to monitor the execution of the cor-
responding threat-action. This variable will be true iff when the
corresponding threat-action takes place;

• by introducing a scalar value “garbage” for the content state vari-
able related to the introduction of malicious asset and a boolean
variable. This variable will be true iff a predicate associated with
the action (e.g., MAsset(t)) is true by a threat-action, say t.

The above strategies facilitate the task of model extension, by
adding a number of boolean appendage variables that are needed
to capture the malicious asset flows and the execution of threat
actions to form the extended model specification in NuSMV input

language. That is to say, these variables help for the encoding of
malicious processes, malicious assets, and threat-actions to derive
the extended NuSMV model. In this way, therefore, the model
extension is performed for each applicable threat-action against
the normal flow of assets. Notice that the model extension can be
done in two ways with different abstraction levels, namely either
at higher level (i.e., at UML diagrams level) or at lower level (i.e.,
at the NuSMV specification level). The list of activities executed to
carry out, e.g., an attack, we can derive the list of actors involved,
simply by looking at the UML activity diagrams.

3.4. Property capturing and model checking

During this phase, an analyst defines (procedural) security prop-
erties that will be used at a later stage to assess the behavior of the
procedure under analysis. More specifically, assets-flow model def-
inition, asset attacks definition, and model extension are just a part
of the verification and security analysis process. Formal verifica-
tion is carried out by defining properties in the form of temporal
specifications.

We use LTL and CTL to encode security properties. LTL allows to
specify properties related to each possible state of a system along
a path—namely, to reason on the computational path scenarios of
an asset (e.g., “what can happen as asset travels along different loca-
tions”). By contrast, CTL is used to specify properties related to how
the state of a system can evolve overtime along all the possible com-
putational paths—namely, to reason about the existence of specific
states (e.g., “is there any particular state in which an asset can be
altered in an undesired way”).

In fact, the types of properties to specify depend on the goals of
analysis we wish to perform on the models. We are interested, in
particular, in the following classes of properties:

1. The Actor-Play-Role, namely the roles actors have in the execu-
tion of the attack and the privileges they get on assets.

2. Undetected attacks, namely sequence of actions that succeed in
altering one or more assets and for which the procedures provide
no check to highlight the alteration.

3. Denial of services, namely attacks which are meant to alter one
or more assets in such a way that procedures have to be stopped.
In the optimistic case, a denial of service in an election represents
a cost and a “nuisance” for the community (as, e.g., results are
delayed; the administration needs to re-run the election). In the
pessimistic case, e.g., repeated attacks, it may represent a serious
threat to democracy.

4. Reachability analysis, namely the sequence of actions leading
to the violation of a security goal, with particular respect to the
execution of asset-threats.

Once all the properties of interest are specified with respect to
the analysis goals described above, the next activities are formal
verification and analysis of the results. That is to say that as long
as a nominal model (M1) or extended model (M2) is available, it is
possible to verify its behavior with respect to the desired CTL/LTL
properties.

The model under analysis is checked (i.e., model checking)
against the security properties using NuSMV. And, the results of
the analysis can be used for further discussions.

In the case of a system property, the model checking engine can
test validity of the property, and generate a counterexample in case
the system property is proved to be false. For instance, if we con-
sider a property that is required to hold for every possible path of
the asset-flow (CTL property), the model checking engine will gen-
erate a counterexample showing one particular path along which
the property has failed. In standard situations, the counterexample
will contain the execution of one (or more) asset threat. Notice that

Author's personal copy

1122 K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129

Fig. 5. An example of asset flows taken from real procedure as used in the ProVotE system.

a counterexample in which no asset threats are executed would
show an inherent weakness in the nominal workflows or other-
wise a result of poor specification. The counterexamples of security
properties encode sequences of actions that, if executed, pose a
threat to security of one or more assets. Furthermore, before call-
ing the verification engine, it is possible to perform constrained or
random simulation and several kinds of formal verification analyses
using the facilities provided by the NuSMV engine.

4. Using the methodology: a case study

We have applied our approach in scenario in which part of a
complex procedure followed during election in Italy to experiment
an e-voting system in the polling stations.

The e-voting system, a DRE with printed trail, is described in
Villafiorita et al. (2009). Here suffice saying that the experimen-
tation, that involved more than twenty thousand citizens, were
meant to test also the procedures in place for managing all the
logistics of the elections. One such procedures is the delivery of the
voting software to the polling stations. This is an interesting proce-
dure, as the delivery of electronic data to polling stations (be it the
software to run the machines or just the data with the specification

of the election) is common to a wide set of e-voting systems and a
source of concern.

This is described in Fig. 5, where we show an excerpt of the
procedure.

The diagram shows how, before the election, the Electoral Office
encrypts the e-voting software and creates a memory support
which contains the final software release. The responsible per-
son at the Electoral Office prepares an envelope with the PIN code
(that it is used to activate the voting functions) and the memory
support. We classify Electoral Office’s into different level of tech-
nicians, for example, technician for generating encryption key and
another technician for preparing the envelope. A messenger (e.g., a
police officer) takes the envelope and delivers it to the polling sta-
tion, where the polling officers, once verified that the enveloped is
sealed, opens it, insert the memory support in the voting machine,
insert the PIN and start the voting operations.

We then injected threats into the model of the procedures to
build the extended model. Fig. 6 depicts the extended model result-
ing from the injection of some delete and replace threat-actions in
the example of Fig. 5. Note that the semantics of delete and replace
actions may slightly vary when applying them to different kinds of
assets. In the extended model, we marked threat actions with the

Author's personal copy

K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129 1123

Fig. 6. An example of extended model for Fig. 5, where the introduction of the attacks are colored. It shows delete and replace threat-actions change the flow of the procedure
under evaluation.

threat-action stereotype. As noted before, the model extension
(or threat injection) step is not necessarily done after the process
modeling step; it can also be done after encoding the asset flows.

We then modeled the asset-flows into executable specifica-
tion using the NuSMV input language using the translation rules
described previously. We declared four modules corresponding to
each assets in the diagram (Fig. 5): Password, electionSW, Memo-
rySupport, and PIN. The following snippet of code defines the asset
type electionSW and some of its features, named status (security
protections applied to the software), value (the criticality of the
asset, as assigned by analysts), and content (that is, the qualitative
value of the electionSW can be), etc.

Similarly, other modules with their corresponding feature
variables are declared (e.g., MODULE Password(...), MODULE
MemorySupport (...)).

Author's personal copy

1124 K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129

The nominal workflow is composed of five activities (see Fig.
5), namely, encrypt, loadMemSupport, loadEnvelope, shipEn-
velope, and openEnvelope. We declare a module called Workflow
and specify state variable pc that assumes these five scalar values
exactly in the order allowed by the execution of the workflow.

Accessory information, such as the actors responsible for each
activity, is encoded in the model through DEFINE in the main mod-
ule, such as in the following snippet:

Evolution of assets’ properties are encoded in NuSMV with the
next construct (which specifies the value of a variable at step n + 1,
given the value at step n). Notice that asset flows are defined both
in terms of the program counter (e.g., the current step of the work-
flow) and the value of the asset features. Fig. 7 shows a model of
feature content variable of electionSW where its state changes
according to the program counters and according to the current
values of some state variables; its corresponding snippet NuSMV
code is also shown.

Note that in the code shown below, we have left some detail
specification for the matter of presentation purpose.

Model extension. Next, we show the extension of the model
according to the diagram depicted in Fig. 6. Threat injection (model
extension) corresponds to augmenting the state machine of the
asset flow with new transitions corresponding to the execution of
threat-actions. Fig. 8, for instance, shows an asset flow with some
threat-actions that may alter a feature of an asset (e.g., content),
in some undesired way.

The triggering of a threat-action is monitored through boolean
variables that are set to true when the action takes place, as illus-
trated by the following pieces of code. We first declare one boolean
variable per threat:

The above variables are initially set to false. When a variable is
set to true (either because constrained to do so by the model or,
more often, at random), a transition in the state machine encoding

the asset flow is triggered and the value of the asset flow changed
according to the threat-action (rather than to the nominal flow), as
illustrated by the following piece of code:

Beyond the above variables, we introduced control variables
which model the execution flow and correspond to the introduc-
tion of malicious assets. For example, we have introduced a boolean
variable malSW indicating that we deal with the introduction of
malicious electionSW. Due to the fact that we do not want to
restrict this variable in advance and that on the other hand the
variable should be constant during the whole execution, we use
the following trick of specifying next (malSW):= malSW without
initialization. This means that we can choose the value of malSW
for the introduction of malicious electionSW at random, but once
chosen, the value does not change anymore.

After encoding the relevant information of asset-flows in
NuSMV, the next activity consists of capturing and specifying the
security properties using LTL/CTL. The security properties formalize
the analysis goals discussed in Section 3.4. The e-voting domain is
particularly challenging when it comes to the formalization of secu-
rity properties. The higher level principles, in fact, derive directly
from the laws and are typically meant to protect fundamental rights
of voters, such as secrecy and anonymity. We do not have a for-
mal machinery for the refinement of such principles into properties
we can model check. In Weldemariam et al. (2009a) we show the
approach we followed to refine and allocate such principles to sys-
tems and procedures for the e-voting machine we built.

Here suffice saying that an analysis of the requirements at dif-
ferent levels of abstraction allows domain experts to come out with
a set of properties that have to be guaranteed or the attacks violat-
ing such properties. For instance, in the example we have shown
(in the extended model) it is possible to implement at least three
different attacks:

• the first attack consists of replacing the software which is sent
to the polling stations. By reading the password with which the
electionSW is encrypted and substituting a modified version of
the software in the MemorySupport, it is possible for a malicious
actor eventually to deliver a modified copy of the software to the
polling station.

• The second attack consists of replacing the PIN. A malicious
actor with access to the PIN code may substitute the PIN
which is loaded in the envelope. Thus, a wrong PIN is deliv-
ered to the polling station which eventually causing a denial of
service—namely, the voting functions cannot be activated by the
polling officers.

• The third attack consists in deleting (or destroying) the envelope
during transportation, possibly causing another denial of service.

We show two examples of properties that allow us to highlight
such attacks.

i) Verifying a property about the delivery of election software. In
this example, we want to check a generic property about the deliv-
ery of software to the polling station. We are interested in checking
that: “It is never the case that poll officers receive an altered election
software”. In other words, this property says that election software
always remains “useful”. The property is specified in CTL as:

Author's personal copy

K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129 1125

SW

eSW

eeSW

pc.pc = encrypt

pc.pc = prepareEnvelope &&
next(pc.pc) = loadEnvelope

pc.pc = decrypt
&& sw.key =
pwd.content

s3

s2

s1
pc.pc =
openEnvelope

sw : software
esw : encrypted sw
eesw : enveloped esw

Fig. 7. A simple example of state transition model for content feature of electionSW.

gSW

meSW

meeSW

SW

eSW

eeSW

pc.pc =
encrypt

pc.pc = prepareEnvelope &&
next(pc.pc) = loadEnvelope

pc.pc = decrypt
&& sw.key =
key.content

s3

s2

s1
pc.pc =
openEnvelope

pc.pc = decrypt
&& sw.key !=
pwd.content

pc.pc = decrypt

malSW && pc replaceSW

s4

s5
s6

meSW : malicious eSW
meeSW : malicious eeSW
gSW : garbageSW

Fig. 8. An extension of Fig. 7 due to the injection of threat-actions.

When checking the above formula in NuSMV, it proves to
be false, which is indicated by the counterexample shown in
Table 2. Namely, it is possible to deliver a wrong software to
the poll station if, for instance, at time t2 a malicious encrypted
software (malSW) is used to replace the nominal encrypted elec-
tion software into the memory support (replaceSW action).

Then, at time t3can mesw becomes true—that is, the attacks has
succeeded.

It is easy to derive what are the possible scenarios in which
an adversary can invalidate the election software, given the above
sequence of actions in place. From the property failure above (at
time t4), we can say that after the replace attack action takes
place, the content of electionSW is replaced by “garbage” right
after loading it into the memory support. The replacement is not

Table 2
Example 1: A counterexample showing the alternation of election software at poll station.

t0 t1 t2 t3 t4 . . . t9 t10 . . .

pc.pc — — encrypt loadMem preEnv . . . openEnv decrypt
sw.conten sw garbage . . .
malSW ⊥
 ⊥ . . .
replaceSW ⊥
 ⊥ . . .
sw.can mesw ⊥
 . . .
sw.can garbage ⊥
 . . .
sw.is sw
 ⊥ . . .

Author's personal copy

1126 K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129

Table 3
Example 2: Denial of service attack counterexample.

t0 . . . t4 t5 . . . t7 . . . t10 . . .

pc.pc . . . preEnv loadEnv . . . openEnv . . .
malPiN ⊥ . . .
 ⊥
replacePiN ⊥ . . .
 ⊥
pinReady ⊥ . . .

can mPPiN ⊥
 . . .
pin.can garbage ⊥

detected before step t9, that is, when poll officers try to use it at the
polling stations. In this way, the counterexample is used to high-
light sequence of actions in which the software has been altered
during the delivery process.

ii) Verifying a property about the Denial of Service attack. In this
example, we are interested in checking a denial of service attack
that could happen in a poll station. Note that our aim here is also
deriving the possible sequence of actions that an adversary can take
to cause this attack. The property of interest is that: “It is never the
case that poll officers get denial of service due to PIN code”. Notice that
the PINs are used by poll officers to activate the voting machines to
activate voting functions. This property is expressed in CTL formula
as:

We give the above property to NuSMV to check that the property
holds. However, the tool generates the counterexample depicted in
Table 3, in which the PIN is replaced with a fake one, before being
inserted in the package delivered to the polling stations, which
in turns causes denial of service attack—namely, the poll officers
unable to activate the voting machine due to wrong PIN.

5. Related work

Several strategies have been proposed in the literature to under-
stand, model, and analyze business process models. Three aspects
are central in these approaches. The first is the tools that are used
for creating (business) process models. Second, notations used to
represent the modeling elements and concepts. Third, techniques
used for formally specifying and verifying how such models respect
the intended goals.

With respect to the application of formal methods, there are a
number of approaches focused on specifying and verifying business
process models. These include automata, process algebra, and Petri
Nets. Each equips with manual and/or automated analysis tech-
niques. Automata based approaches are common, which comprise
of a set of states, actions, transitions between states, and an initial
state. Labels denote the transition from one state to another. The
NuSMV and SPIN/Promela5 (Mauw et al., 1998) input languages, for
instance, are derived from automata to express system behavior in
terms of transition systems.

A formal model for business process modeling and design is dis-
cussed in Koubarakis and Plexousakis (1999) and Koubarakis and
Plexousakis (2000), which builds upon Loucopoulos and Kavakli
(1995). Their formalization is based on the use of situation calcu-
lus (Levesque et al., 1998) and the concurrent logic programming
language ConGolog (Giacomo et al., 2000) for representing knowl-
edge about organizations and their processes. More specifically,
their approach allows to develop the so-called enterprise model.
It comprises five interconnected sub-models to formally describe
different aspects of an organization. The core elements that con-
stitute the enterprise model include actors with their roles, goals,

5 http://spinroot.com/spin/whatispin.html.

process (distinguished between primitive and complex actions),
enterprise entities, and constraints. A goal-oriented methodology
for business process design is also outlined for developing a new
business process. The ConGolog formal specification is developed as
a set of sub-models to capture the new process from various view-
points. Formal verification can be carried-out to check, for instance,
whether each role responsibility is fulfilled and each constraint is
maintained by the ConGolog procedures defined for each individual
role.

The usage of model checking for verifying functional require-
ments on workflow specifications is discussed in Eshuis (2002) and
Eshuis (2006). To specify workflows, the author used UML-ADs by
defining a formal semantic for them in order to meet the semantics
of the target specification language that is suitable for formal anal-
ysis. Two kinds of semantics are specifically introduced for the ADs,
namely a requirements-level and an implementation-level seman-
tic (Ch. 2 and 3, Eshuis, 2002). A number of translation rules have
been defined to convert AD nodes (such as activities, objects, data
and control flows) into NuSMV input language semantics, such that
functional requirements about the business process models can be
model checked. The authors present a tool in Eshuis and Wieringa
(2004), so that the models specified in the ADs are translated into
the NuSMV input language for model checking.

An approach for the specification and verification of artifact
behaviors in business process models is presented in Bhattacharya
et al. (2007), Gerede and Su (2007) and Gerede et al. (2007). The cen-
ter of the approach is the artifact-centric operational modeling for
constructing models with an appropriate formalism. The approach
consists of three key constructs for the artifact-centric models:
the business artifacts, business work descriptions, and repositories.
These constructs define the operational modes of the modeling,
where each of the construct is represented formally. Differently
from the verification goal discussed in Koubarakis and Plexousakis
(2000), which focuses on verifying properties of business processes,
with this approach the verification goal is checking whether models
satisfy certain artifact properties. Examples of properties they claim
to verify are reachability and arrival of artifacts into a repository in
bounded domains. The authors also present a logic language based
on CTL named Artifact Behavior Specification Language (ABSL).
ABSL allows to specify the lifecycle properties of artifacts, where the
lifecycle of an artifact type specifies the possible sequencing of ser-
vices that can be applied to an artifact of this type as it goes through
the business process. A similar concept is presented in Deutsch et al.
(2009) and Fritz et al. (2009). However, the authors do not show
how to perform automated analysis or verification nor hint the
integration of their approach with existing formal verification tools.
Mostly their focus is in constructing business process models with
correct creation and termination of artifacts during their lifecycle,
as opposed to the paradigm of organizing and modeling workflow
or business processes around relatively flat process-centric models.
Additionally, they hardly speak about security analysis.

We have discussed various works demonstrating their usage
scenarios insofar as they can used for modeling, specifying, and
analyzing business processes and workflows. Unfortunately, the
attempt to model procedures, as well as to perform formal analy-
sis in favor of the public administration (PA) is not satisfactory. The

Author's personal copy

K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129 1127

advantages and difficulties related to the (re-)engineering of PA can
be found in Wastell et al. (1994) and Alpar and Olbrich (2005).

Our work builds upon and complements existing approaches
by widening the scope of the analysis and by taking into account
aspects related to threats, procedures, and interaction of the
system with its environment. Namely, we developed a generic
assets-centered methodology for the analysis. Using the approach,
we have shown how to encode executable models describing
the nominal procedures using NuSMV input language – mainly
from the dynamic view of process models – and to extend such
models with possible attacks, by assuming all possible combi-
nation of attacks can be made at each execution step. We have
tested the applicability of the proposed approach using core use
cases taken from the ProVotE e-voting system. Among the advan-
tages of the approach the possibility of reasoning about threat
composition (e.g., coordinated attacks; complex and unforeseen
attacks resulting from the composition of elementary threats),
and the possibility of reasoning about evolution of assets over
time.

To our knowledge, the usage of formal methods in e-voting sys-
tems is relatively new. Various approaches are aimed at providing a
higher level of assurance to the secure development of e-voting sys-
tems through formal techniques. Existing works in this area present
formal specification and verification of an e-voting system at differ-
ent level of abstractions. In this area the work closest in sprit to ours
can be grouped in two closely related directions: verifying cryp-
tographic protocols (e.g., Kremer and Ryan (2005), Delaune et al.
(2009), Cansell et al. (2007), Sampigethaya and Poovendran (2006)
and Backes et al. (2008)) and verifying system behavior (e.g., Tiella
et al. (2006), Weldemariam et al. (2009b), Sturton et al. (2009) and
Weldemariam et al. (2010)). Some of these works selectively apply
formal modeling techniques where these techniques add rigor to
the development or help assessing an e-voting systems. By contrast,
other works use e-voting as a case study to improve verification
techniques or to come out with general requirements to help build a
new generation of better e-voting systems. However, none of these
works focus on the aspects related to procedures in their model-
ing and analysis. In that regard, this work presented in this article
complements the above-mentioned works by widening the scope
of the analysis to processes.

6. Summary and conclusion

In this article, we have demonstrated the importance of pro-
cedural security to tackle the security risks associated with the
e-voting systems and eventually strengthen the level of security.
Since asset mobility, state, evolution, and the context in which
asset instances are used in e-voting are an inherent challenge, we
have developed assets-centered methodology for procedural secu-
rity analysis. The methodology can be used to analyze and evaluate
the impact of threats, and consequently to come out with a set of
(security) procedural requirements that guarantee the desired level
of protection. We presented the approach by introducing the guide-
lines we follow for modeling, and encoding the electoral procedures
and hinted its usage through an example.

The outputs of the analysis conducted using model checking
helped us in understanding possible threats and composition of
threats on critical assets. Certain patterns can be combined to
understand the level of coordination in order to understand unde-
tectable attacks. For instance, whenever the assets necessary to
encrypt and sign the software are put together (either by the pro-
cess or by malicious actors), it is possible to deliver an arbitrary
software to the polling stations. Such results are also foundations to
familiarize actors with the possible procedural threats and attacks
that can happen in elections. Additionally, this kind of analysis and

reasoning has the potential to serve as a trust building measure in
the new e-voting processes.

It must be clear that the construction of the extended model,
whose generation can be automated, is currently performed by
hand using the methodology and the translation strategies we
described. The analysis approach we took, however, is very sim-
ilar to that of FSAP/NuSMV-SA (Bozzano and Villafiorita, 2007), for
safety analysis, whereby a system specification is “enriched” with
information about faults and analyzes are carried out to understand
the effect and impact of faults on safety requirements expressed
in the form of LTL/CTL formulae. Analogously to what happens in
safety analysis when analyzing, e.g., the loss of a critical functions,
enhancing the procedures results in reducing the probability of an
attack or making the attack more complex, rather than eliminating
it.

The examples, although trivial, show how – by reasoning on the
extended model – it is possible to explicitly represent the attacks
that can be carried out, determine what assets are needed, when
they are needed, and who can carry the attacks. Similarly to what
happens in model checking, we do not provide any quantitative
information about the likelihood of the attacks. However, even in
this simple case, we believe that the output of the attacks can pro-
vide experts the information and the requirements to enhance the
current procedures, to eliminate certain attacks or, at least, to make
them more difficult to implement.

Some research issues remain open. In our future work, we
will consider multiple instance of an asset in the analysis. More
threat-actions should be considered in the case study. In fact, we
also need to precisely isolate generic threat-actions from domain-
specific ones, so that we can come out with generic (and domain
specific) libraries. Furthermore, we are currently investigating
the possibility of automating the threat injection on top of the
FSAP/NuSMV-SA platform. Specifically, we plan to develop a tool
in order to integrate and/or extend the current usage scenario
of the platform, with emphasis on procedural security analysis.
Additionally, we will conduct further research on the possibili-
ties of integrating our approach in the Common Criteria (Common
Criteria, 2007) methodology and on the evaluation procedures dis-
cussed in Volkamer and McGaley (2007) and Volkamer (2009).

Acknowledgments

The research reported in this paper was done while K.
Weldemariam was with the University of Trento, supported by Fon-
dazione Bruno Kessler. An earlier version of this paper has appeared
in Weldemariam and Villafiorita (2008a,b). This paper extends and
presents the scope of procedural security analysis.

References

Adida, B., 2006. Advances in Cryptographic Voting Systems, Ph.D. thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology.

Alpar, P., Olbrich, S., 2005. Legal Requirements and Modelling of Processes in e-
Government, Electronic Journal of e-Government 3.

Basin, D.A., Doser, J., Lodderstedt, T., 2003. Model driven security for process-
oriented systems. In: SACMAT, 100–109.

Booch, G., Rumbaugh, J., Jacobson, I., 2005. Unified Modeling Language User Guide,
The (2nd Edition) (Addison-Wesley Object Technology Series), Addison-Wesley
Professional.

Bozzano, M., Villafiorita, A., 2007. The FSAP/NuSMV-SA safety analysis platform.
International Journal Software Tools Technology Transfer 9 (1), 5–24.

Bishop, M., 2002. Computer Security Art and Science. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Balzarotti, D., Banks, G., Cova, M., Felmetsger, V., Kemmerer, R., Robertson, W.,
Valeur, F., Vigna, G., 2008. Are your votes really counted?: Testing the Security of
real-world electronic voting systems. In: Proceedings of the 2008 International
Symposium on Software Testing and Analysis , ACM, New York, NY, USA, pp.
237–248.

Author's personal copy

1128 K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129

Braynov, S., Jadiwala, M., 2003. Representation and analysis of coordinated attacks.
In: Proceedings of the 2003 ACM workshop on Formal methods in security
engineering , ACM Press, New York, NY, USA, pp. 43–51.

Bhattacharya, K., Gerede, C.E., Hull, R., Liu, R., Su, J., 2007. Towards formal analysis
of artifact-centric business process models. In: Gustavo Alonso, Peter Dadam,
Michael Rosemann (Eds.), BPM, vol. 4714 of Lecture Notes in Computer Science,
Springer, 288–304.

Backes, M., Hritcu, C., Maffei, M., 2008. Automated verification of remote electronic
voting protocols in the applied pi-calculus. In: Proceedings of the 2008 21st IEEE
Computer Security Foundations Symposium , IEEE Computer Society, Washing-
ton, DC, USA, pp. 195–209.

Common Criteria, 2007. Common Criteria for Information Technology Security Eval-
uation, http://www.commoncriteriaportal.org/.

Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M., Sebas-
tiani, R., Tacchella, A., 2002. NuSMV 2: an open source tool for symbolic model
checking. In: Computer Aided Verification , Lecture Notes in Computer Science,
Springer, 241–268.

Cansell, D., Gibson, J.P., Mery, D., 2007. Formal verification of tamper-evident storage
for e-voting. In: Proceedings of the Fifth IEEE International Conference on Soft-
ware Engineering and Formal Methods , IEEE Computer Society, Washington,
DC, USA, pp. 329–338.

Deutsch, A., Hull, R., Patrizi, F., Vianu, V., 2009. Automatic verification of data-centric
business processes. In: Proceedings of the 12th International Conference on
Database Theory , ACM, New York, NY, USA, pp. 252–267.

Delaune, S., Kremer, S., Ryan, M., 2009. Verifying Privacy-Type Properties of Elec-
tronic Voting Protocols, Journal of Computer Security 17 (4), 435–487, ISSN
0926-227X.

Eshuis, R., 2006. Symbolic model checking of UML activity diagrams. ACM Transac-
tions on Software Engineering and Methodology 15 (1), 1–38.

Eshuis, R., Wieringa, R., 2004. Tool support for verifying UML activity diagrams, IEEE
Transaction on Software Engineering 30 (7).

Eshuis, R., 2002. Semantics and Verification of UML Activity Diagrams for Workflow
Modelling, Ph.D. thesis, Centre for Telematics and Information Technology (CTIT)
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.

Fovino, I.N., Masera, M., 2006. Through the description of attacks: a multidimen-
sional view. In: SAFECOMP, Lecture Notes in Computer Science , Springer-Verlag,
15–28.

Fritz, C., Hull, R., Su, J., 2009. Automatic construction of simple artifact-based busi-
ness processes. In: ICDT ‘09: Proceedings of the 12th International Conference
on Database Theory , ACM, New York, NY, USA, pp. 225–238.

Gerede, C.E., Su, J., 2007. Specification and verification of artifact behaviors in busi-
ness process models. In: Bernd J. Krämer, Kwei-Jay Lin, Priya Narasimhan (Eds.),
ICSOC, vol. 4749 of Lecture Notes in Computer Science, Springer, 181–192.

Giacomo, G.D., Lespérance, Y., Levesque, H.J., 2000. ConGolog, a concurrent program-
ming language based on the situation calculus.

Gerede, C.E., Bhattacharya, K., Su, J., 2007. Static analysis of business artifact-centric
operational models. In: Proceedings of the IEEE International Conference on
Service-Oriented Computing and Applications , IEEE Computer Society, Wash-
ington, DC, USA, pp. 133–140.

Hogganvik, I., 2007. A Graphical Approach to Security Risk Analysis, Ph.D. thesis,
Faculty of Mathematics and Natural Sciences, University of Oslo.

Hsiung, P.-A., Chen, Y.-R., Lin, Y.-H., 2007. Model checking safety-critical
systems using safecharts. IEEE Transactions on Computers 56 (5),
692–705.

Hull, R., 2008. Artifact-centric business process models: brief survey of research
results and challenges. In: Proceedings of the OTM 2008 Confederated Interna-
tional Conferences, CoopIS, DOA, GADA, IS, and ODBASE 2008. Part II on On the
Move to Meaningful Internet Systems , Springer-Verlag, Berlin, Heidelberg, pp.
1152–1163.

Jones, D.W., 2003. The Evaluation of Voting Technology, Chap. 1, Advances in Infor-
mation Security. Kluwer Academic, 3–16.

Kohno, T., Stubblefield, A., Rubin, A.D., Wallach, D.S., 2004. Analysis of an electronic
voting system. In: IEEE Symposium on Security and Privacy 0 , p. 27.

Koubarakis, M., Plexousakis, D., 2000. A formal model for business process modeling
and design. In: Wangler, B., Bergman, L. (Eds.), CAiSE, Lecture Notes in Computer
Science. Springer, pp. 142–156.

Koubarakis, M., Plexousakis, D., 1999. Business process modelling and design—a
formal model and methodology. BT Technology Journal 17 (4), 23–35.

Kremer, S., Ryan, M., 2005. Analysis of an electronic voting protocol in the applied
pi calculus. In: ESOP , pp. 186–200.

Lambrinoudakis, C., Kokolakis, S., Karyda, M., Tsoumas, V., Gritzalis, D., Katsikas,
S., 2003. Electronic voting systems: security implications of the administrative
workflow. In: DEXA ‘03: Proceedings of the 14th International Workshop on
Database and Expert Systems Applications , IEEE Computer Society, Washington,
DC, USA, p. 467.

Lam, V.S., Padget, J.A., 2004. Symbolic model checking of UML statechart diagrams
with an integrated approach. In: Proceedings of the 11th IEEE International
Conference and Workshop on Engineering of Computer-Based Systems , IEEE
Computer Society, pp. 337–347.

Loucopoulos, P., Kavakli, E., 1995. Enterprise modelling and the teleological approach
to requirements engineering. International Journal of Cooperative Information
System 4 (1), 45–79.

Levesque, H.J., Pirri, F., Reiter, R., 1998. Foundations for the situation calculus. Elec-
tronic Transaction in Artificial Intelligence 2, 159–178.

Manian, R., Bechta, J.D., Coppit, D., Sullivan, K.J., 1998. Combining various solution
techniques for dynamic fault tree analysis of computer systems. In: IEEE Inter-
national Symposium on High-Assurance Systems Engineering , IEEE Computer
Society, Washington, DC, USA, pp. 21–28.

Mauw, S., Mateescu, R., Janssen, W., 1998. Verifying business processes using spin.
In: Proceedings of the International SPIN Workshop , pp. 21–36.

Pnueli, A., 1977. The temporal logic of programs. In: FOCS , pp. 46–57.
Sastry, N., Kohno, T., Wagner, D., 2006. Designing voting machines for verification.

In: Proceedings of the 15th conference on USENIX Security Symposium , vol.
Volume 15, USENIX Association, Berkeley, CA, USA.

Sastry, N.K., 2007. Verifying Security Properties in Electronic Voting Machines,
Ph.D. thesis, EECS Department, University of California, Berkeley, URL
http://www.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007–61.html.

Sampigethaya, K., Poovendran, R., 2006. A framework and taxonomy for comparison
of electronic voting schemes. Computers & Security 25 (2), 137–153.

Sturton, C., Jha, S., Seshia, S.A., Wagner, D., 2009. On voting machine design for veri-
fication and testability. In: ACM Conference on Computer and Communications
Security , pp. 463–476.

Tiella, R., Villafiorita, A., Tomasi, S., 2006. Specification of the Control Logic of an
eVoting System in UML: the ProVotE experience. In: Proceedings of the 5th
International Workshop on Critical Systems Development Using Modeling Lan-
guages, 84–94ISSN 0809–1021.

Volkamer, M., McGaley, M., 2007. Requirements and evaluation procedures for evot-
ing. In: Proceedings of the The Second International Conference on Availability
, Reliability and Security, IEEE Computer Society, Washington, DC, USA, pp.
895–902.

Volkamer, M., 2009. Evaluation of electronic voting: requirements and evaluation
procedures to support responsible election authorities. In: Springer Publishing
Company, Incorporated.

Villafiorita, A., Weldemariam, K., Tiella, R., 2009. Development, Formal Verifica-
tion, and Evaluation of an E-Voting System With VVPAT, IEEE Transactions on
Information Forensics and Security 4 (4).

Weldemariam, K., Villafiorita, A., Mattioli, A., 2009a. Managing requirements for
e-voting systems: issues and approaches motivated by a case study. In: Pro-
ceedings of the first International Workshop on Requirements Engineering for
E-voting Systems In conjunction with the 17th IEEE International Requirements
Engineering Conference (RE‘09) , IEEE.

Wastell, D., White, P., Kawalek, P., 1994. A methodology for business process
redesign: experiences and issues. Journal of Strategic Information Systems 3,
23–40.

Weldemariam, K., Kemmerer, R.A., Villafiorita, A., 2009b. Formal analysis of attacks
for e-voting system. In: Forth International Conference on Risks and Security of
Internet and Systems, IEEE.

Weldemariam, K., Kemmerer, R.A., Villafiorita, A., 2010. Formal Specification and
Analysis of an e-Voting System. In: The 5th International Conference on Avail-
ability Reliability and Security, IEEE Computer Society.

Weldemariam, K., Villafiorita, A., 2008a. Formal procedural security modeling and
analysis. In: Proceedings of 3rd International Conference on Risks and Security
of Internet and Systems , IEEE, pp. 249–254.

Weldemariam, K., Villafiorita, A., 2008b. Modeling and Analysis of Procedural Secu-
rity in (e)Voting: The Trentino’s Approach and Experiences, In: EVT/USENIX,
USENIX Association, Berkeley, CA, USA.

Xenakis, A., Macintosh, A., 2004. Procedural security analysis of electronic voting.
In: Proceedings of the 6th international conference on Electronic commerce ,
ACM Press, New York, NY, USA, pp. 541–546.

Xenakis, A., Macintosh, A., 2005. Procedural security and social acceptance in
e-voting. In: Proceedings of the Proceedings of the 38th Annual Hawaii Inter-
national Conference on System Sciences - Track 5 , IEEE Computer Society,
Washington, DC, USA, 118.1.

Xu, D., Nygard, K., 2005. A threat-driven approach to modeling and verifying secure
software. In: Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering , ACM Press, New York, NY, USA, pp. 342–346.

Yee, K.-P., 2007. Extending prerendered-interface voting software to support acces-
sibility and other ballot features. In: EVT’07: Proceedings of the USENIX
Workshop on Accurate Electronic Voting Technology, USENIX Association ,
Berkeley, CA, USA, 5–5.

Author's personal copy

K. Weldemariam, A. Villafiorita / The Journal of Systems and Software 84 (2011) 1114–1129 1129

Komminist Weldemariam received the BS degree in
Computer Science from Addis Abeba University, Ethiopia,
in 2003, the MS degree in Computer Science and Engineer-
ing from Indian Institute of Technology, Bombay, India,
in 2006, and PhD degree in Computer Science from the
University of Trento, Italy, in 2010. He is currently a post-
doctorate follow at the Fondazinoe Bruno Kessler, Italy.
He has been visiting scholar at the Computer Security
Group of the University of California in Santa Barbara. His
research interests include Software Engineering, Security,
Electronic Voting Systems, and ICT4G. He is a member of
the IEEE.

Adolfo Villafiorita received the MS degree from the Uni-
versity of Genoa, Italy, in 1993, and the PhD degree from
the University of Ancona, in 1997, both in Computer Sci-
ence. He is a senior researcher in the Center of Information
Technology at the Fondazione Bruno Kessler, Italy. His
current interests include ICT4G, software and system engi-
neering, security, formal methods, and safety analysis. He
has participated and led several industrial projects related
to the development of safety critical applications in the
railway, aerospace, and e-Government sector.

