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a  b  s  t  r  a  c  t

We  have  seen  that  several  currently  deployed  e-voting  systems  share  critical  failures  in  their  design  and
implementation  that  render  their  technical  and  procedural  controls  insufficient  to  guarantee  trustwor-
thy  voting.  The  application  of  formal  methods  would  greatly  help  to better  address  problems  associated
with  assurance  against  requirements  and  standards.  More  specifically,  it  would  help  to  thoroughly  spec-
ify and  analyze  the  underlying  assumptions  and  security  specific  properties,  and  it  would  improve  the
trustworthiness  of the  final  systems.  In  this  article,  we  show  how  such  techniques  can  be  used to  model
and  reason  about  the  security  of  one  of the  currently  deployed  e-voting  systems  in  the  U.S.A  named  ES&S.
We used  the  ASTRAL  language  to specify  the  voting  process  of  ES&S  machines  and  the  critical  security
requirements  for  the  system.  Proof  obligations  that  verify  that  the  specified  system  meets  the  critical
requirements  were  automatically  generated  by  the  ASTRAL  Software  Development  Environment  (SDE).
The PVS  interactive  theorem  prover  was  then  used  to  apply  the  appropriate  proof  strategies  and  discharge
the proof  obligations.  We  also  believe  that  besides  analyzing  the  system  against  its  requirements,  it is
equally  important  to  perform  an  analysis  under  malicious  circumstances  where  the  execution  model  is
augmented  with  attack  behaviors.  Thus,  we  extend  the  formal  specification  of the  system  by  specifying
attacks  that  have  been  shown  to successfully  compromise  the  system,  and  we  then  repeat  the formal
verification.  This  is  helpful  in  detecting  missing  requirements  or unwarranted  assumptions  about  the
specification  of  the  system.  In addition,  this  allows  one  to  sketch  countermeasure  strategies  to  be  used
when the system  behaves  differently  than  it should  and  to build  confidence  about  the  system  under
development.  Finally,  we  acknowledge  the  main  problem  that arises  in e-voting  system  specification
and  verification:  modeling  attacks  is  very  difficult  because  the  different  types  of  attack  often  cut  across
the structure  of the  original  behavior  models,  thus  making  (incremental  or compositional)  verification
very  difficult.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

Electronic voting (e-voting) brings to the polling station several
advantages, such as improved turn out, accessibility for impaired
people, and improved accuracy and speed (Cranor, 1996). Unfor-
tunately, its adoption in various countries has been slow and/or
the cause of debate and controversies. One of the reasons is the
poor design and implementation of (some of) the systems cur-
rently deployed for elections in the USA and other countries, as
different studies have reported and demonstrated (Kohno et al.,
2004; Aviv et al., 2008; Balzarotti et al., 2010; Wolchok et al., 2010).
These studies have also revealed that such systems show serious
flaws in specification, design, and implementation. Such weak-
nesses expose the system, and consequently elections, to various
threats and attacks, ranging from a denial of service to alteration of
the results.

∗ Corresponding author.
E-mail addresses: sisai@fbk.eu, komminist@gmail.com (K. Weldemariam).

In California, these studies resulted in the Secretary of State
allowing the use of e-voting machines only in special situations
and with various changes to the electoral procedures. Several such
changes shift the implementation of security requirements from e-
voting systems to poll workers. For instance, California Secretary of
State (2007) states that “no poll worker or other person may  record
the time at which or the order in which voters vote in a polling place.” It
is quite evident that a new generation of more carefully engineered
machines could move various “constraints” currently performed by
poll workers back to hardware and software. However, the success
of the new generation of voting machines depends on our ability
to capitalize on the lessons we  learned using and analyzing the
systems currently deployed.

The integrity and assurance of a complex and safety-critical
system’s correct behavior with respect to a specification can be
achieved if good engineering practices are appropriately devised
and used. With respect to this, there are a number of approaches
to tackle (some of) the issues mentioned above. Among these, the
use of formal methods has been shown to improve the security
and quality of complex systems (Kemmerer, 1990; Xu and Nygard,
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2005; Lowry and Dvorak, 1998; Heitmeyer et al., 2008). Formal
techniques allow designers to prove, test, or otherwise examine
interesting properties of a complex process whose behavior is
specified abstractly, and then interactively refine the behavioral
specification to be as close to an implementation as appropriate for
a given assurance level.

The use of formal methods in the voting domain is still at an
early stage. Some of the works describe and demonstrate the feasi-
bility of using formal methods on specific components, such as the
cryptographic protocols used to protect and transmit data (see e.g.,
Juels et al., 2005; Kremer and Ryan, 2005; Campanelli et al., 2008;
Delaune et al., 2009). Others focus on the verification of general
properties of e-voting systems (see e.g., Simidchieva et al., 2008;
Villafiorita et al., 2009; Sturton et al., 2009). Even though all the
works mentioned earlier provided a significant contribution to the
area, they are limited in scope or refer to schemas that do not find
application in machines currently in use. In this article, our specific
focus is on the systematic use of formal methods to study and ana-
lyze the strength and weaknesses of currently deployed e-voting
machines in the USA. We  did so, by deriving formal specifications
along with critical security requirements for the Election Systems
& Software (ES&S) system.

More specifically, we treated the ES&S voting system as a com-
plex, real-time embedded system, consisting of a direct recording
election machine (DRE), a real-time audit log printer (RTAL), a per-
sonalized election ballot (PEB), and a Compact Flash Card (CF). We
mapped each of these components to ASTRAL (Kolano, 1999) pro-
cess instances. We  then specified critical security requirements to
prove the correctness and integrity of each component individually
and of the system as a whole. The consistency of the specification
was validated using the ASTRAL validation engine, and PVS (Owre
et al., 1993) proof obligations were automatically generated by the
ASTRAL Software Development Environment (SDE). When proved,
these proof obligations verify that the specified system meets the
critical security requirements. The PVS interactive theorem prover
was used to apply the appropriate proof strategies and discharge
each of the proof obligations. Additionally, we specified attacks that
have been shown to successfully compromise the system. With this
information, we extend the original specification of the system and
derive what we called the extended model. Using the same machin-
ery, we reason that the same critical requirements do indeed hold
in the extended model. The techniques presented in Kolano (1999)
were extensively used to discharge the proof commands. We  must
also be clear that we did not complete all the proof obligations.
By analyzing the proved obligations, however, we attempted to
understand why some were proved and why the others were not.

This article is organized as follows. Section 2 discusses the moti-
vation for the work. Section 3 presents the various components of
the ES&S system, the voting process using the system, and require-
ments that the system must respect. Moreover, we present four
selected attacks. An overview of the ASTRAL specification language
is given in Section 4. The ASTRAL specification of the ES&S sys-
tem along with its critical requirements are presented in Section
5. Sections 6 and 7 present the specification of the attack sce-
narios – namely, the model extension and the verification results,
both before and after the attack specifications. Finally, Section 8
discusses related work and Section 9 draws some conclusions.

2. Motivation and the approach

The fairness and security of electronic elections depend upon
a careful allocation of requirements to the procedures and to the
systems used. In fact, the correct behavior of the electronic systems
can be guaranteed when they are used according to their operat-
ing specifications. This has to be guaranteed by the procedures and
the people responsible for executing them. It would be possible to

imagine an e-voting machine that uses a specific technique (e.g.,
biometrics for voter authentication) to identify a voter and pro-
hibit the casting of a vote from someone who has already voted.
However, given the procedures and systems that are currently in
use, there is no way  for an e-voting machine to prohibit the same
person from casting multiple ballots, if the poll worker enables the
machine for voting to the same person multiple times.

As a matter of fact, in all DRE systems studied the poll worker
uses an administrative device to issue a token of some sort for an
eligible voter to cast a vote (see in Aviv et al., 2008; Inc, 2007). Such
behavior can possibly be prevented (or revealed after the election)
by enforcing and verifying the procedures that the poll workers are
supposed to follow. In contrast, there are other fundamental prop-
erties that the procedures can only partially assure. In this case, the
e-voting systems must guarantee that these properties are satis-
fied. Using the example we just made, the machine must ensure
that a voter can cast at most one vote, given that the poll workers
follow the prescribed procedures.

Formal analysis of voting requirements and their allocation is
therefore important in two aspects. First, it helps to ensure that
the systems meet the necessary reliability and dependability goals.
Second, it helps to better understand how different allocations
of requirements between systems and procedures could improve
the overall security of the election process so that we  can build
the next generation of e-voting machines. However, in order to
achieve these goals, we  need an approach that allows us to eas-
ily experiment and reason about, for example, different allocations
of requirements. At the same time, it has to be precise and exhaus-
tive, so that security and dependability consequences of any specific
choice are highlighted. Formal techniques clearly fit both needs.
Our goal here is not to show end-to-end verification nor to develop
an e-voting system using formal methods; instead, we wish to
demonstrate how their use can help ensure fair elections.

Fig. 1 depicts the reverse synthesis process that we  use. In the
figure, the nominal behavior refers to all the intended operations
of the system under analysis. By contrast, the non-nominal behav-
ior is meant to describe those behaviors of the system that deviate
from intended operations of the system due to attack actions. More
specifically, we derive formal specifications along with critical
security requirements for the ES&S system. The specification of the
system (i.e., Model in Fig. 1) and the security critical requirements
are mainly derived from available information sources: the EVER-
EST report (McDaniel et al., 2007), the ES&S election day checklist
and user’s manual (Inc, 2007), a video (Election and Systems, 2009)
that shows how the ES&S system works on election day, and other
requirements suggested in the literature such as Mercuri (2001),
Federal Election Commission (2005),  Council of Europe (2004),
Sastry (2007),  Volkamer and McGaley (2007),  and McGaley (2008).
Here, we remark that the choice of selecting requirements from the
cited literature is made based on our experiences managing and
structuring requirements while developing the ProVotE e-voting
system (Weldemariam et al., 2009). Using formal analysis tools, we
can assess the strengths and weaknesses of the system. Results or
feedback gained from the formal analysis can be a basis for spec-
ifying and analyzing generic requirements from which the next
generation of voting machines can be built.

Additionally, we believe that besides analyzing the system
against its requirements, it is equally important to perform anal-
ysis under malicious circumstances where the system execution
model is enriched with attack behavior. Notice that the first model
we build for the ES&S system only specifies the intended behav-
iors of the system. Therefore, we  should specify and extend the
model (see Fig. 1) with some generic attacks that may defeat some
behaviors of the system. We  then need to analyze the resulting
model (i.e., extended model in Fig. 1) against the same security
properties that are used for the verification of the nominal model.
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Fig. 1. Overview of our approach. Labels nominal and non nominal refer to the actual and undesired behaviors of the system, respectively.

A successful analysis of the resulting model can reveal important
information about the system, which in turn helps detect missing
requirements or unwarranted assumptions about the specifications
that we developed. In addition, this allows us to sketch counter-
measure strategies to be used when the system behaves differently
than it should and to build confidence about the system under
development.

Finally, we must be clear that the formal specifications of a
generic DRE (see the part in the dotted box of Fig. 1), where the
behavior of the next generation voting machine can be specified,
is not in the scope of this paper. However, we believe that start-
ing from our specification and the proof results, one can specify
(and analyze) requirements for new e-voting systems, mainly for
DRE-based systems.

3. The ES&S electronic voting systems

In this section, we first describe the ES&S voting system compo-
nents and then (informally) a set of security critical requirements
for these components individually, as well as for the system as a
whole. The formal specifications are based on this information.

3.1. ES&S voting system components

Our discussion of the ES&S voting system components is based
on what each component does, how each component exchanges
input or output, and the underlying assumptions made about each
component. For the purposes of this work, the ES&S voting system
is composed of:

• DRE: Direct Recording Electronic voting machine, called the
iVotronic. It is equipped with a touch-screen where the voter
casts his/her votes. The information shown by the touch-screen
changes in real-time to match the voter’s choices. The iVotronic
also stores the audit data.

• RTAL: Real-Time Audit Log Printer, which performs the function
of a VVPAT (Voter-Verified Paper Audit Trail) for the ES&S system.
It produces a paper-based record of the choices selected by the
voter. The RTAL is plugged into the DRE and the paper record
is viewable by the voter. The trails (i.e., the voter’s choices) are
under a transparent cover so that they cannot be modified other
than through the normal voting process.

• PEB: Personalized Electronic Ballot. This is a device used by the
poll worker to load a ballot, initialize the next ballot, and col-
lect tabulated data and audit information. Each time a PEB is
inserted, its authenticity is checked by the DRE using a four-digit

code (election qualification code, EQC), which is assigned prior to
election day.

• CFC:  Compact Flash Card. This device holds files too large to fit
in the PEB and also audit data. The card must be present to open
and close the polls. At poll closing, the audit data is automatically
dumped into the card.

The interaction between these components is as follows (see
also Fig. 6). The DRE communicates with the RTAL by sending
the voter’s intentions and information related to the casting of a
ballot, such as the start or summary information. The PEB com-
municates with the DRE through a simple protocol that allows the
DRE to read and write memory blocks stored in the PEB (e.g., to
load ballots before election, or to enable the ballot when an eli-
gible voter arrives). Similarly, the DRE communicates with the CF
Card to access the ballot data when necessary and to periodically
check the presence of the CF Card, since the DRE will not boot with-
out its presence (see McDaniel et al., 2007 for a more detailed and
complete view).

3.2. Voting process for a DRE based system

The full election process involves many activities beyond what
a poll worker and a voter typically experience in the polling station.
Even if the exact processes differ depending on the specific voting
technology in question, we  distinguish, in particular, three major
phases in the voting process when using DRE-based machines:
pre-electoral, electoral (during voting), and post-electoral phases.
Before election day, election officials use the election management
system (EMS) to set up the election. In particular, the ballot defini-
tion files are prepared and loaded directly onto the DREs, CF Cards
are installed, and printers are assigned for each DRE  machine. More-
over, the EQC is stored in the DRE so that the DRE can authenticate
a qualified PEB when one is inserted.

Prior to opening the polls, a poll worker unpacks and sets up the
DRE and plugs in the RTAL printer and power cables. Poll workers
must also ensure that a properly programmed CF Card is installed
before powering on the DRE. A Master PEB is inserted into the termi-
nal to load the ballot and later to open the DRE terminal for voting.
The same master PEB must be used to close the terminal after the
polls have closed. Removing the PEB turns the terminal’s current
mode to sleep mode.

Once the polls are opened, a poll worker initializes the ballot
for a qualified voter by inserting a supervisor PEB, which can be
the same Master PEB used to open the polls, into the machine. The
terminal mode changes from sleep to poll worker mode, the EQC
code of the PEB is checked, and the ballot is initialized, provided that
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Fig. 2. The voting process using the ES&S voting system. The figure shows only parts of the process after the poll worker activated the machine for an eligible voter.

the EQC of the PEB matches with the one the terminal is configured
for. The poll worker removes the supervisor PEB and leaves the
terminal for the voter.

After the ballot is activated, the machine takes the voter through
each contest. The ES&S DRE machines automatically forbid over-
voting, but not undervoting. When a voter selects or cancels a
candidate for a particular contest, an appropriate indication is
printed on the RTAL record. If the voter selects a candidate, the
RTAL record is marked as “Selected” and scrolled out of sight; oth-
erwise, it is marked as “Canceled” and scrolled out of sight. The
voter is eventually given the opportunity to review his ballot, and
if the voter commits to it (confirms it), it is recorded to local stor-
age. The process continues in this way for all qualified voters (see
Fig. 2).

After the official poll closing time is reached and there is no
qualified voter waiting in line, the poll worker inserts the master
PEB to collect and store tabulated data, copies of the ballot image
(i.e., file) and some other information. Upon closing the terminal,
the DRE firmware automatically uploads the audit data onto the CF
Card. The results tape from the RTAL is also collected. The results
tape, CF Card, and master PEB from each polling place are then
returned to election central.

We  remark that some properties documented in the ES&S elec-
tion day checklist manual – such as, “while downloading the
election results from the DRE after the election is closed, the PEB
should not be removed until the download finishes and it is safe to
remove it” – are not intrinsic to the system functionality. They are
either procedural and/or environmental assumptions.

3.3. Informal requirements for the ES&S system

We  describe a list of security properties that the system must
respect. The security goal is that even in the presence of an adver-
sary, the system should meet these properties. For instance, the
DRE should record the voter’s intent exactly as the voter desires.
Furthermore, an adversary should not be able to undetectably alter
the votes once they have been successfully stored. We  wish to spec-

ify these kinds of properties and validate against the system model,
as well as in the presence of threat actions corresponding to each
attack scenario, which will be discussed subsequently.

As noted earlier, a number of requirements that the ES&S system
must satisfy are enumerated in the ES&S system manual (Inc, 2007)
(such as configuration instructions and the user’s manual) and a
corresponding video (Election and Systems, 2009), which describes
how the system works on election day. Instead of describing prop-
erties such as in Sastry (2007) – e.g., “A ballot cannot be cast without
the voter’s consent to cast it; the DRE only stores ballots that have
been confirmed by the voter.”, or in McGaley (2008) – e.g., “The e-
voting system shall be protected against threats to its availability
including: malfunction, breakdown and denial of service attacks.” –
we rearrange and split the properties so that providing their equiv-
alent formal specification is fairly manageable, if not easy. The link
from the concrete requirements listed below to abstract or generic
voting machine requirements (e.g., availability, accuracy, privacy,
fairness, eligibility) are given elsewhere, such as in Kremer and
Ryan (2005) and Delaune et al. (2009).  However, and if necessary,
we highlight (within a bracket) such abstract requirements with
properties we list below.

In the following, we present a sample list of the most important
critical security requirements that the ES&S voting system must
meet. The list is by no means exhaustive, but it is chosen to reflect
important properties that are essential building blocks for most
DRE e-voting machines equipped with an RTAL/VVPAT. Notice that
the presentation of the requirements does not follow any order of
importance, nor is it in sequence.

A correctly functioning DRE must satisfy the following proper-
ties.

Property 1. The same CF Card must be present throughout the
voting session (availability).

Property 2. The DRE must authenticate the PEB using the EQC, and
the same master PEB must be used to open and close the terminal
(eligibility).
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Property 3. Display screens presented to the voter must accu-
rately reflect the ballot downloaded from the PEB and the selections
made by the voters.

Property 4. The DRE terminal only allows two valid actions for the
voter until he/she reaches the final review (vote summary) screen:
(1) select or cancel a candidate on the screen or (2) move forward
or backward through the ballot.

Property 5. For each valid voter action (i.e., starting to vote, mak-
ing a select or cancel, and finishing a vote) the DRE must enable the
RTAL to record the action on the RTAL tape accordingly.

Property 6. The DRE must automatically forbid an overvote.

Property 7. The DRE must report undervoted races, if they exist,
and the review screen must display the message “BALLOT NOT
COMPLETED”.

Property 8. When the voter confirms his/her ballot, the ballot
images recorded in the local storage must correctly reflect the selec-
tions made by the voter (voter verifiability and cast-as-intended).

In other words, Property 8 states the fact that the DRE must not
change the ballot after the voter chooses their candidates.

Property 9. The DRE terminal should start chirping if there is no
input from the voter for 10 time units since the last input but not
after he/she confirmed.

The RTAL must satisfy the following properties:

Property 10. The RTAL should scroll up a minimum distance after
the summary has printed, in order to move the previous vote out
of sight (anonymity).

Property 11. The RTAL must update the paper tape after the voter
pushes the start button, makes a choice (select or cancel), confirms
a vote, or when the poll worker rejects the ballot of a fleeing voter.

Even if Property 3 and Property 11 state different requirements,
they are meant to express the fact that the voter must have a chance
to preview (both on the DRE screen and on the RTAL window) the
contents of the ballot and accept or reject it.

The PEB must satisfy the following properties:

Property 12. The election-specific secret code (EQC), which is a
32-bit (4 digit) code, must be present on a PEB and must always
match with the one stored inside the DRE; otherwise, the PEB
should be rejected by the DRE terminal whenever the poll worker
attempts to insert it.

Property 13. At the end of the election, the copy of the ballot
images downloaded from the DRE must be the same as the ballot
images that were loaded into the DRE prior to starting the election.

The CF Card should satisfy the following property:

Property 14. The poll closing procedures must copy the audit
information (such as the event log) accumulated in the local storage
to the CF Card.

The following global properties must be ensured by the system
components all together:

Property 15. No discrepancy should be observed among the fol-
lowing: (1) the individual cast ballot records (or ballot images)
recorded by the machines; (2) the summary tape generated on
Election Day at the close of polls on individual machines; (3) the
totals that were accumulated and reported by the DRE and RTAL
(counted-as-cast).

The above requirement can further be refined into the following
requirements.

Property 16.1. The vote entries printed on the RTAL tape during
and after the election must be equal to the ballot records cast plus
the rejected votes in the DRE.

Property 16.2. The number of fleeing voters recorded in the audit
log file, which is downloaded into the CF Card, must be equal to the
number of rejected ballots printed on the RTAL tape.

Property 16.3. The undervoted races in the audit log file, which
is downloaded into the CF Card, must be equal to the undervoted
races that have been reported on the RTAL tape.

Property 16.4. After the voting is closed, the results downloaded
into the master PEB must be equal to the sum of the results collected
from each DRE; furthermore, it must be equal to the sum of the
printed paper tapes from all RTALs.

The above requirements are converted into ASTRAL specifica-
tions in Section 5.2.  It is also worth remarking that we  do not specify
nor analyze usability requirements, such as “the voting device must
not display any information about the voter’s selections outside the
vote casting interface; the vote casting interface must clearly indi-
cate to the voter whether the voting device is in an active state
or an inactive state.” However, we  consider specifying the possible
states of the machine (e.g., the machine is in poll worker, voter, sleep
or chirping mode), since such information helps us understand the
different operations that a poll worker or a voter experiences when
interacting with the machine.

3.4. Selected attack scenarios

Like any other voting system, the ES&S voting system can be
subjected to attack by a number of different types of attackers with
different capabilities. An attacker can be an outsider (have no spe-
cial access to any of the voting equipment), a voter (have limited
and partially supervised access to voting systems during the pro-
cess of casting their votes), a poll worker (have extensive access to
polling place equipment), an election official (have extensive access
both to the back-end election management systems and voting
equipment), and more.

Next, we  give a short overview of selected attack scenarios
that are discussed for the ES&S system in the EVEREST report. We
assume that voters can leave the voting booth without check-
ing the votes shown on the confirmation screen – i.e., leaving
the voting booth without completing the voting – as observed
in practice. These types of voters are called fleeing voters. We
now present four selected attack scenarios for which we give
formal specifications later. For the sake of understanding, we
also sketched sequence diagrams corresponding to each attack
scenario. Here we  emphasize that our aim is not to provide a
formal semantics for the attacks using UML  sequence diagrams (or
another modeling language) nor to challenge the expressiveness
of UML  notations. The attack scenarios are all alterations of the
normal voting process, which is shown in Fig. 2.

(i) Changing the vote for an unattentive voter. In this scenario, the
voter proceeds with the normal voting process (as in Fig. 2)
and the attacker intercepts the process just before the review
ballot is displayed. The attacker steals votes by assigning them
to the candidate who s/he desires to win. The modified vote is
displayed on the DRE review screen and the change is printed
on the RTAL tape. If the voter does check the screen or the
printed output and discovers that an error has been made,
s/he can recast the vote and the attacker will stop stealing
votes for a period of time. However, if the voter is unatten-
tive, the attacker’s modification will be stored locally upon the
voter’s confirmation (see Fig. 3). This attack is more interesting
(and meaningful) if the voter is able to change their vote (using
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Attacker

Fig. 3. Changing an unattentive voter’s vote.

vote change) and the DRE is unable to tell where vote change
requests are coming from.

(ii) Changing the vote for a careful voter. This scenario assumes the
voters carefully cast, check the screen and printout, and con-
firm. However, they are not familiar with all the details of how
their votes are printed on the RTAL tape. The attacker does not
intercept the normal voting process until after the cast ballot
and confirmation screens have been shown to the voter. At this
point, the attacker changes the voter’s electronic ballot, and the
RTAL prints the modified selection. The RTAL then immediately
prints the summary information along with the barcode.

(iii) Canceling or completing the vote for a fleeing voter. In this sce-
nario the attacker takes advantage of a fleeing voter, a voter
who does not complete the voting procedure, by intercepting
the call to the routine that enables a chirping sound. In the
ES&S machine, this chirping sound alerts the poll worker that
a voter has fled. There are two possible scenarios depending on
the voter’s vote:
1. If the fleeing voter voted against the attacker’s candidate,

then the attacker does nothing and lets the chirping routine
perform as it should (see Fig. 4(a)). The poll worker then
discards1 the ballot and there will be one less vote for the
undesired candidate.

2. If the fleeing voter voted for the attacker’s candidate but
s/he did not complete the voting process then the attacker
completes the voting process (see Fig. 4(b)). This results in
another vote being cast for the attacker’s candidate.

(iv) Faking a fleeing voter to cancel a vote. This attack scenario is
similar to the third attack scenario. However, in this case the
attacker cancels the vote by making it look like the voter fled.
In particular, if the voter did not choose the candidate that the
attacker wants, the attacker intercepts the confirmation pro-

1 In Ohio the votes of fleeing voters are discarded. In contrast, in California the
poll worker casts these votes.

cess and pretends to cast the ballot: the normal “thank you”
screen is displayed, but nothing is printed on the RTAL tape.
After some amount of time elapses (during which the voter
most likely leaves the voting booth) the attacker directs the
system to display the confirmation screen. Then after another
reasonable amount of time has passed the attacker calls the
chirping sound routine and the machine immediately starts
chirping. A poll worker will think the voter was a fleeing voter
and the ballot will be discarded (see Fig. 5).

In the above attack scenarios, various low level details that
are not the interest of formal specification and verification
are omitted. Moreover, the four attacks given above are by no
means exhaustive and they do not represent all the different
types of attacks discussed in the EVEREST report for the ES&S
system. Instead, they are attacks that we believe demonstrate
the flavor of this work. It is also important to clarify that any
formalization must be at a given level of abstraction. The kinds
of properties that can be expressed and proved depend upon
such level. Our formalization is no exception and can not model
all kinds of attacks that can be performed on the machine or the
low level details of some attacks. The goal, however, is not that
of being all-encompassing, but rather, that of complementing
existing technologies and filling an existing gap in the formal
verification of e-voting systems.

4. Overview of the ASTRAL language

ASTRAL (Kolano et al., 1999) is a high-level formal specification
language designed for reactive systems. The language constructs
allow one to build modularized specifications of complex systems
using state machines. ASTRAL provides a mechanism for speci-
fying critical system requirements as first order formulas, and a
formal proof system for proving that the system actually meets
the stated requirements. The language is intended to be exe-
cutable, which in turn allows developers to treat specifications as
prototypes.
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Fig. 4. Canceling or completing the vote for a fleeing voter. (a) Canceling the vote. (b) Completing the vote for a fleeing voter.

An ASTRAL specification of a system consists of a global specifi-
cation and process specifications. The global specification contains
declarations of the process instances, global constants and non-
primitive types (which may  be shared by process instances), and
system level critical requirements. An ASTRAL process specification
presents an abstract model of what constitutes the process (types,
constants, variables), what the process does (state transitions), and
the critical requirements the process must meet. The process being
specified is thought of as being in various states, with one state dif-
ferentiated from another by the values of the state variables, which
can be changed only by means of state transitions. A transition is
modeled by entry and exit conditions, and a non-zero duration is
assigned to each entry/exit pair. Specification exceptions are han-
dled explicitly by adding except/exit pairs in addition to the normal
entry/exit pairs. Transitions are executed as soon as the entry con-
ditions are satisfied assuming no other transition for that process
instance is executing.

Every ASTRAL process can export both state variables and transi-
tions. As a consequence, the former are readable by other processes
while the latter are executable from the external environment.
Interprocess communication is accomplished by broadcasting the
value of exported variables, as well as the start and end times
of exported transitions. In addition to specifying system state
(through process variables and constants) and system evolution
(through transitions), an ASTRAL specification also defines sys-
tem critical requirements and assumptions on the behavior of the
environment that interacts with the system. The behavior of the
environment is expressed by means of environment clauses, which
describe assumptions about the pattern of invocation of external
transitions. Critical requirements are expressed by means of invari-
ants, constraints and schedules. The invariants express the critical
requirements that are to hold in every reachable state. That is, they
state properties that must initially be true and must be guaran-
teed to hold during system evolution. The constraints express the

Pollworker DRE RTALfleeing: Voter Attacker

display_review()

display_thank_you()

make_selection()

update_tempvote
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show_confirmation()
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push_button()

[confirm]
push_button()

make_delay()

call_chirping_routine()

show_confirmation()

Fig. 5. Canceling a vote by faking a fleeing voter.
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Fig. 6. A simplified view of an ES&S voting system. All the interactions are typically done through the DRE.

critical requirements that must hold between any two  states that
correspond to the start and end of a transition. Note, however, that
the requirements contained in a constraint could be expressed in an
invariant, and thus the constraint is just a notational convenience
(Kolano et al., 1999). Invariants can be global or local; the global
invariants represent properties that need to hold for the realtime
system as a whole, while local invariants and constraints defined at
the process type level represent properties that must hold for each
process instance. Invariant and constraint properties must be true
regardless of the environment or the context in which the process
or system is running.

Our choice of ASTRAL is twofold. First of all, ASTRAL is a more
expressive language for real-time systems, and (as noted earlier)
we treat the ES&S voting system as a complex, real-time embed-
ded system. Therefore, the language suits our purpose. The second
motivation is related to the nature of the ES&S voting system
(generally, true for other voting systems), which consists of sev-
eral variables representing the different behaviors of the voting
processes and its requirements. In fact, different modeling lan-
guages are more or less suited to the verification of different critical
requirements. In theory, explicit state model checking is a rig-
orous method. Unfortunately, model checking can only provide
this rigor for reasonably small specification, since the number of
states rapidly exceeds computational limits for complex specifica-
tions (like in our case) and is unfeasible for the model analysis. An
alternative approach to verification without model checking is the-
orem proving. This allowed us to experiment and compare different
approaches (theorem proving and model checking) to the verifica-
tion of e-voting systems. See Villafiorita et al. (2009) and Tiella et al.
(2006) for a discussion of the verification using model checkers.

5. Formal analysis of an e-voting system

We  now present the specification and verification of the ES&S
voting machine by showing a sampling of the specification that, we
believe, provides the flavor of the work. On top of the assumptions
we mentioned previously, to make the specification and analysis
simple but without losing generality, one DRE machine per polling
station is assumed. We  assume also that there is one CF Card, one
RTAL, and one PEB (master) per DRE machine used in the election;
moreover, we assume that there is one race per screen.

5.1. ASTRAL specification of the ES&S system

We formulate each component of the ES&S voting system as an
ASTRAL process instance (see Fig. 6).

There is a process specification for each process type declared
in the global specification – i.e., four process types are declared in
the global specification of the ASTRAL model of the ES&S system.
Below is an example of a process declaration:

PROCESSES

the DRE: array [1..Number Of DRE] of DRE Process,

the RTAL: array [1..Number Of RTAL] of RTAL Process,

We  declared user defined types and constants to represent
useful concerns about the ES&S system inputs and outputs, like in
the following snippet specification:

TYPE

DRE ID: TYPEDEF p: ID (IDTYPE(p) = DRE Process),

PrintValue,  /* unspecified type*/
Title IS SUBTYPE OF String,

Candidate Name IS SUBTYPE of String,

DecisionType: (Selected, Canceled),

Button: (RESET, EXIT, CANCEL, CLOSE, START, NEXT,

BACK, REVIEW, CAST, CONFIRM),

[· · · ]
CONSTANT

Installed CFCard(DRE ID): CFCard ID,

Plugged In RTAL(DRE ID): RTAL ID,

Make Print VoteEntry (Name, Title, Decision): PrintValue

The DRE ID line declares DRE IDs to be exactly those ids that
are process instances of type DRE Process. The DecisionType and
Button are enumerations, that represent, respectively, the voter’s
decision on a candidate for a given contest and the buttons that
can be used to interact with the touchscreen. In contrast, the first
two  constants associate each DRE with a unique CF Card and RTAL
printer, which take DRE ID as an argument and return CFCard ID
and RTAL ID,  respectively. Make Print VoteEntry represents the
print format on the RTAL paper tape when the voter selects or can-
cels a particular candidate. In addition to printing vote selection,
the RTAL also prints start and summary information for each voting
session.
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5.1.1. Modeling the DRE process
The ES&S DRE device is modeled by the process type

DRE Process. The initial clause of the DRE model states that
a CF Card is inserted in the machine and that a unique RTAL printer
is attached to the DRE.

INITIAL

EXISTS f: CFCard ID

(f = Installed CFCard (Self)

− > Which CFCard Installed = f

&  CFCard Installed = TRUE

& CFCardSerialNumber =

Which CFCard Installed.SerialNumber)

& EXISTS rt: RTAL ID

(rt = Plugged In RTAL (Self)

− > Which RTAL Plugged In = rt

& RTAL Plugged In)

Using the import clause in the interface section of DRE Process,
the process can import globally declared types, constants, and
definitions, as well as variables and transitions exported by other
processes in the system. For instance, Installed CFCard and
Plugged In RTAL are constants declared in the global specifica-
tion and are imported using the import clause of the DRE Process
process. Similarly, the process can also export variables and
transitions which can be used by other processes. For instance,
Which CFCard Installed below is an exported variable:

VARIABLE

NumberOfSelected (Race Num): Non Negative,

totalTallyCount(Candidate Name,Title):Non Negative,

Which CFCard Installed: CFCard ID

The DRE machine stores vote records locally and automatically
forbids overvotes, but not undervotes. The number of candidates
currently selected for a particular race and the total number of
votes for a particular candidate in a race are modeled with the first
two variables above.

The communication between the DRE and the RTAL processes
is modeled by the exported variables:

VARIABLE

Signal Enabled: Boolean,

Which Signal: SignalType

where the first variable signals that the DRE is sending infor-
mation to the RTAL printer and Which Signal carries the kind of
information to be printed (e.g., is the print information, a start vote
session message or a vote selection).

To model permissible operations on the DRE machine, it is also
necessary to capture the phases of the election and the various
modes of the terminal during election day. We  use the following
variables:

VARIABLE

Which Phase: Voting Phase,

Terminal Mode: Mode,

DRE State: Terminal State,

These variables indicate, respectively, that the phase of the election
(pre-voting, during voting, and post-voting phases), the terminal
mode, and the state of the poll (opening, opened, closing, or
closed). The last two variables are only meaningful during the
actual election day – i.e., Which Phase = During Voting.

When a voter casts a vote, s/he is actually interacting with the
system by navigating from one screen to another using an appro-
priate button (such as NEXT or BACK). We  model such interaction
by assigning an integer number to each screen shown to the voter
and by defining a function that takes as input a screen number and
returns the information to be displayed and the buttons available.
The variable Display of type screen, is used to hold the state of
the screen as it is to be shown to the voter while s/he is voting. For
example, if the voter is in one of the race screens then the value of

the Display contains the candidates of that race with appropriate
button(s) displayed on it.

Once we  capture the relevant data structures that allow one
to hold information about the DRE, the next step is modeling the
behavior of the DRE itself. This is modeled by ASTRAL transitions.
Twelve transitions are used to model the possible operations of
the DRE machine. For instance, the Insert PEB exported transi-
tion models the insertion of a qualified PEB device in order to allow
various operations to run the election; the Initialize Ballot
transition models the initialization of a ballot when a qualified
voter comes, and, the Push Button exported transition specifies
the behavior of the DRE while the voter and/or poll worker inter-
acts with the system by navigating from one screen to another using
an appropriate button.

An ES&S DRE requires a poll worker to insert a qualified PEB
device in order to allow various operations to run the election.
These operations include loading the appropriate ballot, opening
or closing polls, initializing the ballot, collecting election results,
and performing various administrative tasks. We  modeled all these
aspects with appropriate transitions.

The following snippet specification encodes the ballot loading
operation prior to start election.

TRANSITION Insert PEB (p: PEB ID)

ENTRY [TIME: I P Dur1]

MachineTurnedOn & Stored EQC = p.Secret EQC

&  p.Kind = Master & ∼PEB Inserted

& Terminal Mode = Deactivated & Which Phase = Pre Voting

&  DRE State = Initial State & ∼Ballot Loaded

&  FORALL R: Race (Race Candidates (R) = EMPTY)

EXIT

Which PEB Inserted = p

& PEB Inserted

&  FORALL R: Race (

Race Candidates(R) = P.Candidates Of Race(R))

&  Ballot Loaded

[· · · ]

Once the ballot is loaded while inserting the PEB, the poll
worker must remove the inserted PEB safely. This is done by call-
ing Remove PEB transition. The result of the remove operation, in
the nominal case, is changing the state of the system to allow vot-
ing and putting the machine in sleeping mode (i.e., Which Phase
= during voting, DRE State = Opened, and Terminal Mode =
sleep mode). In other words, this indicates that it is now voting
time, the poll is opened for election, and the terminal mode goes to
sleep.

The initialization of a ballot when a qualified voter comes is
specified in the model by the transition

TRANSITION Initialize Ballot

ENTRY [TIME: I B Dur]

DRE State = Opened

& Terminal Mode = pollworker

& EXISTS p: PEB ID

(Which PEB Inserted = p

& PEB Inserted))

&  Proceed Ballot Init & ∼Ballot Initialized

EXIT

FORALL R: Race (

Displayed Candidates (R) = { SETDEF

C: Candidate (C ISIN Race Candidates (R))})

& FORALL R: Race, C: Candidate (

C  ISIN Displayed Candidates (R)

& ∼Picked (Candidate Name(C),Race Title(R)))

&  FORALL R: Race (Number Of Selected(R) = 0)

&  Ballot Initialized & ∼Proceed Ballot Init

&  underVotedRaces = EMPTY

The entry conditions specify that the poll has to be opened in the
poll worker terminal mode, the PEB is inserted, and the ballot
has not been initialized for the voter who  is ready to cast her/his
vote. It should be noted that the voting procedure usually allows
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voting after scheduled poll closing time as long as a qualified voter
is still in line. The exit condition specifies that all the variable
values from the last voter are reset – i.e., the Picked value for each
candidate–race pair, the number of selections for each race, and
the temporary vote list are all reset. Therefore, the ballot is ready
for the next voter, and the local variable Ballot Initialized is
set to true.

There are four nominal situations in which the PEB can be
removed:

1. after the poll worker loaded ballots prior to opening the DRE
terminal for voting;

2. after the poll worker initialized the ballot for the next voter
during the voting phase;

3. after the poll worker performed administrative operations (such
as after correcting the chirping terminal mode) during the voting
phase;

4. after the poll worker downloaded the election results after the
terminal is closed for election.

If the Remove PEB transition has been fired because the poll
worker initialized the ballot, then the terminal mode changes to
voter mode, the current screen becomes the starting screen for the
eligible voter with a START button on it:

[· · · ]
/*Removing the PBE after the ballot has been initialized for the voter.*/
Terminal Mode = voter mode

& scrName = START SCREEN

& scrNumber = 0

& Screen Buttons(scrNumber) BECOMES {START BUTTON}
&  Min Display (scrNumber) BECOMES

Display Info (Push Start Button To Start Voting

,Screen Buttons (scrNumber))

[. . . ]

In a touch-screen based voting system, a voter makes a choice or
changes a previous choice by touching the candidate name on the
display. In either case, the DRE must capture and process the touch
correctly. Make Selection is an exported transition, which must
be called by the voter.

TRANSITION Make Selection (cName: Name)

ENTRY [TIME: M S Dur]

Which Phase = during voting

& Terminal Mode = voter mode

&  Race Screen (scrNumber)

& currentRace = Which Race(scrNumber)

&  Display(scrNumber) =

Display Contest (Race Title (currentRace)

,Displayed Candidates(currentRace)

,Screen Buttons (scrNumber))

& EXISTS C: Candidate (

C ISIN Displayed Candidates (currentRace)

& Candidate Name (C) = cName)

& ∼Signal Enabled

It specifies the occurrence of a screen touch on a particular can-
didate’s name. On entry, the DRE checks that the voter is voting
during voting period, the terminal is in voter mode, the current
screen is a race screen displaying both the current race with its can-
didates and the button(s) required to navigate through the screen,
the touched candidate cName belongs to the displayed candidates,
and that the DRE is not currently sending a signal to the RTAL.
We used the Picked variable to determine whether the candi-
date has been previously selected. This variable will eventually be
used to update the totalTallyCount for the selected candidate
name cName when the ballot is confirmed. The exit assertion for
the Make Selection transition is

EXIT

/*If the number of selects is greater than the maximum allowed,
the  DRE machine should reject the selection locally.*/
/*The parametrized variable Number Of Selected keeps track of the number of

selects.*/
IF ∼Picked’ (cName,Race Title (currentRace’))

THEN

IF Number Of Selected’ (currentRace’) + 1

<=  Max Choice Per Race (currentRace)

THEN/*over-vote is not attempted.*/
Number Of Selected (currentRace’) BECOMES

Number Of Selected’ (currentRace’) + 1

& Picked (cName, Race Title(currentRace’))

BECOMES TRUE

& Display (scrNumber’) BECOMES

Update(Display’ (scrNumber’),cName,Marked)

& tempVoteRecord (currentRace’) BECOMES

tempVoteRecord’ (currentRace’) UNION

{SETDEF C: Candidate(Candidate Name(C) =cName)}
/*set variable value for the RTAL to print.*/
& pickedName = cName & pickedValue = Selected

&  Signal Enabled & Which Signal = Vote Signal

&  currentRace = currentRace’

ELSE /*else over-vote is attempted.*/
Min Display (scrNumber’) BECOMES

Display Info (OverVote Prohibited, NoButton)

FI

ELSE /*else, cancel the previous choice.*/
Number Of Selected (currentRace’) BECOMES

Number Of Selected’ (currentRace’) - 1

& Picked (cName,Race Title(currentRace’))

BECOMES FALSE

& Display (scrNumber’) BECOMES

Update(Display’(scrNumber’),cName,UnMarked)

& tempVoteRecord (currentRace’) BECOMES

tempVoteRecord’ (currentRace’) SET DIFF

SETDEF C: Candidate (

Candidate Name (C) = cName)

[· · · ]

There are two  possible cases when a voter marks a candidate on
the screen:

• Making a selection. The following scenario occurs: (i) as long as
there is no overvote attempted the number of selections for this
candidate for the current race is incremented by one, Picked is
set to true, the current screen is updated, and cName is included
in tempVoteRecord,  which will be used to display the voter’s
final selection when the voter requests a preview. In addition,
the exported variables pickedName, currentRace,  pickedValue
and Which Signal receive new values, and the signaling vari-
able is set to true. This indicates that the RTAL can now print
the selection expressed in these exported variables. (ii) Other-
wise, the voter attempted to overvote and the DRE will display
the appropriate message on the screen.

• Canceling a previous selection. In this case, the exit assertion spec-
ifies that the number of selected candidates for the current race
is decremented by one, Picked is reset to false, and cName is
removed from the tempVoteRecord.  The rest of the variables
are updated accordingly and the cancellation expressed in the
exported variables information is sent to the RTAL.

Another important transition to discuss is how we  specify
Button Push, which is also an exported transition and, therefore,
is called by the voter and/or poll worker. Notice that each screen
is associated with an integer value and, in some cases, with a
particular name. To make the specification simple but without
losing generality, we  assume one race per screen. In reality,
however, a screen can display more than one race. The voter
and the poll worker interact with the screen while casting votes
and administering the election (such as, loading a ballot prior
to starting an election, initializing a voter’s ballot, or dealing
with abnormal situations). A voter navigates from one screen to
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another, by calling the transition Push Button. The transition
has a number of entry/exit pairs that correspond to the buttons
defined previously. The entry and exit assertions that correspond
to the START button are as follows:

ENTRY

b = START BUTTON

&  b ISIN Screen Buttons (scrNumber)

&  scrName = START SCREEN

& scrNumber = 0 & ∼Button Pushed (b)

&  Which Phase = During Voting

& Terminal Mode = voter mode & ∼Signal Enabled

The first five conjuncts specify conditions about the button and
the current screen. They specify that the button that the voter
pushed is START BUTTON, the button is in the screen button list
for the current screen, the current screen is START SCREEN, the
corresponding screen number equals zero, and the start button was
not previously pushed. The next two conjuncts deal with election
period and the status of the DRE terminal. The election phase must
be during-voting and the terminal mode is voter-mode. The last
conjunct of the entry assertion is used by the DRE to modulate the
signaling information in order to alert the RTAL.

EXIT

Button Pushed (b) BECOMES TRUE

&  scrNumber = 1

& currentRace = Which Race (scrNumber)

&  Screen Buttons(curScreen) = { NEXT }
&  Display (scrNumber) BECOMES

Display Contest(Race Title(currentRace)

,Displayed Candidates’ (currentRace)

,Screen Buttons (scrNumber))

& voterNumber =voterNumber’ + 1

/* Make available for RTAL to print. */
&  Signal Enabled & Which Signal = Start Signal

& RTALMessage = VOTE SESSION STARTED

/*Once the voter starts voting, Ballot Initialized is set to FALSE.*/
& ∼Ballot Initialized

The exit assertion for the start case indicates that the voter has
pushed the START button, the screen number is incremented by
one, the current race is updated, the current screen displays the
first race, and the only button available to push is NEXT, and the
number of voters who visited the poll is incremented by one. In
addition, the DRE updates the value of the signaling variables and
RTALMessage to be printed out on the paper tape.

The entry assertions for the rest of the entry/exit pairs are more
or less identical to the first five conjuncts of the start case except
the button being pushed is different in each case (with additional
conjuncts if applicable). The exit assertion, however, for each but-
ton push can be different depending on which button was pushed.
Below, we discuss the exit assertion for the CONFIRM button push.

After the voter has completed all of his/her votes, the voter has
to cast and confirm the choices. Once the voter touches the CAST
button and confirms the vote by touching the CONFIRM button, the
DRE updates the total tally in the exit assertion of confirm. Note
that when the voter reaches the end of the ballot, they will be
prompted to press the REVIEW button. When the REVIEW button is
pressed the voter will be notified of any unvoted, or undervoted
contests or if the ballot has been left blank. The voter has the
option of reviewing their ballot and making any changes (by using
the BACK button or by touching on the candidate name) before
casting their ballot. In this paper we specified the change only by
using the BACK button push until the voter reaches the screen that
contains the candidate. Pressing the CONFIRM button will cast the
ballot.

/*exit assertion for ‘confirm’ button*/
EXIT

Button Pushed (b) BECOMES TRUE

/*Store the vote locally because the voter has confirmed.*/

& FORALL C: Candidate, R: Race

(C ISIN Displayed Candidates’ (R)

& IF Picked’ (Candidate Name(C),Race Title(R))

THEN

TotalTallyCount (C,R)=TotalTallyCount’(C,R)+1

ELSE

NOCHANGE (TotalTallyCount (C, R))

FI)

&  (IF Min Display’ (scrNumber’) =

Display Info (Ballot Not Completed

,Screen Buttons’(scrNumber’))

THEN

NumberOfLogEntry = NumberOfLogEntry’ + 1

& EventLog (NumberOfLogEntry)

BECOMES underVotedRaces’

&  underVotedRaces = underVotedRaces’

& RTALMessage = BALLOT ACCEPTED UNDERVOTE

ELSE

RTALMessage = BALLOT ACCEPTED

& underVotedRaces = NoUnderVotedRace

FI)

& Signal Enabled & Which Signal = Summary Signal

&  BallotBarcode = BARCODE (voterNumber’)

&  Terminal Mode = sleep mode

&  scrNumber = - 1 & scrName = SETUP SCREEN

/*Reset the temporary vote record. */
&  FORALL R: Race (tempVoteRecord (R) = EMPTY)

In addition to updating the total tally, the DRE keeps track of log
data (such as undervoted races, if they exist, in underVotedRaces).

In the ES&S voting system, the DRE is also responsible for gener-
ating a chirping sound (when a voter flees, i.e., s/he leaves without
confirming the vote), clearing the previous signal value and the
button push, by performing the transitions Generate Chirping,
Clear Signal and Clear Button Push, respectively. We  omit the
discussion of these remaining transitions since they follow a similar
pattern with the transitions discussed so far.

5.1.2. Modeling the RTAL process
The RTAL collects the output sent by the DRE, mostly for auditing

purposes. Namely, it prints vote actions exported by the DRE on a
paper tape. In our specification, the paper tape contains a list of
voter records, where each individual voter record is a continuous
sequence of voter actions.

These are captured by the following variables.

VARIABLE

Tape (Pos Integer): PrintValue,

tapePosition: Tape Number, /*positive integer*/
RTAL State: RTALState,

summaryPrinted: Boolean,

VoteStartPosition (Voter Number): Tape Number,

VoteEndPosition (Voter Number): Tape Number

The Tape variable represents the RTAL paper tape where
the start information, vote selection, and summary information
are continuously printed for each voter. After each print, the
RTAL tapePosition is incremented appropriately. The variables
RTAL State and summaryPrinted,  respectively, are used for keep-
ing track of the current state of the RTAL and determining whether
the summary information has been printed. This is to know when
to scroll the tape forward by some amount in order to protect
the secrecy of the previous voted ballot. Moreover, the variables
VoteStartPosition and VoteEndPosition delineate the voter
record on the paper tape. In fact, the model of the RTAL process
is similar to an array of continuous values of votes. Each time a
voter makes a choice the corresponding record is inserted into the
array, and at the end of each vote confirmation empty values are
appended to represent the advancing operation of the RTAL.

There are two main behaviors of RTAL that are of interest
for the specification: printing and advancing the printer trail
after printing the summary information on the tape to keep the
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vote secret. The former is modeled by the Print Selection tran-
sition, and the latter is modeled by the Scroll Forward transition.

TRANSITION Print Selection

ENTRY [TIME: P S Dur]

My DRE.Plugged In

&  My DRE.Signal Enabled

&  RTAL State = Wait

& My DRE.Which Signal ∼= NoSignal

The first three conjuncts in the entry assertion specify that the
RTAL has been plugged into the DRE, that the DRE has sent a signal,
and the RTAL is waiting for the DRE signal to print. The fourth
conjunct specifies what type of information the RTAL is signaling
to print.

(IF (My DRE.Which Signal = Start Signal

|  My DRE.Which Signal = Vote Signal)

THEN

tapePosition = tapePosition’ + 1

&  CutLengthCounter = CutLengthCounter’ + 1

&  (IF My DRE.Which Signal = Start Signal

THEN

[. . . ]
ELSE/*voting entry printing*/

Tape (tapePosition) BECOMES

Make Print VoteEntry (My DRE.pickedName,

My DRE.currentRace, My DRE.pickedValue)

FI)

ELSE/*Summary printing*/
tapePosition = tapePosition’ + 3

&  CutLengthCounter = CutLengthCounter’ + 3

&  Tape (tapePosition - 2) =

Make Print Info (My DRE.RTALMessage)

&  Tape (tapePosition - 1) =

Make Print Undervote (My DRE.underVotedRaces)

&  Tape (tapePosition) =

Make Print BallotBarcode (My DRE.BallotBarcode)

&  (FORALL i: Tape Number

(i ∼= tapePosition & i ∼= tapePosition - 1

&  i ∼= tapePosition - 2

−  > NOCHANGE (Tape (i))))

& VoteStartPosition (voterNumber) BECOMES

tapePosition - CutLengthCounter + 1

&  VoteEndPosition (voterNumber) BECOMES tapePosition

&  summaryPrinted

FI)

After the transition is fired, depending on what signaling mode
has been received by the RTAL, the corresponding entry is printed.
Notice that each vote record is uniquely identified by a barcode,
which encodes the voter’s ballot selections in the RTAL record
without revealing the identity of the voter. This barcode is printed
on the tape along with the summary information of the vote
entry. Upon the completion of printing the summary information,
the printer is also scrolled forward by calling Scroll Forward
transition.

5.1.3. Modeling the PEB and CF Card processes
The PEB device is specified by an instance of type PEB Process.

As mentioned earlier, the PEB device – in addition to being used to
load the ballot data into the iVotronic terminals prior to starting the
election and to initialize a ballot when a voter comes during election
– is used to transfer election specific data between Election Central
and poll locations. This data is represented by the variables Candi-
dates Of Race, tabulatedData, and copyOfBallotImages.

We  mentioned that, according to the ES&S voting process spec-
ification, the DRE authenticates each PEB by its four digit EQC
code (represented by the Secret EQC variable). While all PEBs are
internally identical in construction, they are discernible from one
another by the read-only information burned in the PIC: their serial
number, and more importantly by their PEB kind, namely either
“master” or “supervisor”. In our specification, we only use PEB kinds
to distinguish PEBs (i.e., Kind: PEBKind).

The most important aspect to specify about the behavior of the
PEB process is that after the terminal is closed, the poll worker uses
the master PEB to collect and store the tabulated data and copies
of the “images” of the ballots. This is specified by the transition
Download Results.

TRANSITION Download Results (D: DRE ID)

[·  · · ]
/*Download the election result.*/
FORALL C: Candidate, R: Race

(C ISIN D.Race Candidates (R)− >
tabulatedData(C, R, D) = D.TotalTallyCount(C, R))

/*Dump copy of ballot images into this PEB.*/
&copyOfBallotImages (D) BECOMES

Download BallotImage (

{SETDEF Pair: Race Candidates Pair (

EXISTS R: Race (Pair [Contest] = R

& Pair [Nominees] = D.Race Candidates(R)))}
)[.  . . ]

The CF Card is specified by an instance of type CFCard Process.
An audit file is automatically saved to the card by calling the
Download AuditData transition (not shown in this paper) when
the polls are closed. From a formal specification point of view,
however, we  are only interested in the audit log file, which contains
the undervoted races and the number of fleeing voters, indicated
by the following variables:

VARIABLE

EventLog (Pos Integer): Races,

numOfFleeingVoters: Non Negative,

visitedNumberOfVoters: Non Negative,

ADDownload Completed: Boolean

We  mentioned that there is one CF Card per DRE machine used in
the election. This card is uniquely identified by its serial number –
i.e., SerialNumber: Digit List. When the polls are closed, an
audit file is automatically saved to the CF Card. In other words,
upon closing the terminal while the master PEB is inserted, the
DRE automatically enables the CF Card to save audit data. Down-
loading the audit log file is modeled by the Download AuditData
transition.

In summary, the complete ASTRAL specification of the ES&S vot-
ing process is approximately 1800 LOC (about 33 pages long). We
skipped a number of descriptions about the specification of each
component.

5.2. Critical requirements specification

After we specify the relevant information of the system model
we  need to specify what security requirements the system should
meet given the assumptions about the behavior of the system and
the external environment that interacts with the system.

In particular, we  specified the following concerns:

1. Environmental/procedural assumptions. We  have specified a num-
ber of behaviors about the external environment that the
e-voting system relies on. For instance, the behavior of the people
(voters, poll workers, and election officials) who interact with the
system. These are requirements on the environment to ensure
fair elections. This is outside the ES&S system, but it influences
how the system operates.

2. Security requirements. We  have specified 25 critical requirements
(expressed as invariants, constraints, and schedules) that must
be satisfied by the system given all the possible assumptions
about the environment. In the ES&S system, for instance, the
DRE should correctly handle vote selection and the RTAL should
update the paper tape after the voter pushes the start button,
makes a selection, confirms a vote, or when a poll worker rejects
the ballot of a fleeing voter.
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With respect to the first, the DRE, in fact, cannot control the
behavior of the voter when s/he interacts with the screen. For
example, if the voter touches the candidate name faster then
the DRE can process the touches, the normal functioning of the
e-voting system may  be disrupted. In addition, the procedures that
control the voting process are completely outside of the e-voting
system, e.g., the poll worker has to wait some amount of time
to remove the PEB after loading the ballot, or after activating
the ballot for the next active voter. However, they are equally
important to carry out a correct and secure election. Therefore, we
need to express these concerns in order to guarantee the critical
requirements that the system should meet.

ENVIRONMENT

/*min pause is the minimum time between two subsequent selections */
(FORALL t: time (Call [2] (Make Selection, t)

−  > Call (Make Selection) - t > min pause))

/*min pause is the minimum time between two subsequent button pushes */
&  (FORALL t: time (Call [2] (f, t)

−  > Call (Push Button) - t > min  pause))
/*Remove PEB will be called after the ballot is loaded into the DRE and

Notify Time1 units have elapsed. */
& (EXISTS t: Time, p: PEB ID

(Now> = t + Notify Time1

& p = past (Which PEB Inserted, t)

&  past (PEB Inserted, t)

& past (Ballot Loaded, t)

&  past (p.Kind, t) = Master

&  past (DRE State, t) = Opening

− > Call(Remove PEB, t + Notify Time1)))

For instance, the above environment clause for the DRE process
states that there must be a minimum pause between two sub-
sequent selections and button pushes. It also specifies the fact
that the poll worker should only remove the PEB after the load-
ing operation has passed and Notify Time1 has elapsed. All
these facts are important to prove the critical requirements, in
particular requirements that involve exported transitions. The
critical requirements listed in Section 3.3 are essential to maintain
the integrity of the election results. In fact, the integrity of the
election results depends heavily on the integrity of the software
and firmware that runs the central EMS  and the hardware used.
However, this is largely dependent upon a particular implementa-
tion and is not in the scope of this specification. Moreover, audit
logs serve a vital purpose, as they can alert an auditor of suspicious
or uncommon events that occurred, which could indicate the
presence of malicious intent against the system. Because of this,
it is critically important that an auditor is completely confident
that the information retrieved from the audit logs is complete and
accurate. Therefore, the security properties we are interested in
mainly concentrate on the integrity of election results.

With respect to the second, we formulated each of the criti-
cal properties from Section 3.3 as ASTRAL invariants, constraints,
or schedules. We  now present examples of critical requirement
specifications, mostly related to the integrity of election results.

The fact that a DRE is chirping indicates that at least ten units
have passed since the last ballot activity. This is expressed by
the following local schedule requirement of the DRE Process
(Property 8):

(Change (Terminal Mode, Now)

&  Terminal Mode = chirping− >
Call(Make Selection) - Call[2](Make Selection)>=10
|  (Now - Change (scrNumber)>=  10

&  EXISTS t: Time (t < = Now

& t > Change [2] (Terminal Mode)

&  past (Terminal Mode, t) = voter mode)))

It says the mode of the terminal is set to chirping if there is no user
input to the DRE within ten time units since the last screen change
or the last call to the exported transition Make Selection by the
voter.

Below is the specification of Property 6 – i.e., the fact that the
DRE must automatically forbid an overvote.

FORALL R: Race (

Change (Number Of Selected (R), Now)

&  Number Of Selected (R) ∼= Number Of Selected’ (R)

−  > Number Of Selected (R) <= Max Choice Per Race (R))

The above constraint must be ensured each time a voter makes a
selection by calling the Make Selection transition. More specif-
ically, whenever the Number Of Selected variable for a race R is
changed to a non-zero value, the new value must be less than or
equal to the Max Choice Per Race for that race R.

We mentioned that the RTAL must print the corresponding
voter action on the tape (Property 11).  This requirement must be
expressed as a scheduling requirement because the printing activ-
ity depends on the signal information sent by the DRE Process
through the Signal Enabled variable. The schedule clause for the
RTAL Process consists of four conjuncts, each corresponding to a
scheduling requirement. Below, we present one of them.

(My DRE.Signal Enabled

&  past (My DRE.Which Signal,

Change (My DRE.Signal Enabled))=Vote Signal

&  Now-Change (My DRE.Signal Enabled)

> Max Print Time

− > EXISTS t: Time

(t > Change (My DRE.Signal Enabled)

&  t < = Now & Change (tapePosition, t)

&  past (tapePosition, t) =

past (tapePosition, Now -

Change (My DRE.Signal Enabled)) + 1

& past (Tape (tapePosition), t) =

Make Print VoteEntry (My DRE.pickedName,

My DRE.currentRace, My DRE.pickedValue)))

This specifies that the vote entry (i.e., a record that consists of a
candidate, race, and value of the selection) will be printed on the
RTAL tape one tape position below the previous print if the DRE
has enabled the signal, made available the information to print,
and enough time has elapsed for the choice to be printed; we omit
the start and summary conjuncts.

We next consider specifying the integrity of the election results
(Property 16.4). This property must guarantee that, after the
election is closed, the results downloaded into the master PEB
must be equal to the sum of the results collected from each DRE.
The property is specified in the global invariant clause as

/*After the election, results downloaded into the master PEB must be equal to the
results produced by all DREs. */
EXISTS p: PEB Number

(the PEB [p].Kind = Master

&  FORALL d: DRE Number(

the PEB[p].ResultDownload Completed (the DRE[d])

&  the DRE[d].Which Phase=Post Voting

& the DRE[d].DRE State=Closed

& FORALL C: Candidate, R: Race

(the PEB [p].Candidates Of Race(R) =

the DRE [d].Race Candidates (R)

&  C ISIN the DRE [d].Race Candidates(R)− >
the PEB[p].tabulatedData (C, R, the DRE [d])

=  the DRE [d].TotalTallyCount (C, R))))

/*Downloaded results in the master PEB must be equal to the printed votes on the
RTAL tape.*/
& EXISTS p: PEB Number (

the PEB [p].Kind = Master

& FORALL d: DRE Number, rt: RTAL Number (

the RTAL[rt]=Plugged In RTAL(the DRE[d])

& the PEB [p].ResultDownload Completed (the DRE[d])

& the DRE [d].Which Phase = Post Voting

& the DRE [d].DRE State = Closed

& FORALL C: Candidate, R: Race (C ISIN

the DRE [d].Race Candidates (R)− >
the PEB [p].tabulatedData(C, R, the DRE [d])

=  CountSelected (C, R, the RTAL [rt])

- CountCancelled (C,R, the RTAL [rt]))))
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The first conjunct of the invariant specifies that there exists a
PEB p, such that for every DRE d in the precinct, if p is the master
PEB used in d’ s terminal to download the election results after the
terminal is closed and the election has ended (i.e., Post Voting
phase), then the election results for each candidate C who ran for
race R stored in p is exactly equal to the total tally counted on d’s
terminal for candidate C. Similarly, the second conjunct specifies
that for every RTAL printer rt and DRE d in the precinct, if rt is the
printer used by d during the voting period, then the election result
for each candidate C who ran for race R stored in p is the differ-
ence between the total number of selected and the total number of
canceled votes printed on rt.

In the above specification, the CountSelected and CountCan-
celled are definitions that make the specification more readable.
More specifically, they respectively introduce predicates which are
used in our specification of the voting process to specify how many
selections and cancelations have been printed for each candidate C
who ran for race R on the RTAL printer rt.

This way, the requirements listed in Section 3.3 are converted
into ASTRAL invariants, schedules, and constraints for each corre-
sponding process instance. We  need to be clear that we did not
convert all the requirements to their ASTRAL equivalent in the way
we describe them informally.

6. Extending the system specification by modeling attack
scenarios

Analyzing a system in non-nominal situations – where some of
its components are not behaving in the way they should be – has
always provided important insights into the behaviors of a system.
This approach is common in system engineering when performing
safety assessment of critical systems. When performing safety
assessment, the model is augmented with non-nominal behaviors
(e.g., due to malfunctioning or attacks). The augmented model
(also called the extended model) is then analyzed to understand
under what (non-nominal) conditions critical requirements are
not met  anymore.

We want to take a similar approach to the analysis of the
security-critical properties articulated previously. The extended
model is a combination of the original specification of the ES&S sys-
tem that was discussed previously and the attack scenarios given
in Section 3.4.  More specifically, we extended the original specifi-
cation with a set of transition specifications that represent known
attacks that have been shown to successfully compromise the ES&S
system. Each transition corresponds to a particular threat action for
the voting system. Thereafter, we process the extended specifica-
tion and automatically generate proof obligations related to the
security requirements for the PVS analysis tool.

In particular, we wish to prove the security properties against
the extended model for the following reasons:

• If all of the proof obligations were to be proved, then the system
specification must be missing some critical security require-
ments, since the modeled attacks were already demonstrated
to be successful. Therefore, it would be necessary to see what
additional critical requirements are needed to disallow the threat
actions and keep the extended specification from being proved.

• In contrast, not being able to prove the extended specification
would indicate that one, or more, threat action violates at least
one critical security requirement. However, since we know that
attacks composed of these threat actions have been used to suc-
cessfully compromise the system, it also indicates that there
could be an implementation or specification error or an unsat-
isfied procedural assumption that results in the actual system or
the environment not satisfying their respective formal specifica-
tion.

6.1. Attack specifications

We model the attack scenarios presented in Section 3.4 in terms
of threat actions expressed as ASTRAL transition specifications. The
system model is extended by augmenting the specification with
new possible states that are the result of the execution of the threat
actions.

In particular, the attack scenarios are encoded to extend the
original specification of the ES&S voting system using the following
strategies:

1. we define new types, variables, and constants. There are two
kinds of variables that we declare: those that provide additional
information about the state of the system (e.g., the system is now
about to display the review ballot) and those that hold infor-
mation about the successful execution of a threat action (e.g., a
fleeing voter has been faked).

2. a transition is defined for each threat action, which is part of
a given attack scenario. Note that one attack scenario can be
implemented using one or more threat actions.

3. a transition may  be split into two or more transitions, or a tran-
sition may  be extended with more information to specify the
attack scenario.

As noted previously, we  assume that the attacker can inter-
cept the normal voting process at any point. For instance, if s/he
intercepts the process before the review screen is displayed and
the attack is successful, then the tempVoteRecord variable should
include the maliciously modified candidate and the Display vari-
able should update the screen accordingly. It is, in fact, the voter’s
task to correctly verify that what is displayed exactly matches
her/his preferences.

To represent the various kinds of voters (unattentive, careful,
and fleeing), we introduced the following global type:

TYPE

VoterType: (unattentive, careful, fleeing)

In addition, the variables declared, respectively, hold information
about whether the voter’s vote is changed (obviously, by a suc-
cessful attack action), whether the fleeing voter is faked, and the
name of the attacker’s candidate. In addition, information about
where the attacker intercepts the process to start the threat action
is encoded by the (boolean) variables review displayed and
summary sent2RTAL. Namely, they respectively hold information
about the attack actions that happened just before reviewing the
final votes and right after the summary data is sent to the printer.

VARIABLE

vote changed, Fleeing Faked: Boolean,

attPickedName: Name

When an attacker changes or cancels a vote, it is actually per-
forming a sequence of interactions with the DRE process in order to
fulfill the threat action. The successful completion of such an action
eventually assigns new values to some of the exported variables
discussed above.

The following transition specifies the change vote threat action,
which appears in the sequence diagram depicted in Fig. 3.

TRANSITION Attack Change Vote

(vc, ac:Candidate, vType:VoterType)

ENTRY [TIME ACV Dur]

/*This attack assumes an unattentive voter. This results in a change of vote.*/
Which Phase = During Voting

& Terminal Mode = voter mode

&  vType = Unattentive

&  EXISTS R: Race (

vc ISIN Displayed Candidates (R)

&  ac ISIN Displayed Candidates (R)
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&  vc ISIN tempVoteRecord (R)

&  Picked (Candidate Name (vc), Race Title(R)))

& ∼Picked (Candidate Name (ac), Race Title(R)))

& vc ∼= ac

& EXISTS b: Button

(b = REVIEW & Button Pushed(b))

&  scrName = REVIEW SCREEN

& ∼Review Displayed & ∼Vote Changed

EXIT

EXISTS R: Race (

vc ISIN Displayed Candidates’ (R)

& ac ISIN Displayed Candidates’ (R)

&  vc ISIN tempVoteRecord’ (R)

&  tempVoteRecord (R) BECOMES

(tempVoteRecord’ (R) SET DIFF vc) UNION ac

& ∼Picked (Candidate Name (vc), Race Title (R))

&  Picked (Candidate Name (ac), Race Title (R))

& FORALL CN:Name, R1:Title (

((CN ∼= Candidate Name (vc)

& CN ∼= Candidate Name (ac))

|  R1 ∼= Race Title (R))− >
Picked (CN, R1) = Picked’ (CN,R1))

& currentRace = R)

&  Signal Enabled & Which Signal = Vote Signal

&  pickedName = Candidate Name (vc)

&  attPickedName = Candidate Name (ac)

&  Vote Changed

The enabling condition for this threat action (i.e., for the transition)
specifies that the fleeing voter is voting during election period in
the voter’s terminal mode, that there exists a race R such that the
voter’s candidate vc is in the displayed candidates list for race R
for which the voter already voted, that the attacker’s candidate ac
is also a legitimate candidate contained in the displayed list for
the same race R and it is not selected by the voter, and the voter’s
choice is different from the attacker’s (i.e., vc ∼ = ac).  In addition,
the voter has already requested the review screen, currently there
is nothing shown on the REVIEW SCREEN, and there is no change
of vote at the moment.

After the threat action is successfully executed (i.e., after the
transition is ended) the following holds: the voter’s selection in
tempVoteRecord now contains the attacker’s choice, the Picked
value is true for ac and is false for voter candidate vc.  In addition,
the exported variables currentRace,  pickedName, attPicked-
Name, pickedValue and Which Signal have new values, and the
signaling variable is true. This indicates that the RTAL can now print
the modification expressed in these exported variables. The RTAL
process prints this information by executing the Print Selection
transition (see Section 5.1.2).

The above modification, which is contained in the tempVoteRe-
cord variable, is also displayed on the review screen. It is worth
noting that both the review screen and what is printed on the RTAL
tape report the modified selection, rather than the original one.
From an attacker’s point of view, it is better to keep the display and
tape consistent. The reason is that if an abnormality is detected,
then it is more likely to be attributed to a display miscalibration
rather than to an attack. It is possible that the voter will detect such
a change. In this case, the voter can recast his/her vote by calling
the Push Button and Make Selection transitions.

The Attack Change Vote also has exceptions that specify the
other cases of the voter type

EXCEPT

[· · · ]
/*This attack assumes a Careful voter. The voter has confirmed and the Thank You

message has been displayed.*/
Which Phase = During Voting

& vType = Careful

&  EXISTS b: Button (b = CONFIRM

&  Button Pushed (b))

&  scrName = THANKYOU SCREEN

& EXISTS R: Race (

vc ISIN Displayed Candidates (R)

& ac ISIN Displayed Candidates (R)

& Picked (Candidate Name (vc), Race Title(R)))

/*voter candidate is different from attacker candidate */
& vc ∼= ac

& Min Display (scrNumber)= Display Info (Thank You, NoButton)

& ∼Summary Sent2RTAL

& ∼Vote Changed & NormalVotingProcess

EXIT

EXISTS R: Race (vc ISIN Displayed Candidates’(R)

&  ac ISIN Displayed Candidates’ (R)

&  vc ISIN tempVoteRecord’ (R)− >
(Picked (Candidate Name (vc), Race Title(R))

BECOMES FALSE

&  Picked (Candidate Name (ac), Race Title(R))

BECOMES TRUE

&  currentRace = R))

/*enabling RTAL to print the attacker’s intention.*/
&  Signal Enabled & Which Signal = Vote Signal

/*for this candidate, print Cancelled on the RTAL tape.*/
&  pickedName = Candidate Name (vc)

/*for this candidate, print Selected on the RTAL tape.*/
& attPickedName = Candidate Name (ac)

&  Vote Changed

The following snippet exception models the complete voting process
attack (as shown in Fig. 4(a)). This attack assumes a fleeing voter
who  voted for the attacker’s candidate, and hence completes the
voting process.

EXCEPT

[· · · ]
&  vType = Fleeing

&  scrName = REVIEW SCREEN

& scrNumber = Number Of Race + 1

&  Now - Change (scrNumber)>= 10 [. . .]
&  vc = ac

&  Review Displayed

&  NormalVotingProcess

EXIT

/*the attacker calls the confirmation function and completes the process.*/
scrNumber = scrNumber’ + 2

& scrName = THANKYOU SCREEN

& EXISTS b: Button (b = CONFIRM

− > Button Pushed(b) BECOMES TRUE)

& Min Display(scrNumber)

BECOMES Display Info(Thank You, NoButton)

/*The normal voting process is interrupted by the attacker and the DRE is not
chirping for this voter.*/
& ∼NormalVotingProcess

The Faking a Fleeing Voter attack is an example of a scenario that
requires several threat actions. The canceling of votes by faking a
fleeing voter has three threat actions (as depicted in the sequence
diagram, see Fig. 5). The threat actions are specified as three
transitions in the DRE process:

1. Attack Change Vote. This is an except/exit transition that speci-
fies the fact that an attacker fakes a fleeing voter by pretending to
complete the voting process on her/his behalf. The exit assertion
of this transition will set the variable Fleeing Faked to true.

2. Attack ReDisplay. This transition specifies the fact that after some
delay (during which time the voter leaves the booth) since the
voter is successfully fooled, the attacker directs the DRE to dis-
play the confirmation page again.

3. Attack Call ChirpingR. This specifies that after the voter has been
fooled and DelayTime has passed, the attacker resumes the nor-
mal  voting process by calling the chirping routine. This results
in the poll worker taking action according to the prescribed
procedure. (This transition is only enabled after the first two
transitions have been executed.)

We  say the canceling of votes is successful only after transition
#3 has been executed. We  omit the formal specifications for these
threat actions, which are specified similarly to the others described
earlier.
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Table  1
Number of proof obligations and number of proved critical properties before and
after the attack specification.

Proof obligations After splitting

Invar, Constr, Sched Invar, Constr, Sched
DRE 4, 6,1 10, 9, 2
RTAL 1, 1, 3 1, 1, 3
PEB 1, 0, 1 2, 0, 1
CFCard 0, 0, 1 0, 0, 2
Global 6, 0, NA 9, 0, NA

Total 12, 7, 6 22, 10, 8
Total proved, for the original specification 16,7,5
Total proved, after extending with attacks’ information 6/16,2/7,0/5

7. Formal verification and results

We used the ASTRAL and PVS (Owre et al., 1993) tools to ana-
lyze whether the specification of the ES&S system meets the critical
security requirements articulated previously. The main goal of our
analysis is to provide the maximum assurance that the ES&S spec-
ification meets its critical requirements. To do that, it is necessary
to generate proof obligations for critical requirements and prove
them. ASTRAL supports two kinds of proof obligations: correct-
ness proofs and consistency proofs. In the former case, the critical
requirements of the system are proved to hold based on the exe-
cutions of each process. In the latter case, it is proved that any
assumptions made in the system are never false. Both proof obli-
gations are useful for the e-voting systems in order to run a correct
and secure election. In our verification, we focused on the correct-
ness proofs of the ES&S voting system. We  mainly attempt to prove
the invariants and schedules clauses related to the components (i.e.,
DRE, RTAL, PEB, and CF Card) in isolation and the system as whole
to hold at all times.

Before attempting the proofs with the PVS theorem prover, we
should assure that the specification contains as few errors as pos-
sible, by performing a sequence of less costly steps. In ASTRAL,
these steps include model checking and proof sketch construction.
We applied the proof sketch construction strategies (such as proof
ordering, transition steps, global and imported variable obligations)
for our purpose. Before invoking the theorem prover, the ASTRAL
split engine was used to split and classify the ASTRAL specification
into collections of simpler properties that infer the whole clause
so that the proof of each property could be tackled separately. The
splitter can be invoked on any section of an ASTRAL specification
that resolves to a boolean expression.

The specification of the ES&S system was first constructed and
type-checked using the ASTRAL SDE. Thereafter, from the validated
specification, we generated the corresponding proof obligations for
the critical requirements. It is important to emphasize that the
generated proof obligations are that of the intra-level proof obli-
gations, which deal with proving that each process level satisfies
its stated critical requirements and that the system level specifica-
tion is consistent and satisfies the global requirements. Moreover,
the specification was automatically translated into its PVS counter-
part using the ASTRAL SDE, which enabled the specification to be
passed to the PVS theorem prover for verification.

Table 1 shows the number of invariants, schedules, and con-
straints for each of the four processes and the global invariants. It
also shows the number after they are split by the ASTRAL SDE for
which we discharged the proof commands.

The assurance of the ES&S specification cannot be achieved
without performing system proofs within the theorem prover. So
far we managed to formally verify that the specification satisfies
many of the critical requirements that we discussed previously,
mostly the local invariants and constraints. The proofs were
achieved by following the techniques presented in Kolano (1999).

For instance, we  applied the try-untimed and try-untimed-con proof
strategies to prove some of the local invariants and constraints of
the system.

As shown in Table 1, before extending the specification with
attack information, we successfully proved 16 of the 22 invariants,
5 of the 8 schedules, and 7 of the 10 constraints. We  expect that
the other global and local properties can be proved using the same
or similar proof techniques and strategies. After extending the sys-
tem specification with the threat actions, we generated the proof
obligations for the extended specification. However, unlike the
original specification, there are more proofs to be done since there
are additional transitions that correspond to the threat actions. In
addition, because some of the original transitions were split and/or
extended, the corresponding proof obligations must be reproved.
In order to prove the requirements, we  followed the same proce-
dure as before. However, the proving process is very complex in
the extended model. We started with the proof obligations that
were unchanged to assure that they are still valid. So far, we have
reproved 6 of the 16 invariants and 2 of the 7 constraints (see last
row of Table 1).

Most of the reproved properties in the extended model are not
complex. For instance, “The copy of the ballot images downloaded
from the DRE must be equal to the ballot that was  loaded into the
DRE prior to start election;” (local DRE invariant property), “RTAL
must scroll forward Min  ScrollForward Position amount after the
vote summary has printed;” (local RTAL constraint property), and
“Each voter’s choice will be printed after the vote signal is enabled
and enough time has elapsed for the choice to be printed;” (local
RTAL schedule property) easily reproved with additional proof
strategies that are discharged to consider the added specification
corresponding to the attack actions.

By analyzing these obligations in the extended model, we  have
attempted to understand why  they were proved and why the others
did not prove. We  learned that, in most of the cases, to reprove these
obligations we  had to discharge a few more proof steps as compared
to proving in the original specification. In the majority of the cases,
however, the current ASTRAL specific proof strategies are not suf-
ficient for completing the proof. We  have also faced some resource
limitations – namely, heap storage problem although we assigned
the maximum heap size (we used 4G RAM) – for the PVS Allegro
Lisp. These are some of the reasons that we  did not complete the
remaining proof obligations. Hence, there are more complex proof
obligations which need more powerful proof strategies to complete
the proof. Currently, we  are working on modularly approaching
the proof strategy and possibly extending the ASTRAL specific PVS
strategies.

The main lessons we learned span from understanding the vot-
ing process followed in the USA, deriving the specification, up to
the usage of PVS. We  started the specification by looking at the
video about how to vote using the ES&S system, the various docu-
ments about the system specification and machine usage scenario,
and some known requirements recommendations. This allowed
us to learn the various components, the underlying communica-
tion among them, and the kinds of data they exchange during
the communication (e.g., DRE sends the “selection” information to
the RTAL). Converting these concepts to a formal language is very
complex and demands a clear understanding of the process, each
component’s behavior, their combined behaviors, and the proper-
ties/requirements, as well as the specification language itself. In
fact, formalizing these using ASTRAL was  relatively easy as the lan-
guage is closer to higher-level language. However, the difficulty
arose when using the PVS system. Currently, we  are investigat-
ing how to modularize the proof strategy and possibly extend
the ASTRAL specific PVS strategies. The ASTRAL language contains
structuring mechanisms that allow one to build modularized spec-
ifications of complex systems. It is interesting to specify the attack
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scenarios in separate specifications and try to compose them using
the composition mechanism of ASTRAL.

8. Related work

Scientific literature on e-voting is wide and multi-disciplinary.
For the purpose of this work, we organize previous work in two
areas: designing better e-voting systems using formal methods
(high-level assurance) and assessing existing systems (low-level
assurance).

Applying formal methods for e-voting. The trends in this area focus
in three closely related directions: verifying cryptographic proto-
cols (e.g., Juels et al., 2005; Backes et al., 2008; Simidchieva et al.,
2008; Delaune et al., 2009; Cansell et al., 2007a; Küsters et al.,
2010), system behavior (e.g., Cansell et al., 2007b; Sturton et al.,
2009; Tiella et al., 2006; Gibson et al., 2010), and procedures (e.g.,
Weldemariam and Villafiorita, 2008; Bryl et al., 2009).

With respect to the first (i.e., verifying cryptographic proto-
cols), Delaune et al. (2009) particularly present a framework for
formal specification and verification of e-voting protocol proper-
ties (an earlier version of this work can be found (Kremer and
Ryan, 2005)). These properties are vote-privacy, receipt-freeness,
and coercion-resistance. Their work mainly focused on formally
verifying the correctness of protocols with respect to these proper-
ties. The authors used applied �-calculus (Abadi and Fournet, 2001)
for the formalization of the voting protocol and for the proper-
ties, which are to be analyzed against the protocol model using
the ProVerif tool (Blanchet, 2009).

Juels et al. (2005) define a formal model for e-voting schemes
that involves a more powerful adversary than previously proposed
in the literature related to receipt-freeness – the inability of a voter
to prove to an attacker that s/he voted in a particular manner, even
if the voter wishes to do so. Their schemes allows an adversary to
demand that coerced voters vote in a particular manner or that
they disclose their secret keys. The authors also provide formal
security definitions for essential properties of correctness, verifia-
bility, and coercion-resistance. However, the paper did not consider
a verification process using automated techniques.

The authors in Campanelli et al. (2008) used a CCS (calculus of
communicating systems)-like process algebra with cryptographic
primitives to specify and analyze some properties of the e-voting
system they built. More specifically, they presented a small mobile
implementation of an e-voting system named M-SEAS (Mobile
Secure E-voting Applet System) and used formal verification tech-
niques to validate the security properties of the system. Their
analysis goal is checking whether their system is free from Sensus
vulnerability2 by using the Crypto-CCS language (Martinelli, 2002)
and the PaMoChSA analysis tool.

With respect to the second focus (i.e., verifying system behav-
ior), Simidchieva et al. (2008) demonstrate the usage of different
technologies for specifying and verifying requirements for election
processes – namely, by reasoning rigorously about the presence or
absence of errors during all phases of an election process. In partic-
ular, they used the Little-JIL process definition language (Cass et al.,
2000) to formally define election processes and the PROPEL tool
(Smith et al., 2002) to support the development of precise lower-
level properties, which are then fed to the verification system called
FLAVERS (Cobleigh et al., 2002) to check whether the process model
satisfies these properties. If the process model violates a property,
the FLAVERS system provides counterexamples as traces. Traces are
sequence of steps in the process model that may  lead to the prop-

2 In Sensus protocol (Cranor and Cytron, 1997), “this vulnerability basically allows
one  of the entities involved in the election process to cast votes of eligible users that,
although registered, abstain to vote.”

erty violation as generated by the verification system. Such traces
can then be used to guide the improvement of the process model.
Similarly, Villafiorita et al. (2009); Tiella et al. (2006) demonstrate
the integration of formal methods in the development process of a
voting system named ProVotE. In particular, the authors specified
the behaviors of voting control logic using UML  finite state machine
and developed a tool named FSMC+ (Tiella et al., 2007) that auto-
matically generates NuSMV (Cimatti et al., 2002) code correspond-
ing to the specified FSM (this helped for the structuring and man-
aging requirements discussed in Weldemariam et al., 2009). Then
they performed the verification using the NuSMV model checker.
The results of the model checker, presented in the form of coun-
terexample, are then analyzed. This enabled the authors to incor-
porate the analysis results of the verification into the actual devel-
opment process of the core ProVotE system (Villafiorita et al., 2009).

Sturton et al. (2009) present an approach for the design and
analysis of an e-voting machine based on a combination of formal
verification and systematic testing. They formally verify the cor-
rectness of each of the individual components of a voting machine,
as well as verifying some crucial correctness properties of their
composition. Their work is targeted to the following verification
goals: ensuring that each individual component of the voting
machine and their composition should meet the specification of
the individual components and their composition respectively; the
voting machine should be structured to enable sound systematic
system testing; ensuring that the voting machine must behave and
store votes according to the voters selection when configured with
a particular election definition file. For each module, they construct
a formal specification that fully characterizes the intended behavior
of that component. A number of properties related to the struc-
tural and functional aspects that the machine should satisfy are
identified and specified. They used Verilog (Thomas and Moorby,
1991) for the implementation of their specification and the SMV
analysis tool and satisfiability solving to verify that their Verilog
implementation meets the specifications.

Moreover, Cansell et al. (2007b) attempted to use the B-method
(Abrial, 1996) – a method for specifying, designing and coding soft-
ware systems – to construct a formal, mathematical model of the
e-voting problem, with the aim of demonstrating the use of formal
methods for supporting the correct design and implementation of
safe e-voting systems. More recently, Gibson et al. (2010) clearly
illustrate the importance of formal software engineering in the
development of e-voting systems. Interesting, the authors demon-
strated the development of an e-voting system using different mod-
eling languages to address different types of critical requirements.

Although there is limited research in this area, we  have men-
tioned some existing works that use formal methods such as model
checking and theorem provers to provide higher assurances for
the design and implementation of e-voting systems. However,
none of these works focus on the aspects related to procedures
in their modeling and analysis (the third verification focus). In that
regard, in Weldemariam and Villafiorita (2008) we complement
such works by widening their scope of analysis with procedures
analysis. An approach to reason on security properties of the to-be
models (which are derived from as-is model) in order to evalu-
ate procedural alternatives in e-voting systems is presented in Bryl
et al. (2009).  Additionally, the authors in Grimm et al. (2010) pre-
sented a formal model for the correction and abort requirement
of e-voting with some concepts borrowed from Protection Profile
(Volkamer and Krimmer, 2007) of the Common Criteria (Common
and Criteria, 2007). More specifically, they first described a for-
mal  IT security model that allows the formalization of (some) basic
security requirements for e-voting. Secondly, they modeled the cor-
responding security properties as secure system states using the
same machinery. Thirdly, they specified state transition rules that
control the voting behaviors. Finally, an attempt to mathematically
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prove that functions following the rules would transfer a secure
state into a secure state.

Assessing exiting e-voting systems. Some e-voting systems cur-
rently deployed in elections have undergone a thorough and
independent scrutiny to evaluate their security and quality. Secu-
rity vulnerabilities have been reported in each aspect of security
– that is, technological, socio-technical, and social aspects. These
vulnerabilities have been practically investigated and proved by
various academic researchers. This creates an enigma in the trust-
worthiness of the machine and the voting process as well (Bishop
and Wagner, 2007; Bryans et al., 2006).

In line with this, we mention the following academic research
(Kohno et al., 2004; Aviv et al., 2008; Gardner et al., 2007;
Balzarotti et al., 2008; Jones, 2003; Ansari et al., 2008). These
works assess both hardware and software of different forms of
e-voting machines (e.g., Diebold/Premier, ES&S, InterCivic), which
are mostly in use in some 37 U.S. states. The studies identified
serious design and implementation flaws, which are notable for
their level of egregiousness. More specifically, their analysis have
showed that the current e-voting systems are vulnerable to very
serious attacks, and they have produced a catalogue of vulnerabil-
ities and possible attacks. Some analyzes also suggested a drastic
change in the way in which e-voting systems are designed, devel-
oped, and tested (e.g., by identifying procedures to eliminate or
mitigate the discovered issues, by developing a precise methodol-
ogy and toolsets for the assessment). The assessment methodology
presented in Balzarotti et al. (2010) is particularly astonishing as it
provides various insights on each individual and in-depth step of
the analysis, to be reparable also. It can be used for other complex-
security critical systems evaluation and assessment as well as to
the software testing community.

On top of the above technical security evaluations (i.e., the eval-
uation of the source code of the machines), works such as Volkamer
(2009) and Schmidt et al. (2010) focus on the definition of common
standards and methodologies for evaluation and certification for e-
voting systems. Some works on going with respect to development
of common standards along the CC Protection Profile. This provides
a basis for standardized evaluations with comparable results. Cur-
rently, there are two Protection Profiles, one for remote electronic
voting and one for the digital election pen(see in Volkamer, 2009).
The latter one has been used for a real system and the first one is
applied to the Polyas system (Reinhard and Jung, 2007). Schmidt
et al. (2010) also discuss an evaluation and certification approach
for Voting Service Providers (VSP), by combining the evaluation
of remote e-voting system and operational environment. The VSP
is required to provide a security concept in which it demonstrates
satisfaction of the security requirements defined in the legal regula-
tion. The authors suggested the incorporation of existing evaluation
methodologies to facilitate the evaluation and certification process.

9. Conclusions and future work

Electronic voting is about the behavior of all the voting compo-
nents (be they electronic, mechanic or human), and so assurance of
electronic elections requires one to investigate all these aspects in
an integrated way. A robust design means that a system continues
to function even when one or more components is compromised.
Robust designs are usually achieved by redundancy. Electoral sys-
tems are redundant: votes are stored electronically and on paper,
poll workers control the behavior of machines and the machines
limit in some way the operations poll workers can perform (e.g., by
logging their activities). However, a robust redundant architecture
requires one to clearly allocate responsibilities and priorities. This
can only be achieved by an integrated analysis of the voting scenar-
ios and by a clear allocation of the requirements for the different
“components” of an election system.

In this paper, we have shown how formal verification techniques
can be used to model and reason about the security of e-voting
systems. Our approach consists of formulating each individual com-
ponent of the voting system as a process instance in ASTRAL and the
specification and verification of critical security properties about
individual components and about the system as a whole. We  also
specified the attack scenarios that are reported by academic studies
on the security testing and analysis of such systems. Namely, along
the line of nominal behavior specification, we model and specify
attacks. We  extend the specifications that describe the nominal
behaviors of the system under analysis by augmenting them with
the attack model. Thereafter, we  attempted to analyze the extended
model against the same set of critical requirements as the nomi-
nal model should meet. The threat actions that we specified in the
extended system were those needed to model the specific scenarios
presented in McDaniel et al. (2007).

Although our approach provides certain benefits over existing
work in the area, it is in no way  a verification “silver bullet”. As
with any formal verification technique, it requires the use of for-
mal  languages, various analytic tools including a theorem-proving
system, and considerable skill in understanding the various infor-
mation sources as well as understanding various components of
the system. Our work is not a substitute for existing approaches
to the assessment and verification of specific components of the
voting system. Rather, it complements them by reasoning about
the interaction of “components” (human and technologies). This
is analogous to integration and unit testing, which are different in
scope, but both are necessary to ensure a system’s correctness. We
must also be clear that this research work does not consist of a novel
specification technique nor a novel voting system.

Additionally, this work allowed us to learn the operational
scenario for various e-voting components, the underlying commu-
nication among them, and the kinds of data they exchange during
the communication. Converting these concepts to a formal lan-
guage is very complex and demands a clear understanding of the
process, each component’s behavior, their combined behaviors, and
the properties/requirements, as well as the specification language
itself. In fact formalizing these using ASTRAL was relatively easy as
the language is closer to higher-level language. We  acknowledge,
however, that some issues remain open. One is the complexity of
some proofs, for which more powerful strategies or interactive sup-
port could be helpful. The other is modeling other kinds of attacks
with particular reference to those cutting across the structure of
the original requirements model. These make incremental or com-
positional verification challenging. Our paper does not provide a
solution to this problem, but it does provide further evidence that
the problem is significant and worthy of further research. How-
ever, this work demonstrates how formal methods can be used for
the specification and verification of e-voting systems in order to
guarantee the correctness of the system. The success of the next
generation of e-voting machines depends upon being able to capi-
talize on the lessons learned from different disciplines. The work we
have presented in this paper is one way in which we can get a bet-
ter understanding of the strengths and the weaknesses of existing
techniques and thus lay the foundations for engineering, design-
ing, implementing, as well as deploying a new generation of more
secure and robust technologies for polling stations.
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