
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009 651

Development, Formal Verification, and Evaluation of
an E-Voting System With VVPAT

Adolfo Villafiorita, Komminist Weldemariam, Student Member, IEEE, and Roberto Tiella

Abstract—The use of new technologies to support voting has
been and is the subject of great debate. Several people advocate
the benefits it can bring—such as improved speed and accuracy
in counting, accessibility, voting from home—and as many are
concerned with the risks it poses, such as unequal access (digital
divide), violation to secrecy and anonymity, alteration of the results
of an election (because of malicious attacks, bad design/coding, or
procedural weaknesses). The attitude of different governments to-
wards electronic voting (e-voting) varies accordingly. In this paper,
we present the activities related to the development and formal
verification of an e-voting system, called ProVotE. ProVotE is an
end-to-end e-voting system with a voter verified paper audit trial,
developed within the framework of a larger initiative whose goal is
assessing the feasibility of introducing e-voting in the Autonomous
Province of Trento. ProVotE has been used in trials and elections
with legal value in Italy. What we believe to be of interest is the
approach we took for its development, which has been based on a
participatory design for the definition of the voter interface, on the
usage of formal methods and model checking for the validation
of the core logic of the machine, on open source components, and
on the formal analysis of some critical procedures related to the
usage of the machine during the election.

Index Terms—Development, electronic voting (e-voting), formal
specification and verification, ProVotE, security assessment.

I. INTRODUCTION

V OTING systems are used in environmental conditions that
are quite peculiar, if not unique. In fact, they are prob-

ably the only safety and security critical systems for which all
these conditions are met: they run in an environment with lim-
ited control; they are operated by people with the most diverse
training and experience; they have to be accurate, while, at the
same time, have stringent requirements related to what they can
trace, to protect secrecy and anonymity. Logistics and support,
due to the geographical distribution and time constraints of elec-
tions, add further complexity. The development and verification
of fair and secure e-voting machines, therefore, not only has
to take into account their inherent features (e.g., what kind of
protection they offer to tampering with), but also how they fit

Manuscript received February 14, 2009; revised September 30, 2009. First
published October 20, 2009; current version published November 18, 2009. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Aviel D. Rubin.

A. Villafiorita and R. Tiella are with the Center for Scientific and Techno-
logical Research (IRST) Foundation Bruno Kessler (FBK), Trento 38050, Italy
(e-mail: adolfo@fbk.eu; tiella@fbk.eu).

K. Weldemairam is with the Department of Information Engineering
and Computer Science, University of Trento, Trento 38050, Italy (e-mail:
weldemar@disi.unitn.it).

Digital Object Identifier 10.1109/TIFS.2009.2034903

into the environment in which they are used and in the electoral
process (as also suggested, e.g., in [1]–[5]).

We are interested in digital recording electronics with printed
audit trails (DRE-VVPAT), that is, touchscreen-based machines
that produce a printout of each vote, verified directly by the
voter, to maintain a physical and verifiable record of the votes
cast.

ProVotE is a project sponsored by the Autonomous Province
of Trento (Italy) with the goal of evaluating the switch to elec-
tronic systems for local elections. During the project, we de-
cided to develop our own DRE-VVPAT system. This choice
was mainly driven by the possibility of incorporating feedback
from voters (and improve usability), guiding the design based
on other experiences and recommendations (e.g., [6]–[9]), and
choosing technologies and components. On top of that, it al-
lowed us to adopt formal methods for the development of some
critical components.

The size of the screen and of the printed audit trail, a signaling
system to display the status of the machine to the poll workers,
the programming language and the OS—Java and Linux, re-
spectively—are some distinguishing features of the resulting
machine.

The ProVotE machine has been used with experimental value
in various trials during local elections and in two small elections
with legal value.1 The trials allowed to collect plenty of data
about the machines and feedback from the citizens, as illustrated
in, e.g., [10] and [11]. The number of people involved by the
trials (about 28 000) and the scope of the project make ProVotE
the biggest e-voting initiative in Italy.

This paper presents some of the key development activities of
the e-voting machine, that we believe to be of general interest
and applicability to other contexts and domains. Some of the
work described in this paper revises and details works of the
authors published elsewhere (see [12]–[15]).

This paper is structured as follows. In Section II, we give a
brief overview of voting in Italy and about the scope of the tech-
nological initiatives within the ProVotE project. Section III in-
troduces the ProVotE e-voting machine along with the key com-
ponents of the system. Section IV presents the development ap-
proach we adopted. Sections V and VI discuss the use of formal
specification and validation techniques for the analysis of pro-
cedural security and for the development of the control logic
of the voting machine. In Section VII we discuss some related
work. Finally, Section VIII draws some conclusions and some
possible future directions.

1One is the election of the students’ representatives of a High School, in Italy
regulated by law; the other a local poll to unite two municipalities in Regione
Friuli Venezia Giulia.

1556-6013/$26.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

652 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

Fig. 1. Elections in Italy and the ProVotE system architecture.

II. OVERVIEW OF VOTING IN ITALY

Elections differ quite a bit from nation to nation, not only with
respect to the system chosen to determine the elected candidates
(e.g., proportional, majoritarian), but also for the procedures, the
way in which votes can be cast, the organizations involved, etc.
Looking at Europe, we range from cases such as that of Estonia,
in which voters can cast their vote by mail, through the internet,
or by going to the polling station, to that of countries, such as
Italy, in which the voting procedures are completely manual and
voters are assigned a specific polling station to cast their vote.2

In this paper, we focus on the procedures in Italy for which
we provide a very high level view in Fig. 1. The picture also
allows us to highlight the targets of automation of the ProVotE
project.

The dotted lines represent different phases of the voting
process. We distinguish, in particular, three phases: pre-elec-
toral (lasting up to six months before the election), electoral (in
Italy lasting for one or two consecutive days), and post-electoral
(lasting from a few days up to months, in case of litigations
or irregularities). The boxes in bold lines represent the organi-
zations responsible for the process. In particular, the Electoral
Office, responsible for the overall operations, the Polling Sta-
tions, where votes are cast, and the Municipality, coordinating
some operations at the local level. The picture abstracts away
various other actors that participate in the process, including
Tribunal, Ministries, Police forces, and private contractors (e.g.,
the firms responsible of printing the paper ballots). Finally,
the rounded rectangles represent functions performed during
an election. There are two main chains of functions, voters’
management and votes’ management.

The first chain, voter management, is pictured in gray and it
includes all the operations and data for making sure that only
the people with a right are given access to voting and that each
citizen can cast at most one vote. Access to voting is based on
the maintenance of redundant copies of paper books containing

2In the Italian case, postal voting has been introduced recently and only for
Italian citizens residing in other countries.

Fig. 2. Basic element of a paper ballot.

the list of people who can vote in each polling station. Such
books, kept and updated between elections in central offices,
are distributed to the polling stations before the election. During
the election, at designated times, data about participation to the
election is communicated (via fax or phone) to the Electoral
Office, which makes the aggregated provisional data available
to the Internet via a web system. At the end of election, the final
data about participation is used to verify the correspondence
between number of votes and voters.

The second chain, vote management, includes all operations
related to managing votes. The Electoral Office is responsible
for collecting names of the main candidates (e.g., people con-
testing for the prime minister position), the list of parties sup-
porting each candidate, and the names of the candidates of each
party (e.g., people contesting as MPs). The information deter-
mines the layout of the printed ballots. A cross can be used to
express a preference for a party or a Prime Minister candidate.
To vote for an MP, the voter writes the name of the MP close
to the party to which the MP belongs. Simplifying the law quite
a bit, misspelling or writing the name of the candidate in the
wrong position causes the ballot to be void. See Fig. 2 for an
example of the layout of a ballot.

Votes are collected in the polling stations, where they are kept
until the end of the election day, when the poll worker initiates
tabulation of data. Registers with the results and all the ballots
are then returned to the Electoral Office, which aggregates the
results and makes provisional results available. To speed things
up, provisional results are also transmitted by poll workers from
the Municipalities to the Electoral Office using a web-based
system.

Registers and ballots are then analyzed by the Electoral Of-
fice. If irregularities are found, appropriate actions, such as re-
counting, are taken. The results are then declared final.

Short of the transmission of provisional results, all other func-
tions are performed manually. This provides various opportu-
nities for automation. In the case of the ProVotE project, we
mainly focused on e-voting and on systems to automate the re-
counting of the ballots produced by the e-voting machines. The
voting machine is described in this paper. Concerning the re-
counting system, we just mention that the application is operated
by poll workers, who use a barcode reader to read the barcodes
printed on the ballots. The application reproduces on screen the
ballot corresponding the barcode just read and updates the total

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

VILLAFIORITA et al.: DEVELOPMENT, FORMAL VERIFICATION, AND EVALUATION OF AN E-VOTING SYSTEM WITH VVPAT 653

tally. The system, however, is not meant as a replacement of
manual recounting.

The delivery of election results has varied from physical
transportation to the Electoral Office to electronic upload
through a web application. Concerning the systems for de-
termining the elected candidates, we tried both a commercial
system adopted by various Electoral Services in Italy and an
in-house solution. Finally in one trial we also tested a system
for automating registration of voters.

Differently from what happens in the paper-case, we al-
ways recounted the printed ballots produced by the e-voting
machines, to check consistency of data. To verify also the re-
counting application, in some cases, we also performed manual
recounts of the ballots.

III. PROVOTE E-VOTING MACHINE: AN OVERVIEW

A. Machine Components

We experimented with three different hardware prototypes
of the e-voting machine: two monolithic designs—in which all
components are enclosed in a single case—and one nonmono-
lithic design, in which DRE, VVPAT, and uninterruptible power
supply (UPS) are three separated components, assembled in the
polling station. The nonmonolithic design, although simpler to
handle, raised concerns related to accidental or malicious un-
plugging of the cables connecting the components. The con-
nection between the UPS and printer resulted particularly crit-
ical, because the printers we use do not have batteries. Any
loss of connection to the UPS, although unlikely, thus, might
have caused an interruption of the printing operations, leaving a
half-printed ballot pending on the printer. Protecting anonymity
in such situations would have been quite hard.

We decided, therefore, to stick with the monolithic design,
which is installed in a standard electoral cabin (to protect pri-
vacy) and whose components are:

1) Touchscreen. Used to administer the machine and cast
votes. It is a 20-in-wide screen, to improve readability.

2) Thermal printer. Protected behind a glass. It has a paper
roll which is 12 in wide, to improve readability, and it is
equipped with a cutter. Each vote, once it has been con-
firmed or rejected by the voter, is cut and falls in a ballot
box, installed in the machine, below the printer. This pro-
tects from possible breaches to anonymity due to the pos-
sibility of tracing the order in which votes have been cast,
as it might happen with VVPAT with a continuous tape.

3) A UPS. It provides emergency power, in case of power
outage, to complete any pending voting operation before
halting. The machine is not meant to be used in case of a
long lasting power outage.

4) A computer. The computer (a standard PC) controls all the
components of the voting machine.

Finally, two components of the machine, connected via cables
to the main body of the machine, are installed on the desk of the
poll worker:3

3The connectors are inside the case and secured, so that they cannot be ac-
cidentally or voluntarily unplugged without opening the machine. The choice
of installing the smartcard reader externally to the cabin was made to prevent
attacks such as the usage of maliciously crafted smartcards.

Fig. 3. ProVotE voting machine.

1) A smartcard reader. To control access to the machine. We
used standard off-the-shelf smartcard technology.

2) An external control display. To show information on the
voting process, such as the number of voters, the status of
the machine (idle or busy), and the error conditions (e.g.,
printer nearing end of paper).

The cables are six meters long. This allows to position the
machine and the “external” components so that the privacy of
the voter is guaranteed (see Fig. 3).

Access to the critical parts of the machine (e.g., PC, ballot
box) is protected by physical locks, whose keys are the respon-
sibility of the poll workers.

B. Machine Configuration and Installation

The machines are delivered to the polling stations the day
before the election, configured with the operating system and
a bootstrapping application. We usually deliver two/three ma-
chines per polling station, according to the number of registered
voters. Notice that, in Italy, no more than one thousand voters
can be enlisted in a polling station.

The operating system is a stripped-down version of Linux,
from which we removed all the components and daemons that
are not strictly necessary to run the machine. The choice of
Linux allows us to achieve two goals: access to the source
code of the OS and the possibility of customizing the operating
system.

The bootstrapping application is a custom application respon-
sible of loading the voting software from an external device, ver-
ifying that the software is digitally signed by the Electoral Of-
fice, deciphering the software using a symmetric key stored in
the OS, and launching the voting software (see below for more
details).

Access to the operating system and the boot application is
protected by physical means (keys to open the machine) and
software configuration: booting order of devices, automatic
launch of bootstrapping application, and password protection
of BIOS and OS.

The voting software is distributed separately in a removable
device (we used USB flash devices), shipped in a sealed enve-
lope, with all the other materials necessary to run a machine
(what we call the voting kit). There is one voting kit per ma-
chine.

The removable device contains the following.
1) A keyring, which stores:

a) a private key used by the machine to sign the
data it produces;

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

654 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

b) a public key used by the machine to verify the
authenticity of the configuration data;

c) a secret key for symmetric encryption of data.
The digital keys are specific to each voting kit (each kit has
a different set) and protected by a PIN, known only by the
poll worker.

2) Java byte-code of the e-voting application, digitally signed
and encrypted with a symmetric key, stored in the OS.

3) Ballot configuration data, in an XML format, and symbols
digitally signed and verifiable by .

4) Other configuration data (e.g., localized user interface’s
textual messages, etc.), digitally signed and verifiable by

.
5) A file containing authentication credentials, encrypted

using . We use triple DES and SHA1 digests for
crypting and signing.

The voting kit includes also three smartcards: 1) a smartcard
to access the machine’s administration functions and 2) two
voting smartcards to enable the machine to cast votes. The
smartcards are bound to the voting kit and can operate only the
machine in which the voting kit is inserted.

The installation of the machine is performed by inserting the
USB key into the machine (the USB port is inside the machine so
that insertion and extraction require to use appropriate physical
keys to open the machine). The bootstrapping application, after
all the checks described above, copies the voting application
into the internal hard disk and launches it. From now on the
machine and the USB key are bound and there is no possibility
of operating the machine with a different voting kit. Attempts
to use a different USB key result in the system not booting.

C. Using the Machine

The ProVotE voting machine runs in two modes: in poll
worker mode (administration) and voter mode. In the poll
worker mode, the poll worker manages the voting machine
through the machine life-cycle, which is encoded with a state
machine, shown in Fig. 4.

Changes of state are permanent and irreversible: the machine
starts in the last state reached and, once the poll worker confirms
a change of state, it cannot be reversed. As a consequence, ma-
chines need special intervention between elections, as tabulation
of data is considered a final state. Irreversibility is achieved by
storing the state, encrypted and signed, in a redundant fashion,
both in the hard disk of the machine and on the removable de-
vice.

When the voting software is launched for the first time, it
starts in the unconfigured state. After the poll worker gains ac-
cess to the machine (by inserting the administration smartcard
and the PIN), the system allows the poll worker to enter the con-
figuration data, such as municipality and poll site identification
number. This data is necessary to determine what ballots have
to be shown (e.g., multilingual, specific ballots for local polls).
Once the configuration data is confirmed by the poll worker,
the machine goes into the configured state, from which the poll
worker runs the administrative tasks. These tasks include testing
machine’s functions, review the activity log—to check no oper-
ations have been performed on the machine and that the counter

Fig. 4. Machine’s poll worker mode state diagram.

of the votes is zero. From the configured state, the poll worker
can open the election and have the machine be usable for voting.

To enable the machine for voting, the poll worker inserts one
of the two voter smartcards in the smartcard reader. The ma-
chine can now be used for casting one vote.

The voting procedure has been designed to closely resemble
that on paper, to ease transition to the usage of the electronic
system. Voting activities are regulated by another state machine,
shown in Fig. 5. The voter goes through a welcome screen (state
Welcome in the figure) to a screen that reproduces the printed
ballot and allows the voter to cast a choice. Once the voter con-
firms the choice, the machine produces a printed copy of the vote
(state Ballot Preview in the figure) and asks the voter to verify
it. The voter can now either confirm the printout, in which case
the vote is stored and the machine locked, or reject it (up to two
times), in which case the machine goes back to the ballot screen.
The second time the only option available to the voter is making
the vote void. A header (accepted, rejected, void) together with
a barcode encoding the vote is printed on the ballot. The ballot
is then cut and falls in the ballot box inside the machine and the
machine goes into the voted state.

The external display shows the current status of the machine
(e.g., voting, voted). When the machine goes into the voted
state, the poll worker extracts the smartcard from the smartcard
reader. To enable the machine for the next voter, the poll worker
has now to use the other voter smartcard; this process is then re-
peated for all voters.

The extraction of the smartcard from the smartcard reader be-
fore the vote has been cast clears the machine from the pending

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

VILLAFIORITA et al.: DEVELOPMENT, FORMAL VERIFICATION, AND EVALUATION OF AN E-VOTING SYSTEM WITH VVPAT 655

Fig. 5. Machine’s voter mode state diagram.

voting operation (including any pending printout) and locks it.
This function has been devised to interrupt a voting operation,
e.g., when the voter has difficulties in using the machine, while
guaranteeing secrecy. In order to avoid the risk that a voter is
denied the right to cast a vote due to the extraction of the card
before voting has ended, the control logic puts the machine into
a state that requires special intervention by the poll worker.

During voting, the file containing the votes is stored en-
crypted both on the hard disk and on the flash memory. Each
time a vote is cast the two copies of the file are read and com-
pared, and the machine is blocked in case of any inconsistency.
To ensure that votes are not stored in the order in which they
have been cast, the set of votes is reshuffled after each vote.

D. E-Voting Machine Products

At the end of the election day, a poll worker closes the elec-
tion and requires tabulation of data. Votes are counted and ag-
gregated by the machine and the machine prints a printout of the
tabulated data, together with the activity report (see below).

At this point, both the internal hard disk and the removable
device contain the following data:

1) An electronic copy of the activity report. This is a document
listing all the tasks performed by the machine including the
initial counters’ value, which must be zero.

2) A file with all the ballots cast. This is a file in XML format,
digitally signed.

3) A file containing the tabulated votes. This is a file con-
taining the number of votes recorded for each candidate,
in XML format, digitally signed by , with signature and
certificates embedded in the document following the XML
Signature Syntax and Processing specified in [16].

The poll workers then extract the removable devices from
machines and upload files containing the results to the electoral

Fig. 6. ProVotE development process. The process describes the workflow that
we followed while developing the ProVotE system.

service by means of a web application made available through
a VPN. On the receiving side, the signatures of the files are
verified, to ensure results have not been tampered with (e.g.,
by malware on the sending machine or by man-in-the-middle
attacks). If the signatures verify, the data is used to determine
the elected candidates. Finally, poll workers deliver the USB
keys and the printed ballots to the Electoral Office, for further
verification activities, if necessary.

IV. PROVOTE DEVELOPMENT PROCESS

Broadly speaking, the development of ProVotE has proceeded
in cycles, paced by experimentations and with a time-span of
about six months each. Each development cycle is a waterfall
[17], that we extended and adapted to incorporate (formal) veri-
fication activities. All cycles elaborated on the same set of doc-
umentation—i.e., there is just one requirement document, one
design document, etc. The most interesting aspect of the devel-
opment is the organization of activities within each cycle, sum-
marized in Fig. 6.

The figure is an activity diagram whose notation we have
slightly adapted to make it more readable. Activities are in
rounded rectangles and artifacts in rectangles, as customary.
We use a particular notation to indicate creation (“C”), reading
(“R”), and inclusion (“inc”) of artifacts, meaning, respectively,
that an activity creates an artifact, it reads it, or that an artifact
is contained in another artifact. Finally, the empty arrow-
head indicates refinement, so that, for instance, the “Machine
Life-cycle” refines the “Voting Activities.” We omitted, in the
diagram, some read operations that are standard in the waterfall

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

656 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

model; e.g., even if not indicated, the requirement documents
has been used as the basis for the design.

We distinguish, in particular, the following activities:
1) Process Modeling. An initial set of discussions and anal-

ysis of the Italian electoral law allowed to provide a formal-
ization and a view of the voting procedures in Italy. The
formalization was given using activity diagrams in UML
and textual descriptions. Such documentation served as the
basis for the subsequent requirements analysis and for the
analysis of the “to be” procedures.

2) Process Analysis. The adoption of new technologies (be
it in the polling station or in any other setting) shifts risks,
threats, and attacks. If the procedures are also designed to
protect against such risks and attacks (as it is for the elec-
toral case), the problem arises of ensuring that they still
make sense after the introduction of the e-voting systems.
We decided, therefore, to analyze the procedures in order
to understand the possible attack models and, possibly, in-
troduce a set of additional constraints on the machines and
on the laws regulating (electronic) elections.

3) Requirements Modeling. The initial requirements defi-
nition activity produced a requirements document, which
contains high-level statecharts and use cases. The state-
charts specify the life-cycle of the machine described ear-
lier and the use cases provide the usage scenarios for each
of the states of the machine’s life-cycle (e.g., the actions
necessary to open the poll site).
The voting and the administration user interfaces are spec-
ified through a statechart which describes their logic and
in which each state corresponds to a different “screenshot”
of the system (see Section III-C).
The specifications and, in particular, the UML statecharts
have been discussed and validated by the Electoral Ser-
vice of the Province of Trento. The voting interface was
validated using throw-away prototypes developed from the
statecharts, in experiments with selected voters before the
trials. The experiments have been organized and set up by
the Faculty of Sociology of the University of Trento.

4) Design. During the design phase, the statecharts validated
by the Electoral Service have been detailed into executable
statecharts.

5) Formal Verification. The executable statecharts specifica-
tion have then been translated into the NuSMV input lan-
guage (see below for the description, also in [18]), which,
in turn, is formally verified. The translation is done auto-
matically using FSMC+ [12], a tool we specifically devel-
oped for the purpose (see Section VI).

6) Code Generation. After having validated the specifica-
tion of the control logic, we used FSMC+ to generate the
Java code of the control logic of the machine (both the ad-
ministration and voting part). The Java code generated by
FSMC+ was inspected by hand, to mitigate risks related to
bugs in the translator, and the source code then compiled
and packaged to produce the voting application.

7) Coding (and Unit testing). The code implementing the
management of data and hardware devices and some glue
code to link the user interface was then implemented and
tested using standard practices.

8) Packaging and System Testing. The code generated by
hand and that produced by FSMC+ have been finally pack-
aged together and tested using standard techniques. Notice
in fact that the formal verification performed at the pre-
vious steps does not eliminate the need for testing, as prop-
erties related to, e.g., the integration of different compo-
nents, actual implementation of the drivers (is the printer
really cutting the paper when the system tells it to do so?),
etc. are outside the scope of the verification and, therefore,
still need to be performed.

Formal verification of the machines has been based on
NuSMV [18], an open source model checker. NuSMV allows
for the specification of synchronous and asynchronous systems
and for the verification of safety and liveness properties ex-
pressed in computation tree logic (CTL) and linear temporal
logic (LTL), using both BDD-based and SAT-based techniques.
Language and machinery have demonstrated to be adequate
for our purposes: the control logic has been modeled as a
synchronous machine and the properties expressed in CTL.
The choice of the tool has also been driven by practical consid-
erations (it is a tool for which we have extensive know-how),
stability (it is used by a wide community), and availability
(open source).

In the rest of the paper, we focus on two key activities of
the development, namely the analysis of the processes and the
formal verification of the core logic.

V. PROCESS MODELING AND PROCESS ANALYSIS

One of the concerns of the project is understanding how
the introduction of the new e-voting system could impact the
existing procedures and the verification activities that are per-
formed to ensure no material mistakes or attempts to alter the
results have taken place. (See also [19]–[21] for the importance
of procedural security.) To analyze procedures in a systematic
way, we defined a methodology, initially described in [13] and
[15], and illustrated in Fig. 7.

The first step is the generation of what we call extended
model. The extended model is obtained by modifying the
workflows to include wrong or malicious actions, such as re-
placement, alteration, or deletion of an asset (e.g., a document
required for the election). Thus, in the extended model, not only
assets are modified according to what the procedures define,
but they can also be transformed by the (random) execution of
one or more threat actions.

We then transform the extended model into an executable
NuSMV specification. The translation is performed by defining
what we call asset flows, namely state machines that describe
how properties of assets are changed by the execution of the
extended model. A special state machine (pc—for process
counter) encodes the order in which activities are executed.
An example may help. We show a snippet of the code defining
a property named status of the asset electionSW (that
is, the software controlling the voting machine). The code,
intuitively, states that the electionSW can either be plain
or encrypted, that the initial state is plain and that the
execution of the encrypt action changes the status of the
software from plain to encrypted:

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

VILLAFIORITA et al.: DEVELOPMENT, FORMAL VERIFICATION, AND EVALUATION OF AN E-VOTING SYSTEM WITH VVPAT 657

Fig. 7. Methodology for procedural security analysis.

MODULE electionSW

VAR

status : plain, encrypted;

init(value) := plain;

next(value) := case

pc.pc = encrypt : encrypted;

Accessory information, such as the actors participating in
each activity, can be modeled to, e.g., enrich the language that
can be used to reason about the workflows. An example is the
set of actors that are active at a given time. Below we show a
snippet of code that defines when the actor Electoral Service is
active. The statement uses the NuSMV DEFINE construct, that
is used for variables that do not have an “independent” evolu-
tion:

DEFINE

ElectoralServiceActive :=

pc.pc = load

We finally model check the specification with a set of proper-
ties, expressed in LTL/CTL, that encode the security goals that
have to be satisfied. Counterexamples of security properties en-
code the sequence of actions that have to be executed in order
to carry out an attack on an asset.

We are interested, in particular, in two classes of properties
(and in the counterexamples generated by such classes):

1) Undetected attacks, namely sequence of actions that suc-
ceed in altering one or more assets and for which the pro-

cedures provide no check to highlight the alteration. Un-
detected attacks are a potential menace to the democratic
process: think for, e.g., undetected alteration of the elec-
toral results in one or more polling station (see, also in [22]
for more discussion about undetected attacks).

2) Denial of services, namely attacks which are meant to alter
one or more assets in such a way that procedures have to
be stopped. In the optimistic case, a denial of service in an
election represents a cost and a “nuisance” for the commu-
nity (as, e.g., results are delayed; the administration needs
to rerun the election). In the pessimistic case, e.g., repeated
attacks, it may represent a serious threat to democracy.

The following NuSMV property, for instance, shows how we
can represent a denial of service attack. The property, expressed
in CTL, states that it is never the case (AG!—for “Always Glob-
ally Not”) that an unusable copy of the election software is de-
livered to the polling stations (the content of the software is
“garbage” and the location of the software is the polling station)

AG ! (sw.content = garbageSW

&& sw.location = pollStation).

If the procedures are well designed, breaches to security should
derive only from the execution of malicious actions.

So far we analyzed the procedures for delivering the software
and the machines to the polling stations and to send the results
from the polling stations back to the Electoral Office. See [13]
and [15] for some more details.

VI. FORMAL VERIFICATION OF THE CONTROL LOGIC

To improve our confidence in the design of the voting applica-
tion, we applied formal verification techniques on a critical com-
ponent, namely the logic controlling administration and voting
activities. To provide an idea of the activities performed, we start
by introducing the architecture of the system and we then detail
the core verification activities that we have performed.

A. The Voting Application’s Architecture

The Voting Application is a Java-based graphical application
structured in four main macro-components (Fig. 8).

1) The Services Component. It provides the basic function-
ality to the rest of the application, such as drivers for con-
trolling the external control display and the printer, man-
aging logs for audits, and transparently managing redun-
dant and ciphered persistence of data.

2) The Data Model Management Component. It manages all
the election-specific data, comprising candidates and par-
ties, the ballot data, per-machine election results, and the
symmetric and asymmetric keys used for ciphering and
signing.

3) The Control Logic Component. It defines how the machine
has to react to user actions, both in the administration and in
the voting mode. The control logic also specifies the logic
of the user interface (e.g., what screen has to be shown
next). Its architecture is shown in Fig. 9. An Event Queue
Manager handles all asynchronous events (e.g., user ac-
tions, smartcard inserted/removed events, power fail events
from the UPS) and feeds the State Machine, which reacts

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

658 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

Fig. 8. ProVotE voting machine’s architecture.

Fig. 9. Control logic detailed architecture.

to the events and sends commands to a Delegate. The Dele-
gate’s methods can be thought like atomic building blocks
(e.g., “print the current ballot,” “clear the interface,” “turn
the outside red light on,” etc.) that are combined by means
of the statechart specification.

4) The User Interface Component. It manages the graphical
layout of the administration and of the voting interfaces.

B. Formal Specification and Verification of the Core Logic

The control logic of the voting machine is among the most
critical components, since any problem in its specification
might lead to losses of functions or breaches to security. For
this reason, we decided to use formal method techniques for
its specification and verification. We did so, by building a tool
called FSMC+ that allows for automatic generation of the
source code of control logic from the statecharts after they are
formally verified.

Starting from the detailed statecharts that describe the con-
trol logic component, FSMC+ automatically produces NuSMV
models implementing the UML execution semantic defined in
[23]. The generated model resembles the component’s archi-
tecture shown in Fig. 9. Namely, it is decomposed into three
submodules: State Machine, Event Driver (an abstraction for
the Event Queue Manager), and Delegate. The State Machine
is generated automatically while only a skeleton is produced for
the Event Driver and the Delegate models.

In order to perform the verification, users have to complete by
hand the skeletons of the delegate and driver modules, namely,
the inputs that the machine can receive (Event Driver) and the
actions that the machine performs (Delegate). In the model of
these modules, for example, we specified the semantics of the
actions that controls the state for hardware parts, such as the
external indicator, the printer (e.g., whether a vote is exposed

in the printer or not), the screen (e.g., which form is shown to
the user), the internal state of memory, etc. We also modeled
the behavior of the smartcard reader and of the touchscreen.
Choosing the proper level of abstraction for these specifications
has proven fundamental to obtain useful results.

Properties used for verification are derived from the require-
ments documents and from encoding a set of “sanity” checks on
the specification. One can express these properties using CTL or
LTL logic. The CTL properties are mainly expressed in terms of
actions that the control logic has to perform on the peripherals
to ensure that no basic principle of the law is violated and that
the behavior of the machine is compliant with the specification
provided in the requirements document.

For the sake of brevity, below we show examples of the prop-
erties specified using CTL.

Property i): There is always a way for the voter to end the
voting procedure once s/he started.4

AG (dr.Stable & sm_GUICtrl.state =

Welcome -

EF (dr.Stable & sm_GUICtrl.state =
Idle))

Property ii): When the voter starts to use the machine, the
internal representation of the vote must be empty.

AG ((dr.Stable & sm_GUICtrl.state =

Welcome) -

(del.vote = vote_empty))

Property iii): During the e-voting session, if two paper bal-
lots were printed, then the first one must show “invalidated.”

AG (del.ballot_cast = 2

- del.printed_ballot_1.printer_header

= printer_header_invalidated)

In this way, we have specified 41 properties corresponding to
each component—i.e., the DRE, Printer (VVPAT), and External
Display—of the machine as liveness and safety properties. We
also categorized them into two groups those related to adminis-
tration (8 properties) and voting (33 properties).

The properties along with the model of the system have been
passed to the NuSMV system in order to perform the actual ver-
ification. Once the verification is performed, FSMC+ produces
the Java code that we glue with the other code of the machine.

The structure of generated Java code follows the State de-
sign pattern defined in, e.g., [24]. According to the pattern, each
state of the state machine is encoded with a Java class, that has
two methods, Entry and Exit, corresponding, respectively,
to the actions to perform on entering and exiting the state. Stan-
dard book-keeping machinery manages the transition to the next
state. The Entry and Exit methods use the State Machine

4The NuSMV models obtained from UML statecharts define a boolean vari-
able called Stable (e.g., dr. Stable for the driver module instance),
to model the semantics of run-to-complete step as defined in OMG/UML [23]
specifications. Some properties, in fact, have to be checked only in a stable state.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

VILLAFIORITA et al.: DEVELOPMENT, FORMAL VERIFICATION, AND EVALUATION OF AN E-VOTING SYSTEM WITH VVPAT 659

Delegate class for the concrete implementation of the actions to
perform, as shown in Fig. 9.

It is worth mentioning that the use of FSMC+ and NuSMV do
not guarantee that the system is error-free. This is due to, e.g.,
incompleteness of properties, potential bugs in the translators,
potential bugs due to the integration of the actual Java compo-
nents, and the implementation of the components excluded from
the formal verification (e.g., OS, drivers). Standard testing ac-
tivities, therefore, have been performed on the system.

VII. RELATED WORK

The level of interest e-voting has attracted is a witness of the
importance it has in the implementation of our democracy [1],
[4], [9], [25]–[28].

Scientific literature on e-voting is wide and multidisciplinary.
We organize previous work in four areas: understanding the
risks posed by the introduction of e-voting systems in the
polling stations; assessing existing systems; designing novel
voting schemes, protocols, and/or techniques; and designing
better e-voting systems using formal methods.

With respect to the first area, work in the past has focused on
understanding what changes could be introduced in the “tradi-
tional” voting procedures to allow a secure transition to elec-
tronic elections. For instance, [29] and [30] discuss risks and
difficulties related to the introduction of e-voting, [19] and [31]
suggest possible improvements to existing procedures, and [13],
[14], and [20] introduce techniques to formally analyze what se-
curity breaches may be derived by executing the procedures in
the wrong way.

With respect to the second area, assessing existing systems,
some e-voting systems currently deployed in elections have re-
cently undergone a thorough and independent scrutiny to eval-
uate their quality. See, for instance, [32]–[36], where the authors
highlight some serious design and implementation flaws, which
could be exploited to compromise elections. The papers also
suggest a drastic change in the way in which electronic voting
systems are designed, developed, and tested.

With respect to the third area, we mention a number of
schemes, prototypes, and/or techniques for better voting ma-
chines. Works like [37]–[40] attempt to provide (maximum)
secrecy and/or anonymity for the vote and voter. End-to-end
verifiability of the integrity of critical steps in the voting process
and of election results is presented in [41] and [42]. What is
most common to all these approaches is that they rely on the
underlying cryptographic principles to various degree of com-
plexity. Other works, such as [43] and [44], apply techniques
used in other domains—like prerendering user interface and
hardware separation—to build an ccessible, verifiable, and
secure voting system. We should be clear that the (non-)mono-
lithic design mentioned in our work is different from the one
proposed in [43], where, from what we understand, the authors
propose hardware isolation techniques to ensure voter privacy.
Moreover, the choice of Java for our implementation is for the
same advantages mentioned in [43].

With respect to the last area, the usage of formal methods
in the specification and verification of e-voting systems is rela-
tively new. We mention [45] and [25], which present the formal
specification and verification of an e-voting protocol using Pi

calculus, and [46], where the authors present a mobile imple-
mentation of an e-voting system and used formal verification
technique to validate the security property of their proposed
system.

VIII. DISCUSSION AND CONCLUSION

The development of e-voting systems is extremely chal-
lenging and demanding. The need to balance conflicting
requirements, such as traceability and privacy, liveness and
security, adds to the complexity of building and deploying
application on which our democratic rights might depend.

In this paper, we have presented the main activities we con-
ducted to develop the ProVotE system, an e-voting machine for
the Autonomous Province of Trento. To address the issues men-
tioned above, we adopted a development process that tries to
take into account not only aspects related to a careful devel-
opment of the software, but also the environmental conditions
in which the machines are actually used. We believe that such
an approach is an essential cornerstone for the development of
e-voting solutions we can trust as citizens.

The ProVotE machines have been used with six experimental
trials by about 28 000 citizens and, in two small elections, with
legal value, by about two thousand more. We shipped the soft-
ware in different configurations to handle five different types
of elections (with different voting and tabulation rules) and dif-
ferent hardware components (corresponding to different “ver-
sions” of the control display, of the screen, of the PC).

During the experimentations, we collected and analyzed data
about machine performance (reboots, errors, operational errors,
etc.), citizens’ and poll workers’ opinions. Trials are excellent
testbeds. Polling stations are scattered in the territory and under
the authority of people with the most diverse backgrounds, mo-
tivations, training, and capacities.

Errors, both in the execution of the procedures and when op-
erating the machines, are made: keys to open the machine are
lost, machines are delivered to the polling stations in a “blocked”
state (because they have not been “cleaned” and cannot be used),
under the pressure of voters queueing to vote, liveness is per-
ceived as more important than security (e.g., machines are kept
enabled for voting, because it is just faster than enabling it when
a voter arrives); voters need to “adapt” to the new technology.
Procedures and systems were demonstrated to be robust enough
to manage all these situations.

Introduction on a large scale of the system, in any case, will
require improvements to the interface, strengthening training,
improving motivation and awareness of poll workers and public
administrators in the usage of the new systems, and improving
awareness of citizens on the real (versus the perceived) risks and
advantages of e-voting.

REFERENCES

[1] J. W. Bryans, B. Littlewood, P. Y. A. Ryan, and L. Strigini, “E-voting:
Dependability requirements and design for dependability,” in Proc.
First Int. Conf. Availability, Reliability and Security (ARES’06),
Washington, DC, 2006, pp. 988–995, IEEE Computer Society.

[2] C. Lambrinoudakis, S. Kokolakis, M. Karyda, V. Tsoumas, D.
Gritzalis, and S. Katsikas, “Electronic voting systems: Security impli-
cations of the administrative workflow,” in Proc. 14th Int. Workshop on
Database and Expert Systems Applications (DEXA’03), Washington,
DC, 2003, p. 467, IEEE Computer Society.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

660 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 4, NO. 4, DECEMBER 2009

[3] A.-M. Oostveen and P. V. den Besselaar, “Security as belief user’s
perceptions on the security of e-voting systems,” in Electronic Voting
in Europe, 2004, pp. 73–82.

[4] M. Volkamer and M. McGaley, “Requirements and evaluation proce-
dures for eVoting,” in Proc. Second Int. Conf. Availability, Reliability
and Security (ARES’07), Washington, DC, 2007, pp. 895–902, IEEE
Computer Society.

[5] S. Myagmar, A. Lee, and W. Yurcik, “Threat modeling as a basis for
security requirements,” in Proc. 2005 ACM Workshop on Storage Se-
curity and Survivability (StorageSS’05), New York, 2005, pp. 94–102,
ACM Press.

[6] Federal election commission, 2002 Voting System Standards [Online].
Available: http://www.eac.gov/voting

[7] F. E. Commission, 2005 Voluntary Voting System Guidelines (VVSG)
[Online]. Available: http://www.eac.gov/voting

[8] Legal, Operational and Technical Standards for e-Voting, ISBN
92-871-5635-2, Council of Europe, 2004.

[9] R. T. Mercuri and L. J. Camp, “The code of elections,” Commun. ACM,
vol. 47, no. 10, pp. 52–57, 2004.

[10] L. Caporusso, C. Buzzi, G. Fele, P. Peri, and F. Sartori, “Transition to
electronic voting and citizen participation,” Electronic Voting, vol. 86,
pp. 191–200, 2006, R. Kimmer, Ed.

[11] C. Buzzi, A. Brighenti, and L. Caporusso, “Translating void and null
ballots from paper to touchscreen,” in Proc. Towards e-Democracy:
Participation, Deliberation, Communities, 2006.

[12] R. Tiella, A. Villafiorita, and S. Tomasi, “FSMC+: A tool for the gener-
ation of java code from statecharts,” in Proc. 5th Int. Symp. Principles
and Practice of Programming in Java (PPPJ’07), New York, 2007, pp.
93–102, ACM.

[13] K. Weldemariam, A. Villafiorita, and A. Mattioli, , A. Alkassar and
M. Volkamer, Eds., “Assessing Procedural Risks and Threats in
e-Voting: Challenges and an Approach,” in VOTE-ID, ser. Lecture
Notes in Computer Science. New York: Springer, 2007, vol. 4896,
pp. 38–49.

[14] K. Weldemariam and A. Villafiorita, “Formal procedural security mod-
eling and analysis,” in Proc. 3rd Int. Conf. Risks and Security of Internet
and Systems (CRiSIS’OS), 2008, pp. 249–254, IEEE.

[15] K. Weldemariam and A. Villafiorita, “Modeling and Analysis of
Procedural Security in (e)Voting: The Trentino’s Approach and
Experiences,” in Proc. USENIX/Accurate Electron. Voting Technol.
on USENIX/Accurate Electron. Voting Technol. Workshop (EVT’08),
Berkeley, CA, 2008, USENIX Association.

[16] M. Bartel, J. Boyer, B. Fox, B. LaMacchia, and E. Simon, XML Sig-
nature Syntax and Processing (Second Edition), w3c Recommendation
Jun. 2008 [Online]. Available: http://www.w3.org/TR/xmldsig-core

[17] W. W. Royce, “Managing the development of large software systems,”
in Proc. IEEE WESCON, 1970, pp. 1–9.

[18] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An open
source tool for symbolic model checking,” in Proc. 14th Int. Conf.
Computer-Aided Verification (CAV’02), London, U.K., 2002, pp.
359–364, Springer-Verlag.

[19] A. Prosser, R. Kofler, R. Krimmer, and M. K. Unger, “Security assets
in e-voting,” in Electronic Voting in Europe, 2004, pp. 171–180.

[20] A. Xenakis and A. Macintosh, “Procedural security analysis of elec-
tronic voting,” in Proc. 6th Int. Conf. Electronic Commerce (ICEC’04),
New York, 2004, pp. 541–546, ACM Press.

[21] Procedural Security and Social Acceptance in E-Voting. Los
Alamitos, CA: IEEE Computer Society, 2005, vol. 5.

[22] R. L. Rivest and J. P. Wack, On the Notion of “Software Independence”
in Voting Systems 2006 [Online]. Available: http://vote.nist.gov/SI-in-
voting.pdf

[23] O. M. Group, OMG Unified Modeling Language Specification Sep.
2001.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns.
Boston, MA: Addison-Wesley, Jan. 1995.

[25] S. Kremer and M. D. Ryan, M. Sagiv, Ed., “Analysis of an elec-
tronic voting protocol in the applied pi-calculus,” in Programming
Languages and Systems—Proc. 14th Eur. Symp. Programming
(ESOP’05), Edinburgh, U.K., Apr. 2005, vol. 3444, pp. 186–200
[Online]. Available: http://www.lsv.ens-cachan.fr/Publis/PA-
PERS/PDF/Kremer-esop05.pdf, Springer ser. Lecture Notes in
Computer Science

[26] N. K. Sastry, “Verifying Security Properties in Electronic Voting
Machines” Ph.D. dissertation, EECS Department, University of Cal-
ifornia, Berkeley, May 2007 [Online]. Available: http://www.eecs.
berkeley.edu/Pubs/TechRpts/2007/EECS-2007-61.html

[27] R. Anane, R. Freeland, and G. K. Theodoropoulos, “E-voting require-
ments and implementation,” in CEC/EEE. IEEE Computer Society,
2007, pp. 382–392.

[28] M. Bishop and D. Wagner, “Risks of e-voting,” Commun. ACM, vol.
50, no. 11, pp. 120–120, 2007.

[29] A. Xenakis and A. Macintosh, “Levels of difficulty in introducing
e-voting,” in EGOV, 2004, pp. 116–121.

[30] A. Xenakis and A. Macintosh, “G2G Collaboration to Support the De-
ployment of e-Voting in the UK: A Discussion Paper,” in EGOV, ser.
Lecture Notes in Computer Science. New York: Springer, 2004, pp.
240–245.

[31] M. Volkamer and R. Krimmer, “Independent audits of remote
electronic voting—Developing a common criteria protection profile,”
in Proc. EDEM 2007—Elektronische Demokratie in Österreich,
2007.

[32] R. Gardner, S. Garera, and A. D. Rubin, “On the difficulty of validating
voting machine software with software,” in Proc. USENIX/Accurate
Electronic Voting Technology on USENIX/Accurate Electronic Voting
Technology Workshop (EVT’07), Berkeley, CA, 2007, pp. 11–11,
USENIX Association.

[33] D. W. Jones, The Evaluation of Voting Technology, ser. Advances in
Information Security. Norwell, MA: Kluwer Academic, 2003, pp.
3–16, ch. 1.

[34] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach, “Analysis
of an electronic voting system,” in IEEE Symp. Security and Privacy,
2004, vol. 0, p. 27.

[35] D. Balzarotti, G. Banks, M. Cova, V. Felmetsger, R. Kemmerer,
W. Robertson, F. Valeur, and G. Vigna, “Are your votes really
counted? Testing the security of real-world electronic voting
systems,” in Proc. Int. Symp. Software Testing and Analysis
(ISSTA), 2008, pp. 237–248.

[36] N. Ansari, P. Sakarindr, E. Haghani, C. Zhang, A. K. Jain, and Y. Q.
Shi, “Evaluating electronic voting systems equipped with voter-veri-
fied paper records,” IEEE Security Privacy, vol. 6, no. 3, pp. 30–39,
May/Jun. 2008.

[37] A. O. Santin, R. G. Costa, and C. A. Maziero, “A three-ballot-based
secure electronic voting system,” IEEE Security Privacy, vol. 6, no. 3,
pp. 14–21, May/Jun. 2008.

[38] A. Fujioka, T. Okamoto, and K. Ohta, “A practical secret voting
scheme for large scale elections,” in Proc. Workshop on the Theory
and Application of Cryptographic Techniques (ASIACRYPT’92),
London, U.K., 1993, pp. 244–251.

[39] J. Benaloh and D. Tuinstra, “Receipt-free secret-ballot elections (ex-
tended abstract),” in Proc. Twenty-Sixth Annual ACM Symp. Theory of
Computing (STOC’94), New York, 1994, pp. 544–553, ACM.

[40] I. Ray, I. Ray, and N. Narasimhamurthi, “An anonymous electronic
voting protocol for voting over the internet,” in Proc. Third Int. Work-
shop on Advanced Issues of E-Commerce and Web-Based Information
Systems (WECWIS’01), Washington, DC, 2001, p. 188, IEEE Com-
puter Society.

[41] Z. Xia, S. A. Schneider, J. Heather, and J. Traoré, “Analysis, improve-
ment and simplification of prêt à voter with paillier encryption,” in
Proc. Conf. Electronic Voting Technology (EVT’08), Berkeley, CA,
2008, pp. 1–15, USENIX Association.

[42] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R. L. Rivest,
P. Y. A. Ryan, E. Shen, and A. T. Sherman, “Scantegrity II: End-to-end
verifiability for optical scan election systems using invisible ink confir-
mation codes,” in Proc. Conf. Electronic Voting Technology (EVT’08),
Berkeley, CA, 2008, pp. 1–13, USENIX Association.

[43] N. Sastry, T. Kohno, and D. Wagner, “Designing voting machines for
verification,” in Proc. 15th Conf. USENIX Security Symp. (USENIX-
SS’06), Berkeley, CA, 2006, USENIX Association.

[44] K.-P. Yee, “Extending prerendered-interface voting software to support
accessibility and other ballot features,” in Proc. USENIX Workshop on
Accurate Electronic Voting Technology (EVT’07), Berkeley, CA, 2007,
pp. 5–5, USENIX Association.

[45] S. Delaune, S. Kremer, and M. D. Ryan, Verifying Privacy-type Prop-
erties of Electronic Voting Protocols Laboratoire Spécification et Véri-
fication, France, Research Rep. LSV-08-01, Jan. 2008, ENS Cachan.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

VILLAFIORITA et al.: DEVELOPMENT, FORMAL VERIFICATION, AND EVALUATION OF AN E-VOTING SYSTEM WITH VVPAT 661

[46] S. Campanelli, A. Falleni, F. Martinelli, M. Petrocchi, and A. Vac-
carelli, “Mobile implementation and formal verification of an e-voting
system,” in Proc. 2008 Third Int. Conf. Internet and Web Applications
and Services (ICTW’08), Washington, DC, 2008, pp. 476–481, IEEE
Computer Society.

Adolfo Villafiorita received the M.Sc. degree with
honors from the University of Genoa, Italy, in 1993,
and the Ph.D. degree from the University of Ancona,
in 1997.

He is a Senior Researcher with the Center of In-
formation Technology at Fondazione Bruno Kessler
(FBK-Irst), Trento, Italy. His current interests
include software and system engineering, security,
formal methods, and safety analysis. He has partic-
ipated and lead several industrial projects related to
the development of safety critical applications in the

railway, avionic, and aerospace sector. He is a member of ACM.

Komminist Weldemariam (S’09) received the
M.Tech. degree from the Indian Institute of Tech-
nology Bombay. He is working toward the Ph.D.
degree at the Department of Information Engineering
and Computer Science, University of Trento, Italy.

He is a member of eDeomcracy Unit at the
Center of Information Technology (FBK-IRST). His
research interests include BPR, security, software
engineering, application of formal methods, and
electronic voting systems.

Roberto Tiella received the M.Sc degree in mathe-
matics from the University of Trento, Italy, in 1993.

He is a technologist with the Center of Informa-
tion Technology at the Fondazione Bruno Kessler
(FBK-Irst), Trento, Italy. He moved to FBK in 2003,
after an experience of nine years in development of
distributed software systems in the telecommuni-
cation domain. Since 2005, he participated in the
ProVotE project with contributions in the definition
of e-voting systems architecture and in applications
of model checking techniques to support the devel-

opment of such systems.

Authorized licensed use limited to: UNIVERSITA TRENTO. Downloaded on July 09,2010 at 08:28:02 UTC from IEEE Xplore. Restrictions apply.

