
BINSPECT: Holistic Analysis and Detection of
Malicious Web Pages

Birhanu Eshete, Adolfo Villafiorita, and Komminist Weldemariam

Fondazione Bruno Kessler (FBK-IRST), Trento, Italy
{eshete,adolfo,sisai}@fbk.eu

?

Abstract. Malicious web pages are among the major security threats
on the Web. Most of the existing techniques for detecting malicious web
pages focus on specific attacks. Unfortunately, attacks are getting more
complex whereby attackers use blended techniques to evade existing
countermeasures. In this paper, we present a holistic and at the same
time lightweight approach, called BINSPECT, that leverages a combina-
tion of static analysis and minimalistic emulation to apply supervised
learning techniques in detecting malicious web pages pertinent to drive-
by-download, phishing, injection, and malware distribution by introduc-
ing new features that can effectively discriminate malicious and benign
web pages. Large scale experimental evaluation of BINSPECT achieved
above 97% accuracy with low false signals. Moreover, the performance
overhead of BINSPECT is in the range 3-5 seconds to analyze a single
web page, suggesting the effectiveness of our approach for real-life de-
ployment.

Keywords: malicious web page, static analysis, lightweight emulation,
machine learning

1 Introduction

The Web has become an indispensable global platform that glues together daily
communication, sharing, trading, collaboration, and service delivery. Web users
often store and manage critical information that attracts cybercriminals who
misuse the Web and the Internet to exploit vulnerabilities for illegitimate bene-
fits.

Malicious web pages, that exploit vulnerabilities and launch attacks for just
one time visit, take an alarmingly significant share of web-based attacks in recent
years [1–4]. When an unsuspecting victim visits a web page, an attacker might
have compromised the page under visit (or crafted it purposefully) and the out-
come of the visit could be stealing of critical credentials (e.g., credit card details)
to impersonate the victim, installation of a malware binary on the victim’s ma-
chine for future attacks, or even a complete takeover of the victim’s system to

? We would like to thank the Computer Security Group of UC Santa Barbara for
allowing us to submit and evaluate our test set with their tool, Wepawet.

remotely command and control it as a member of botnet [5–7]. In recent years,
not only is the prevalence of malicious web pages on the rise but the way in which
attackers trick victims to malicious web pages is also getting sophisticated [2]. It
has become a common encounter to get contaminated search results from search
engines on trendy terms, malicious links shared on social media, and legitimate
web pages injected with malicious scripts [3].

The thus-far proposed defenses against malicious web pages fall into two
major blocks, i.e., static analysis and dynamic analysis techniques. However, the
use of blacklists is still a common way to facilitate and enrich these techniques
by making use of heuristics and learning techniques.

Static analysis techniques, [5, 8–15], inspect web page artifacts without ren-
dering the page in a browser. The inspection usually involves quickly extract-
ing discriminative features from the URL string, host identity, HTML, and
JavaScript code.

The major assumption behind static analysis is that the statistical distri-
bution of URL tokens and host details of malicious URLs (e.g., spam URLs,
phishing pages) tend to differ from that of benign. The feature values of URL
lexical structure and host identity are encoded to train machine learning tech-
niques to build classifiers based on which unknown web pages are classified.

In static analysis, it is difficult to detect attacks that require rendering of
a page to take action. More precisely, when considering page source there is a
high risk of obfuscated content (e.g., JavaScript) and overlooking of malicious
JavaScript that exploits vulnerabilities of browser plugins. In addition, host iden-
tity details of fresh (benign) URLs, registered by registrars with low reputation,
are likely to be misclassified as malicious due to their low reputation scores. In ef-
fect, there is a high risk of false positives. On the other hand, false negatives may
arise as old and well-reputed registrars may host malicious web pages which have
escaped the static analysis effort. Another cause of false negatives are web pages
that use free hosting services or already compromised sites with benign-looking
URL and host information. For static anlaysis relying on lexical URL features,
an attentive attacker may evade these features to mislead detection techniques
by carefully crafting malicious URLs which look statistically indistinguishable
from the benign ones.

Dynamic analysis approaches, [11, 16–24], have also been shown to be effec-
tive in the analysis and detection of malicious web pages. Such techniques could
be deployed at a proxy-level (e.g., [19]) to intercept requests (responses), visit the
URL in a controlled environment (e.g., disposable virtual machine), analyze its
execution dynamics for hints of malicious activity (e.g., unusual process creation,
repeated redirection), and decide if it is safe to render the page in the browser.
Alternatively, client-side sandboxing of critical page content (e.g., JavaScript)
could be used (as in [17]) to log critical actions (e.g., invoking a plugin) and
match logs with known patterns of malicious activities or apply learning-based
techniques to model and classify malicious intentions.

While effective at uncovering daunting malicious web pages, dynamic analysis
approaches are resource intensive as they need to load and execute the page

under analysis and modern web pages are usually stuffed with rich client-side
code and content which take longer analysis time. Moreover, not all web pages
are likely to launch attacks upon visiting. There are web pages which demand
user interaction or wait for time(logic)-bomb to take action.

Blacklisting-based techniques maintain a list of known malicious URLs, IP ad-
dresses, and domain names collected by manual reporting, honeyclients, and cus-
tom analysis techniques. For example, Google Safe Browsing service [25]
maintains a blacklist against which it checks URL requests from browsers to
alert users if the requested URL happens to be in the blacklist. Another tool
powered by blacklisting is McAfee Site Advisor [26] which is pluggable to
Mozilla Firefox and Internet Explorer to rate safety of web pages and
search engine results prior to rendering in the browser.

Although lightweight to deploy and easy to use, blacklisting is effective only if
one can exhaustively patrol the Web to identify malicious web pages and timely
update the blacklist. In practice, to do so is infeasible due to: fresh web pages are
too new to be blacklisted even if they are malicious right from the outset, some
web pages may escape from the blacklisting due to “cloaking”, and the attackers
may frequently change where the malicious web pages are hosted. Consequently,
the URLs and IP addresses may also change accordingly [5], [16].

Heuristic-based techniques (e.g., [15]) build signatures of known attack pay-
loads to be used by antiviral systems or intrusion detection systems to scan a
web page and flag it as malicious if its heuristic pattern matches signatures in
the database. Unfortunately, such signatures are easily bypassed by attackers
(mainly through obfuscation) and the heuristics fail to detect novel attacks. In
addition, the rate at which the signature database of heuristic-based systems is
updated is way slower than the pace at which attackers overwhelm victims with
novel attacks, resulting in zero-day exploits.

In addition to the above-mentioned limitations, most approaches focus on one
prominent attack while attack techniques are getting more and more complex
whereby attackers use blended attack techniques by combining existing attack
techniques to evade existing countermeasures. More importantly, applying static
or dynamic analysis approaches in a complementary fashion is limited to cap-
turing partial snapshot of a malicious web page.

To this end, the ideal solution is to leverage static and dynamic analysis
to capture a comprehensive snapshot of a malicious web page and ensure that
the overhead cost of analyzing a web page is optimal. This can be done by
holistically characterizing and then analyzing, and detecting malicious web pages
to capture a comprehensive snapshot of malicious web pages while ensuring that
the analysis and detection remains lightweight in terms of its responsiveness and
resource consumption.

In this paper, we present the design, implementation, and experimental eval-
uation of a holistic and at the same time lightweight system, called BINSPECT,
that leverages a combination of static analysis and minimalistic emulation to
apply supervised learning techniques in detecting malicious web pages pertinent
to drive-by-download, phishing, injection, and malware distribution. BINSPECT

achieved detection accuracy above 97% with low false signals and an average
performance overhead of at most 5 seconds.

The contributions of this paper are the following:

– we developed a holistic and at the same time lightweight approach to analyze
and detect malicious web pages by leveraging static analysis and lightweight
emulation of web page rendering with low performance overhead.

– we introduced new features and enhanced existing ones so as to improve
their discriminative power in the characterization of malicious and benign
web pages.

– we designed, implemented, and evaluated our approach over a large dataset
of malicious and benign web pages and demonstrated that our approach is
effective in practice.

The paper is structured as follows. In Section 2, we present a real motivational
example pertinent to malicious web pages. Section 3 covers details of holistic
characterization of malicious web pages focusing on features we introduce as
new and enhance from existing ones. In Section 4, a high-level description of our
approach is presented. Details of the experimental setup and evaluation of our
approach are discussed in Section 5. Section 6 positions our approach relative to
prior work. Finally, Section 7 concludes the paper.

2 Motivational Example on Malicious Web Pages

In this section, we provide illustrations of real threats posed by malicious web
pages.

A malicious web page is a web page that exploits one or more vulnerabili-
ties of the browsing environment to launch one or more attacks when visited by
an unsuspecting victim. Usually, malicious web pages perform attacks in four
ways: obfuscation (e.g., obfuscated malicious JavaScript), setting up malicious
web pages (e.g., using HTTP or JavaScript redirection), victim luring (e.g., so-
cial engineering tricks), and victim takeover (e.g., installing malware). To give
context to what malicious web pages perform in practice, in what follows we
describe a real malicious website attack that successfully compromised a high-
profile website few months ago [27].

On Sept. 26, 2011, when users visited http://mysql.com, the file at
http://mysql.com/common/js/s_code_remote.js?ver=20091011 was
infected by a heavily obfuscated malicious JavaScript code (the de-obfuscated
code is shown in Listing 1.1). The malicious code embeds an iframe to http://
falosfax.in/info/in.cgi?5&ab_iframe=1&ab_badtraffic=1&antibot_
hash=1255098964&ur=1&HTTP_REFERER=http://mysql.com/ malicious
domain and then throws an HTTP 302 redirection to load the http://
truruhfhqnviaosdpruejeslsuy.cx.cc/main.php exploit domain. This
exploit domain hosts the BlackHole exploit pack which, upon discovering a
vulnerable browsing environment (Java plugin vulnerability in this case), leads

the browser to download a malware binary to the user’s machine. All this hap-
pens without the user’s knowledge. In this attack, the actual payload is an ex-
ploitation of a vulnerability of the Java runtime on the browser (Internet
Explorer 6) to download and execute malware that steals and sends back to
the attacker FTP client passwords from the user’s machine. Such an attack is
called drive-by-download [28].

if (document.getElementsByTagName(’body’)[0]){
iframer();
}else{
document.write("<iframe src=’http://falosfax.in/info/in.

cgi?5’width=’10’height=’10’style=’visibility:hidden;
position:absolute;left:0;top:0;’></iframe>");

}
function iframer(){
var f=document.createElement(’iframe’);
f.setAttribute(’src’, ’http://falosfax.in/info/in.cgi?5’

);
f.style.visibility=’hidden’;
f.style.position=’absolute’;
f.style.left=’0’;
f.style.top=’0’;
f.setAttribute(’width’, ’10’);
f.setAttribute(’height’, ’10’);
document.getElementsByTagName(’body’)[0].appendChild(f);
}

Listing 1.1. De-obfuscated JavaScript exploit code of the attack [27]

Discussion. The attack described before sounds specific to a compromised
legitimate website, i.e., http://mysql.com. However, there are a couple of
interesting aspects in the attack chain. First, the attacker has to target a high-
profile website with solid user-base and daily traffic. Secondly, she exploited a
vulnerable spot (to inject malicious code) and abused HTTP redirection to lead
the browser to where the actual exploit is hosted. Then after, she exploited a
vulnerability of the browser extension to trick the browser into downloading a
malware binary. Even if the target in this attack is the Java plugin, in princi-
ple this could have been any one of the vulnerable browser components or its
extensions (e.g., PDF Renderer, Flash Player) since the malware usually runs
within the privilege of the current user. In theory, the downloaded binary could
be of a scope ranging from key-logging to steal and submit passwords and credit
card details to a malware that compromises the victim’s machine to make it
member of a botnet for later use in criminal activities (e.g., spam campaigns).
Similarly, the vulnerability of the browsing environment could be of various risks
depending on the client operating system, browser type and version, and browser
extensions and configuration. An essential part of the attack chain is fingerprint-

ing of the environment which provides clues to vulnerable spots based on which
actual exploits are invoked.

3 Holistic Characterization of Malicious Web Pages

Given an unknown web page, BINSPECT analyses and classifies the web page as
malicious or benign. To do so, BINSPECT extracts features from the page under
inspection and applies a number of models that evaluate the features extracted
from the page. The models are derived from training on a known mix of benign
and malicious web pages. BINSPECT considers malicious web pages that launch
drive-by-download attack, phishing, injection, and malware delivery attack.

The features on which BINSPECT bases its statistical characterization of
web pages leverages three classes of features, i.e., URL features, Page-Source
features (HTML and JavaScript), and Social-Reputation features. The underly-
ing assumption of using these features, both in prior work and in our work, is
based on the discriminative power of the statistical distribution of benign and
malicious web pages. In what follows, we describe the 39 features we extract and
inspect (in particular the new features we introduced) which are the basis for the
construction of the models we use to classify malicious web pages in BINSPECT.

3.1 URL Features

In BINSPECT, we rely on 11 URL features among which 8 features are reused
from prior work ([5], [10]) and we introduce 3 new features. The URL features
we reuse are : length of URL string, length of host name, number of dots (‘.’),
number of hyphens(‘-’), number of underscores (‘ ’), number of forward slashes
(‘/’), number of equal signs (‘=’), and availability of the client and/or server
words in the URL. After an analysis of the F-Score measure of candidate URL
features, we found the 3 new features to be of significant relevance as a high F-
score value of a feature indicates a higher potential of the feature to split benign
and malicious web pages. These features are: length of the path in the URL,
length of the query in the URL, and length of the file-path in the URL. In
Section 5, we show the experimental verification as to the effectiveness of these
new URL features in practice.

3.2 Page-Source Features

While most of prior work based on static analysis extracts HTML and JavaScript
features statically, we use an emulated browser to parse and render the HTML
and at the same time execute JavaScript that needs to be executed on page-
load so as to capture what is manifested by JavaScript code. In this sense,
the granularity of most HTML features used in our work is high because the
JavaScript that is executed on page-load feeds more features to our feature
extraction engine, particularly enriching the HTML features. Another reason to
use an emulated browser is to capture the side-effects of obfuscated JavaScript

code that is usually executed when the page loads because malicious JavaScript
is often ‘shipped’ with a strong shell of obfuscation.

In total, we extract 25 Page-Source features. These are : document length,
number of words, number of lines, number of blank spaces, average length of
words, number of links, number of same-origin links, number of different-origin
links, number of external JavaScript files, number of hidden elements, number
of iframes, and number of suspicious JavaScript functions (along with count of
specifically suspicious functions : subString(), fromCharCode(), eval(),
setTimeout(), document.write(), createElement(), unescape(), escape(),
link(), exec(), and search()). It is worth-noting that although the Page-
Source features we use are mostly from prior work, we also introduce new (e.g.,
exec() function) and enhance existing features in order to ensure a more fine-
grained characterization of web pages(e.g., apart from extracting the total num-
ber of links on the page, we split links to: number of same-origin links,
number of different-origin links, and number of external JavaScript
files).

3.3 Social-Reputation Features

The ubiquitous effect of social network platforms, such as Facebook, Twitter, and
Google Plus, is continuously changing the landscape of online social interaction
and reputation building about what is shared online. Recently, search engines
are partly relying on social network reputation of URLs to enrich their ranking
algorithms because of the involvement of people in rating the URLs [29]. To eval-
uate if these social-reputation indicators can be used in characterizing malicious
and benign URLs, we examined the statistical significance of URL-Sharing on
Facebook and Twitter as these platforms keep track of the number of times a
URL is shared publicly.

A preliminary experimental observation of these features suggests that for
benign web pages, the share-count is usually higher as users are confident enough
to share a URL that they know as harmless or they re-share after seeing that
their friends have done so. On the contrary, the share-count for malicious URLs
suggests that, either the URLs are not circulated across the social network or
users refrain from sharing a URL they know less about.

Figure 1 shows a statistical separation in distribution of public share-counts
for benign and malicious URLs on Twitter over a part of the training set we used
for this work. The three new features we introduce are the Facebook Share
Count, Twitter Share Count, and Google Plus Share Count which tell
the number of times a URL is publicly shared on Facebook, Twitter, and Google
Plus. An attentive reader may argue that these features may contribute to false
negatives in the case where a malicious user publicly shares a malicious URL on
a social network. However, as time passes by, the tendency that a malicious URL
is circulated across the social network will reduce or the share-count of the URL
does not increase because of built-in URL analysis and detection techniques in
the social network platform.

!"#!!$%

&'($)*

!"#$%" %

!"!&&# %

!"'(%' %

%)!#$$ %

%)"%'" '

%&*(%* '

%&%)'& '

%&'&"% '

%&''%" '

%($&%" '

%(#&*) '

%#$&)" '

%##)#! '

%#*&%* '

%#*%"* '

%#%)(* "

%#''!% "

%#'"&" "

%*%*'' "

%*'%*) "

%!*)$% "

%!%*'# "

%%$%## "

%%&!'# "

%%##)* "

%%'"!& "

%'$*$! "

%'((%' "

%'*!&& "

%''$%! "

%"&'"# "

%"('%& "

%"##%("

%"#%!' "

%"%'#* "

%""!#& "

'$&$*# "

'$*&#$ "

'$!$&' "

'))*$$ "

')&&() "

')((() "

')(#)$ "

')#"$$ "

+
,
-
.
/
++
+,
+-
+.
+/
0+
0,
0-
0.
0/
,+
,,
,-
,.
,/
*+
*,
*-
*.
*/
-+
-,
--
-.
-/
1+
1,
1-
1.
1/
.+
.,
.-
..
./
2+
2,
2-
2.
2/
/+
/,
/-
/.
//

+
.-333+
+-3333+
00-333+
,33333+
,.-333+
*-3333+
-0-333+
133333+
1.-333+
.-3333+
20-333+
/33333+
/.-333+
+3-3333+
++0-333+
+033333+
+0.-333+
+,-3333+
+*0-333+
+-33333+
+-.-333+
+1-3333+
+.0-333+
+233333+

4'5#6#789

:$;#(;

<='%$>?78;!)@#9!%#A8!#7;)B"#!!$%

4'5#6#789

:$;#(;

CDE9

<
='
%$
>?
78
;!

Fig. 1. Distribution of the top 100 Twitter share-counts for benign and malicious URLs
on the training set.

4 BINSPECT System Overview

In this section, we give an overview of the implementation details of BINSPECT.
In a nutshell, BINSPECT has three major components: feature extraction

and labeling, multi-model training, and classification. Figure 2 illustrates these
three major architectural blocks of BINSPECT. In the following, we provide a
high-level explanation of these major components of BINSPECT.

Feature Extraction and Labeling: As shown in Figure 2, we use a dataset
of benign and malicious samples (described in Section 5) to label the samples
and extract the necessary features which characterize malicious and benign web
pages. The URL feature extraction is implemented based on the URL class
of Java and the features are collected by lexical scanning of the URL string.
The Page-Source features are collected by visiting the page via a lightweight
emulated browser so as to capture the details of what is rendered (HTML)
and executed (JavaScript) using a feature extraction engine we implemented in
Java. We customized the HTMLUnit [30] headless browser for the emulation
and used it with two User-Agent personalities (Internet Explorer 6 and Mozilla
Firefox 3). For each URL we visit for feature extraction, a fresh instance of the
emulated browser is created to ensure a unique session for each URL. We used
the Facebook Graph API [31], the Twitter URLs API [32], and a custom1 script
on Google Plus to automatically extract the Social-Reputation features. Features
extracted from the each web page is represented as a feature vector of the form

[v
(i)
1 , v

(i)
2 , ..., v

(i)
n−1, v

(i)
n , class(i)] where the v

(i)
k ’s are feature values (k = 1, .., n),

1 There was not a standard API for Google Plus at the time of this experiment.

Unknown
URL

Weighted Confidence
Majority Vote

Malicious

Feature Extraction

Page-
Source
Feature

Extraction

Social-
Popularity
Feature

Extraction

Multi-Model Training

.
Classification

.

�������	���
�
��
����

Benign

URL Feature
Extraction

 features

Emulated BrowserSocial
Network

Internet

learning
algorithms

models

 features features

Benign Malicious

Fig. 2. BINSPECT System Overview

n is the number of features, and class(i) is the class label of URL(i) which is
either benign or malicious.

Multi-Model Training: Using the extracted features, we train 7 supervised
learning algorithms namely Decision Trees (J48, Random Tree, and Random
Forest), Bayesian Classifiers (Naive Bayes and Bayes Net), Support Vector Ma-
chines, and Logistic Regression Classifier. At the end of the training, one model
for each classifier is maintained as shown in the second block of Figure 2.

Weighted-Confidence Majority Vote Classification: For classification
of an unknown web page using the learned models, we use the Weighted-Confidence
Majority Vote algorithm that we customized (see Algorithm 1) to decide the class
of the web page. To flag a page as either malicious or benign, instead of just
taking the count of votes of the individual models, the vote count of the class
label is multiplied with the sum of confidences with which the votes are made by
the individual models (lines 17, 20, and 23 in Algorithm 1). The use of weighted-
confidence majority vote is twofold. First, it minimizes the bias of relying on a
single model as in most prior work. Secondly, it allows comparisons of different
models and makes the overall result more difficult to manipulation by attackers.

Algorithm 1 Confidence-Weighted Majority Vote Classification

1: Confbenign ← 0
2: Confmalicious ← 0
3: V otebenign ← 0
4: V otemalicious ← 0
5: for i = 1→ numModels do
6: features← extractFeatures(URL)
7: V otei, Confi ← getPredictionWithConfidence(features,Modeli)
8: if V otei == benign then
9: V otebenign ← V otebenign + 1

10: Confbenign ← Confbenign + Confi
11: end if
12: if V otei == malicious then
13: V otemalicious ← V otemalicious + 1
14: Confmalicious ← Confmalicious + Confi
15: end if
16: end for
17: if (V otemalicious × Confmalicious) > (V otebenign × Confbenign) then
18: Prediction← malicious
19: end if
20: if (V otemalicious × Confmalicious) < (V otebenign × Confbenign) then
21: Prediction← benign
22: end if
23: if (V otemalicious × Confmalicious) == (V otebenign × Confbenign) then
24: Prediction← suspicious
25: end if

5 Experimental Setup and Evaluation

In this section, we present the experimental setup and evaluation of BINSPECT.
First, we describe the data collection, dataset construction, and the experi-

mental procedure. Then, we evaluate BINSPECT from from the standpoint of its
accuracy, significance of the features we introduced in Section 3, its performance
overhead, and its immunity to possible evasion.

5.1 Dataset and Experimental Setup

Data Source and Dataset:We collected samples from multiple sources for both
malicious and benign web pages and divided the dataset into a training and a
testing set. The breakdown of the dataset is shown in Table 1. For the malicious
dataset, we collected 71,919 URLs from the malware and phishing blacklist of
Google [25], the Phishtank database of collaboratively verified phishing pages
[33], and the malware and injection attack URL list of MalwareURL [34]. The
dataset of 414,000 benign URLs is also drawn from three popular sources. These
are the Alexa Top sites [35], the Yahoo random URL generation service [36],
and the DMOZ directory [37].

Table 1. Dataset for training and testing

Purpose Benign Malicious Total

Training 300, 000 50, 000 350, 000

Testing 114, 465 21, 919 136, 384

Experimental Protocol: Using the training set, we extracted 39 features
of which 3 are Social-Reputation features, 11 are URL features, and the remain-
ing 25 are Page-Source features. When extracting the Page-Source features, we
configured the emulated browser to manifest two different browser personalities
(in this case Internet Explorer 6 and Mozilla Firefox 3) and we used only the core
components of the browser, i.e., Necko HTML Engine, Rhino JavaScript Engine,
and the default CSS Parser in order to make the analysis lightweight. We used
the Weka [38] machine learning toolbox to train the 7 standard classifiers with
10-fold cross validation.

5.2 Evaluation Results and Insights

Classification Accuracy
To decide the best combination of classifiers in BINSPECT, we evaluated the 7
classifiers in terms of accuracy, False Positive Rate (FPR), and False Negative
Rate (FNR). Figures 3, 4, 5, and 6 show performance evaluation of the classifiers
over the training set across the four classes of features, i.e., all features, URL
features, Page-Source features, and Social-Reputation features respectively. As
shown in Figure 3, training on all the features suggests that tree-based classi-
fiers outperformed the other classifiers. In particular, the Random Tree classifier
achieved 100% accuracy, 0% FPR, and 0% FNR.

!"#$$%&'($

)#*'+,-./

!""#$%&'()%*

0!!1(#!2 3)4 354

6/7 89..: 89;<. 89;7=

4#>?@AB('' ;9888 89888 89888

4#>?@A3@('$C 89... 898;< 898;<

89:8- 8987, 898-8

89.// 89,7. 89,.<

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.<, 89<<- 8978,

+,'-#./0#$%&'()%*#12"3

0!!1(#!2 3)4 354

6/7 89.7= 89:<7 89:.;

4#>?@AB('' 89..; 89,:, 89,/8

4#>?@A3@('$C 89..; 89,8/ 89,;;

89.;/ 89<., 897;<

89.;- 89,7= 89,.;

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.-7 897/7 897<<

+,'-#4&5%6*1()7%#$%&'()%*#12"3

0!!1(#!2 3)4 354

6/7 89.<. 89=/. 89=-7

4#>?@AB('' 89... 898;< 898;<

4#>?@A3@('$C 89..7 898:. 89:-8

89,:; 898.. 898</

8977, 89/;7 89/,7

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.-- 89.-- ;9888

+,'-#*17,&"6)%4('&',12#$%&'()%*#12"3

0!!1(#!2 3)4 354

6/7 89.-- 89.-- ;9888

4#>?@AB('' 89.-- 89.-- ;9888

4#>?@A3@('$C 89.-- 89.-- ;9888

89,8: 898,7 ;9888

89.-- 89.-- ;9888

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.-- 89.-- ;9888

+,'-1('#2%+#$%&'()%*

5#%H'I#2'$

I#2'$5'C

5#%H'I#2'$

I#2'$5'C

5#%H'I#2'$

I#2'$5'C

5#%H'I#2'$

I#2'$5'C

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

Fig. 3. With all features.

!"#$$%&'($

)#*'+,-./

!""#$%&'()%*

0!!1(#!2 3)4 354

6/7 89..: 89;<. 89;7=

4#>?@AB('' ;9888 89888 89888

4#>?@A3@('$C 89... 898;< 898;<

89:8- 8987, 898-8

89.// 89,7. 89,.<

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.<, 89<<- 8978,

+,'-#./0#$%&'()%*#12"3

0!!1(#!2 3)4 354

6/7 89.7= 89:<7 89:.;

4#>?@AB('' 89..; 89,:, 89,/8

4#>?@A3@('$C 89..; 89,8/ 89,;;

89.;/ 89<., 897;<

89.;- 89,7= 89,.;

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.-7 897/7 897<<

+,'-#4&5%6*1()7%#$%&'()%*#12"3

0!!1(#!2 3)4 354

6/7 89.<. 89=/. 89=-7

4#>?@AB('' 89... 898;< 898;<

4#>?@A3@('$C 89..7 898:. 89:-8

89,:; 898.. 898</

8977, 89/;7 89/,7

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.-- 89.-- ;9888

+,'-#*17,&"6)%4('&',12#$%&'()%*#12"3

0!!1(#!2 3)4 354

6/7 89.-- 89.-- ;9888

4#>?@AB('' 89.-- 89.-- ;9888

4#>?@A3@('$C 89.-- 89.-- ;9888

89,8: 898,7 ;9888

89.-- 89.-- ;9888

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.-- 89.-- ;9888

+,'-1('#2%+#$%&'()%*

5#%H'I#2'$

I#2'$5'C

5#%H'I#2'$

I#2'$5'C

5#%H'I#2'$

I#2'$5'C

5#%H'I#2'$

I#2'$5'C

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

Fig. 4. With URL features.

We also evaluated how the classifiers perform on individual feature classes
and the results suggest that some classifiers perform way better than the union
of the features. For instance, accuracy of Naive Bayes increased by 30% (Figure 4
(60%) vs. Figure 3 (30%)) on URL features probably because the URL features

!"#$$%&'($

)#*'+,-./

!""#$%&'()%*

0!!1(#!2 3)4 354

6/7 89..: 89;<. 89;7=

4#>?@AB('' ;9888 89888 89888

4#>?@A3@('$C 89... 898;< 898;<

89:8- 8987, 898-8

89.// 89,7. 89,.<

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.<, 89<<- 8978,

+,'-#./0#$%&'()%*#12"3

0!!1(#!2 3)4 354

6/7 89.7= 89:<7 89:.;

4#>?@AB('' 89..; 89,:, 89,/8

4#>?@A3@('$C 89..; 89,8/ 89,;;

89.;/ 89<., 897;<

89.;- 89,7= 89,.;

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.-7 897/7 897<<

+,'-#4&5%6*1()7%#$%&'()%*#12"3

0!!1(#!2 3)4 354

6/7 89.<. 89=/. 89=-7

4#>?@AB('' 89... 898;< 898;<

4#>?@A3@('$C 89..7 898:. 89:-8

89,:; 898.. 898</

8977, 89/;7 89/,7

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.-- 89.-- ;9888

+,'-#*17,&"6)%4('&',12#$%&'()%*#12"3

0!!1(#!2 3)4 354

6/7 89.-- 89.-- ;9888

4#>?@AB('' 89.-- 89.-- ;9888

4#>?@A3@('$C 89.-- 89.-- ;9888

89,8: 898,7 ;9888

89.-- 89.-- ;9888

DEF 89.-- 89.-- ;9888

G@*%$C%! 89.-- 89.-- ;9888

+,'-1('#2%+#$%&'()%*

5#%H'I#2'$

I#2'$5'C

5#%H'I#2'$

I#2'$5'C

5#%H'I#2'$

I#2'$5'C

5#%H'I#2'$

I#2'$5'C

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

6
/
7

4
#
>
?
@
A
B
('
'

4
#
>
?
@
A
3
@
('
$
C

5
#
%H
'
I
#
2
'
$

I
#
2
'
$
5
'
C

D
E
F

G
@
*
%$
C%
!

898

89=

;98

0!!1(#!2

3)4

354

)
'
(&
@
(A
#
>
!
'

Fig. 5. With Page-Source features.

!"#$$%&'($

)#*'+,-./

0!!1(#!2 3)4 354

678 9:.8. 9:,-9 9:,-8

4#;<=>?('' @:999 9:999 9:999

4#;<=>3=('$A 9:... 9:9@B 9:9@B

9:,8, 9:@,, 9:@99

9:.@C 9:C8@ 9:C.@

DEF 9:.-- 9:.-- @:999

G=*%$A%! 9:.-. 9:87/ 9:8B7

!"#$%&'!%()*%+',#-.'/

011-.,12 34) 35)

678 9:.8. 9:,/7 9:,-,

4#;<=>?('' @:999 9:999 9:999

4#;<=>3=('$A 9:... 9:9@7 9:9@7

9:7-/ 9:@87 9:@B@

9:.CC 9:C/9 9:C-9

DEF 9:.-- 9:.-- @:999

G=*%$A%! 9:.B@ 9:B.8 9:8,/

H%AI+;'H+J#*'K$=1(!'+&'#A1('$

0!!1(#!2 3)4 354

678 9:.8. 9:,-9 9:,-8

4#;<=>?('' @:999 9:999 9:999

4#;<=>3=('$A 9:... 9:9@7 9:9@7

9:,8@ 9:@@. 9:9.B

9:.98 9:C8@ 9:C.@

DEF 9:.-- 9:.-- @:999

G=*%$A%! 9:.-. 9:87, 9:8B@

H%AI+;'H+$=!%#"K('J1A#A%=;+&'#A1('$

0!!1(#!2 3)4 354

678 9:.8. 9:,-/ 9:,B7

4#;<=>?('' @:999 9:999 9:999

4#;<=>3=('$A 9:... 9:9@7 9:9@7

9:,-- 9:9B/ 9:9/@

9:.CC 9:C/C 9:C-,

5#%L'M#2'$

M#2'$5'A

5#%L'M#2'$

M#2'$5'A

5#%L'M#2'$

M#2'$5'A

5#%L'M#2'$

M#2'$5'A

6
7
8

4
#
;
<
=
>
?
('
'

4
#
;
<
=
>
3
=
('
$
A

5
#
%L
'
M
#
2
'
$

M
#
2
'
$
5
'
A

D
E
F

G
=
*
%$
A%
!

9:9

9:/

@:9

0!!1(#!2

3)4

354

)
'
(&
=
(>
#
;
!
'

6
7
8

4
#
;
<
=
>
?
('
'

4
#
;
<
=
>
3
=
('
$
A

5
#
%L
'
M
#
2
'
$

M
#
2
'
$
5
'
A

D
E
F

G
=
*
%$
A%
!

9:9

9:/

@:9

0!!1(#!2

3)4

354

)
'
(&
=
(>
#
;
!
'

6
7
8

4
#
;
<
=
>
?
('
'

4
#
;
<
=
>
3
=
('
$
A

5
#
%L
'
M
#
2
'
$

M
#
2
'
$
5
'
A

D
E
F

G
=
*
%$
A%
!

9:9

9:/

@:9

0!!1(#!2

3)4

354

)
'
(&
=
(>
#
;
!
'

Fig. 6. With Social-Reputation fea-
tures.

have a statistical distribution that fits into the high degree of independence
assumed in the algorithm. Another interesting observation from Figure 6 is the
high FNR of all the classifiers on social-reputation features which is attributed
to the fact that malicious URLs which have higher share-count are likely to be
misclassified as benign, suggesting that it is more effective to combine social-
reputation features with other features to increase their predictive power. In
general, the overall classification performance is better on the union of all the
features than the individual feature classes with the exception of Naive Bayes,
which did not perform well in most cases (see Figures 3, 5, and 6).

For testing, we used all the classifiers except Naive Bayes due to its poor
performance on the training set. Table 2 shows the overall classification accuracy
of BINSPECT over a testing set shown in Table 1. We measured the classification
accuracy as the ratio of correct classifications to the total size of the testing set.
We submitted the same testing set to Wepawet [39] to compare BINSPECT with
a publicly deployed analysis and detection service. As can be seen from Table
2, BINSPECT correctly classified 97.81% of the test set with a FPR of 0.189
and FNR of 0.011. On the other hand, Wepawet achieved a lower accuracy of
61.62% on the same testing set. The only speculation behind the low performance
of Wepawet in our opinion is the difference in the class of features we use in
BINSPECT which span URL, HTML, JavaScript, and social reputation scores
while Wepawet uses emulation to dynamically analyze web pages. The high
accuracy of BINSPECT and its very low FNR on the testing set is an indication
that our approach is effective at analyzing and detecting malicious web pages in
a holistic manner with low performance overhead while covering malicious web
pages that launch drive-by-download, phishing, injection, and malware delivery
attacks.

Significance of New Features
To verify whether the features we introduced are of predictive importance in
enhancing the effectiveness of analysis and detection of malicious web pages, we
compared the classification accuracy, FPR, and FNR of the classifiers with and
without our newly introduced (enhanced) features on the training set. As shown
in Table 4, the new features, particularly the new URL features, improved the
overall performance of 5 of the 7 classifiers (J48, Random Forest, Naive Bayes,
Bayes Net, and Logistic Regression) shown with ↑ for accuracy and with ↓ for

Table 2. Performance of BINSPECT in comparison to a public malicious web page
analysis and detection service on the testing set.

Measure BINSPECT Wepawet [39]

Classification Accuracy 97.81% 61.62%

False Positive Rate 0.189 0.983

False Negative Rate 0.011 0.073

FPR and FNR. The new Page-Source features improved the overall performance
of only 2 classifiers (Random Forest and Logistic Regression). Social-Reputation
features have also improved the overall classification accuracy of Random Forest,
Bayes Net, and Logistic Regression classifiers. Not surprisingly, the performance
of Naive Bayes has not improved much with the new features as its overall
performance is also very low.

In addition to the individual contribution of the new features, we also mea-
sured the overall improvement in accuracy of the classifiers as a result of the
new features as shown in Table 3. The new features improved the accuracy of 4
of the 7 classifiers with improvements in the range 0.21% to 3.08%. Among the
remaining 3 classifiers, on 2 (Random Forest and SVM), the new features seem
to have no contribution on accuracy. The Random Tree classifier is an excep-
tion in this case as its accuracy was 100% even without the new features. Out
of curiosity, we measured its accuracy with the new features and it remained
the same, which most probably implies that this is the best classifier given the
feature set and the dataset we used for training.

Table 3. Overall Contribution of new features on the accuracy of classifiers.

Classifier Without new (%) With new(%) Change(%)

J48 Decision Tree 98.97 99.27 ↑ 0.30

Random Tree 100.0 100.0 −
Random Forest 99.94 99.94 −
Naive Bayes 28.16 30.62 ↑ 2.46

Bayes Net 91.28 94.36 ↑ 3.08

SVM 96.62 96.62 −
Logistic Regression 96.94 97.15 ↑ 0.21

Performance Overhead
The experimental infrastructure we used is an Intel dual-core 2.66GHz CPU
and 64-bit MacOSX operating system with 8GB of memory. Under this com-
putational resource, the results show that the average time it takes to train a
classifier is only 1.51 seconds on the training set. Moreover, we also estimated
the average time it takes to analyze and classify one web page on the testing
set. BINSPECT, on average, took between 3 to 5 seconds (due to varying system

Table 4. Detailed performance analysis of BINSPECT classifiers with and without new
features on the training set.

Classifier Accuracy(%) False Positive Rate False Negative Rate

Without new features

J48 Decision Tree 98.97 0.260 0.268

Random Tree 100.00 0.000 0.000

Random Forest 99.94 0.017 0.017

Naive Bayes 28.16 0.122 0.1

Bayes Net 91.28 0.381 0.391

Support Vector Machine 96.62 0.966 1.000

Logistic Regression 96.94 0.845 0.874

With new URL features

J48 Decision Tree 98.98(↑) 0.254(↓) 0.262(↓)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 46.45(↑) 0.184(↑) 0.171(↑)
Bayes Net 93.32(↑) 0.350(↓) 0.360(↓)
Support Vector Machine 96.62 0.966 1.000(↑)
Logistic Regression 97.05(↑) 0.798(↓) 0.825(↓)
With new Page-Source features

J48 Decision Tree 98.93(↓) 0.260 0.268 ↑)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 28.08(↓) 0.119(↑) 0.095(↓)
Bayes Net 90.85(↓) 0.381(↓) 0.391(↓)
Support Vector Machine 96.62 0.966 1.000

Logistic Regression 96.96(↑) 0.0842(↓) 0.871(↓)
With new Social-Reputation features

J48 Decision Tree 98.99(↑) 0.265(↑) 0.274(↑)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 26.69(↓) 0.075(↓) 0.051(↓)
Bayes Net 93.29(↑) 0.353(↓) 0.362(↓)
Support Vector Machine 96.62 0.966 1.000

Logistic Regression 97.06(↑) 0.806(↓) 0.834(↓)

load) to analyze and detect a single page, which is an acceptable overhead given
the fact that part of the analysis requires rendering the page in an emulated
browser. Unfortunately, we were not able to make comparison between the per-
formance overhead of BINSPECT and Wepawet due to the long delay it took
to get back the results from Wepawet server which uses queueing mechanism to
process batch requests for analysis.

Immunity to Evasion
Given the holistic nature of our approach, we claim that BINSPECT is not easily
evadable. However, by closely inspecting the features we use, there are a few
things an attentive attacker has to do to try evading our analysis and detection
technique. One method an attacker might use is to craft a benign-looking URL so
as to imitate lexical aspects of benign URLs, which makes the URL features less
useful in discriminating benign URLs from malicious ones. Another likelihood
of evasion is for the attacker to use highly obfuscated client-side code (e.g.,
JavaScript). In such a case, BINSPECT is likely to be partly tricked because of
the low consideration of obfuscated content in our approach. With regards to the
Social-Reputation features, the only risk is the inevitable circumstance that the
attacker might lure users on social networks to publicly share a link to a malicious
URL in order to collect reputation scores that could mislead BINSPECT. Even
in this case, the luring would not last long because users stop sharing the link
or the built-in URL scanning facility of the social network platform discovers
the maliciousness of the URL. In general, it requires a great deal of effort from
the attacker’s side to completely bypass BINSPECT as it is quite difficult for the
attacker to take control of the three complementary classes of features used in
our approach and due to the nature of the classification that relies on weighted-
confidence of each classifier.

6 Related Work

In this section, we comparatively describe related work from the standpoint of
attacks considered, features used, analysis technique(s) applied, and effectiveness
of detecting malicious web pages.

Canali et al. [5] proposed Prophiler, a purely static pre-filtering technique
that deems web pages that launch drive-by-download attacks as likely malicious
or likely benign. Prophiler achieved a very low false positive rate over a large
testing set of URLS utilizing a total of 78 features composed of URL, host details,
HTML, and JavaScript features. In BINSPECT , we apply static analysis and a
lightweight dynamic analysis to deem a web page as benign or malicious. Unlike
Prophiler where only the best classifiers during training are used for testing,
BINSPECT uses confidence-weighted majority vote for classification. Except the
new features we introduced here, all the other features used in BINSPECT are
also used by Prophiler, with additional features. In BINSPECT, the number of
features are half (39 versus 79) the number of features used in Prophiler.

Cova et al. [39] built Wepawet, an emulation-based dynamic analysis and
detection framework for malicious content (mainly malicious JavaScript and

malware). It is based on anomaly detection and the analysis and detection is
available as a public service. Wepawet is reported by the authors to have a low
false negative rate, particularly for drive-by-download web pages. BINSPECT,
however, is a learning-based approach using mostly static features with a mini-
malistic emulation support.

Ma et al. [10] proposed a purely static analysis based on URL lexical features
and host details and applied supervised learning and online learning techniques
to achieve about 99% accuracy with a very low false positive rate. However,
BINSPECT differs from their approach by the fact that they use URL and host-
based information only and the focus is to quickly classify URLs without further
analysis of the page content and the execution dynamics in a browser. In our
case, we reuse most of the URL features used by them in a statistical manner
than lexical (presence/absence). More importantly, we use an emulated browser
to visit and render the page and execute any client-side code up on page load.

Dewald et al. [17] proposed ADSandbox, a client-side JavaScript sandboxing
and signature-based, analysis technique that executes JavaScript embedded in
a page within an isolated environment and log every critical action to detect
malicious web pages. ADSandbox achieved a false positive close to zero but at a
relatively high performance overhead. BINSPECT, however, is a learning-based
approach that is not limited to web pages that host malicious JavaScript but
includes also phishing pages, malware delivery pages, and pages that initiate
injection attacks.

Compared to most prior work, BINSPECT characterizes malicious web pages
spanning four classes of attacks (drive-by-download, phishing, malware-delivery,
and injection) to build a lightweight detection system that relies on only 39
features of URL string, HTML, JavaScript, and Social-Reputation of URLs.

7 Conclusion

Existing techniques for detecting malicious web pages are quite effective at com-
bating specific attack types. However, they are limited to a partial snapshot of
a malicious payload which limits their ability to cope up with the ever-changing
and complex threats posed by malicious web pages. In this paper, we presented
BINSPECT, a holistic analysis and detection approach for defending users against
malicious web pages by leveraging static analysis and lightweight emulation
based on machine learning techniques. We have shown through a large scale
evaluation that BINSPECT is quite effective at precisely detecting malicious web
pages with very low false signals. Moreover, the new features we introduced in
this work are relevant enough in improving the overall performance of the anal-
ysis and detection of malicious web pages. In terms of performance overhead,
our experiments suggest that BINSPECT incurs acceptable overhead cost to an-
alyze web pages in a realistic scenario due to relatively few and effective features
reused from prior work and the newly introduced features.

One limitation of BINSPECT is lack of analysis of obfuscated JavaScript and
emulation of the browser with plugins. In the future, we would like to incremen-

tally improve BINSPECT by introducing these missing analysis steps. Another
room to improve BINSPECT is to further investigate additional features from
social networks to characterize malicious web pages from the social perspective.
We would also like to make BINSPECT an evolution-aware analysis and detec-
tion framework that takes into account the evolution of features and tunes its
models accordingly by applying evolutionary techniques.

References

1. Symantec: Symantec report on attack kits and malicious websites.
http://symantec.com/content/en/us/enterprise/other_resources/
b-symantec_report_on_attack_kits_and_malicious_websites_
21169171_WP.en-us.pdf (July 2011)

2. Symantec: Symantec web based attack prevalence report. http:
//www.symantec.com/business/threatreport/topic.jsp?id=threat_
activity_trends&aid=web_based_attack_prevalence (July 2011)

3. WebSense: Websense 2010 threat report. http://www.websense.com/
content/threat-report-2010-highlights.aspx/ (July 2011)

4. Symantec: Internet security threat report 2011 trends. http://www.symantec.
com/content/en/us/enterprise/other_resources/b-istr_main_
report_2011_21239364.en-us.pdf (April 2012)

5. Prophiler: a fast filter for the large-scale detection of malicious web pages. In:
Proceedings of WWW. (2011)

6. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M., Kemmerer,
R., Kruegel, C., Vigna, G.: Your botnet is my botnet: analysis of a botnet takeover.
In: Proceedings of the 16th ACM conference on Computer and communications
security. (2009) 635–647

7. Eshete, B., Villafiorita, A., Weldemariam, K.: Malicious website detection: Effec-
tiveness and efficiency issues. In: Proceedings of SysSec Workshop (SysSec), 2011.
(2011) 123–126

8. Justin, M.: Learning to Detect Malicious URLs. PhD thesis, University of Cali-
fornia, San Diego (2010)

9. Justin, M., K., S.L., Stefan, S., M., V.G.: Identifying suspicious urls: an application
of large-scale online learning. In: Proceedings of ICML. (2009) 681–688

10. Justin, M., K., S.L., Stefan, S., M., V.G.: Beyond blacklists: learning to detect
malicious web sites from suspicious urls. In: Proceedings of KDDM. (2009) 1245–
1254

11. Thomas, K., Grier, C., Ma, J., Paxson, V., Song, D.: Design and Evaluation of a
Real-Time URL Spam Filtering Service. In: Proceedings of the IEEE Symposium
on Security and Privacy. (2011)

12. Choi, H., Zhu, B.B., Lee, H.: Detecting malicious web links and identifying their
attack types. In: Proceedings of the 2nd USENIX conference on Web application
development. (2011) 11–11

13. Seifert, C., Welch, I., Komisarczuk, P., Aval, C., Endicott-Popovsky, B.: Identifi-
cation of malicious web pages through analysis of underlying dns and web server
relationships. In: 33rd IEEE Conference on Local Computer Networks. (2008)

14. Yung-Tsung, H., Yimeng, C., Tsuhan, C., Chi-Sung, L., Chia-Mei, C.: Malicious
web content detection by machine learning. Expert Syst. Appl. 37(1) (2010) 55–60

15. Seifert, C., Welch, I., Komisarczuk, P.: Identification of malicious web pages with
static heuristics. In: Proceedings of the Australasian Telecommunication Networks
and Applications Conference. (2008)

16. Qassrawi, M., Zhang, H.: Detecting malicious web servers with honeyclients. Jour-
nal of Networks 6(1) (2011)

17. Dewald, A., Holz, T., Freiling, F.C.: Adsandbox: sandboxing javascript to fight
malicious websites. In: ACM Symposium on Applied Computing. (2010) 1859–1864

18. Marco, C., Christopher, K., Giovanni, V.: Detection and analysis of drive-by-
download attacks and malicious javascript code. In: Proceedings of WWW. (2010)
281–290

19. Alexander, M., Tanya, B., Damien, D., Gribble, S.D., Levy, H.M.: Spyproxy:
execution-based detection of malicious web content. In: Proceedings of 16th
USENIX Security Symposium. (2007) 3:1–3:16

20. Ford, S., Cova, M., Kruegel, C., Vigna, G.: Analyzing and detecting malicious
flash advertisements. In: Proceedings of ACSAC. (2009)

21. Ikinci, A., Holz, T., Freiling, F.: Monkey-spider: Detecting malicious websites
with low-interaction honeyclients. In: Proceedings of Sicherheit, Schutz und Zu-
verlssigkeit. (2008) 407–421

22. Byung-Ik, K., Chae-Tae, I., Hyun-Chul, J.: Suspicious malicious web site detection
with strength analysis of a javascript obfuscation. In: International Journal of
Advanced Science and Technology. (2011) 19–32

23. Rieck, K., Krueger, T., Dewald, A.: Cujo: efficient detection and prevention of
drive-by-download attacks. In: Proceedings ACSAC. (2010) 31–39

24. Kolbitsch, C., Livshits, B., Zorn, B., Seifer, C.: Rozzle: De-cloaking internet mal-
ware. Technical report, Microsoft (2011)

25. Google: Google safe browsing api. http://code.google.com/apis/
safebrowsing/ (August 2011)

26. McAfee: Mcafee site advisor. http://www.siteadvisor.com (July 2011)
27. Armorize.: mysql.com hacked:infecting visitors with

malware. http://blog.armorize.com/2011/09/
mysqlcom-hacked-infecting-visitors-with.html (September 2011)

28. Egele, M., Kirda, E., Kruegel, C.: Mitigating drive-by download attacks: Challenges
and open problems (2009)

29. SEO, D.: Facebook and twitter’s influence on google’s search rankings
30. Software, G.: Htmlunit. http://htmlunit.sourceforge.net/ (March 2012)
31. Facebook: Facebook graph api. https://developers.facebook.com/docs/

reference/api/ (March 2012)
32. Twitter: Twitter url api. http://urls.api.twitter.com/1/urls/ (March

2012)
33. PhishTank: Phishtank developer information. http://www.phishtank.com/

developer_info.php (September 2011)
34. MalwareURL: Malware urls. http://www.malwareurl.com/ (September 2011)
35. Alexa: Alexa top 500 global websites. http://www.alexa.com/topsites (July

2011)
36. Inc., Y.: Yahoo random url generator. http://random.yahoo.com/bin/yrl/

(October 2011)
37. DMOZ: Open directory project. http://www.dmoz.org/ (September 2011)
38. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The

weka data mining software: An update. SIGKDD Explorations 11 (2009)
39. UCSB: Wepawet. http://wepawet.cs.ucsb.edu (July 2011)

