Discrete Event Simulation

Xiangyang Zhang TRLab, Queen's University

CONTENTS

Theory and Concepts

- Banks et al., Discrete Event System Simulation, Prentice Hall, 2001
- White and Ingalls, Introduction to Simulation, Proc. Winter Simulation Conf., 2009

Practice

Various online resources and ns2

System and Model

- A system is a group of objects that are joined together in some regular interaction toward the accomplishment of some purpose
- A model is a representation of a real system for the purpose of studying the system
 - Models are simplified abstraction,
 - But contain enough details for the study objectives

Ways To Study A System

Simulation, Modeling & Analysis (3/e) by Law and Kelton, 2000, p. 4, Figure 1.1

Simulation

- A simulation is the imitation of the operation of a real-world process or system over time.
 - Analytical methods employ the deductive reasoning of math
 - Simulation is a numerical method
- Application areas of simulation
 - You name it !

What Is a System?

- System, environment and the boundary
 - An Input is an action of the environment on the system that causes changes in the system state.
- System and components
 - Entities and their attributes
 - State and state variables
 - Activity and event
- System outputs
 - Measured quantities which we want to known

Components in Details

- System state: a collection of variables necessary to describe the system at any time
- An entity is an object of interest in the system
 - A dynamic entity "moves" through the system
 - A static entity serves other entities
 - A resource serves dynamic entities and has a constrained capacity
- An attribute is a property of an entity
 - Should be considered as local values

Components in Details, Cont'd

- An activity represents a time period of specified length
 - Delay activity: end time known when begin
 - Queue activity: end time unknown when begin
 - Logic activity: instantaneous
- An event is an instantaneous occurrence that may change the state of the system
- Activities and events can be internal or external
 - internal: occurs within the system
 - external: occurs in the environment

Types of Models

- Continuous vs. discrete
 - State variables change continuously over time or only at a discrete set of points in time
- Static vs. dynamic
 - Represent a system at a particular point in time or over a period of time
- Stochastic vs. deterministic
 - Have random variables as inputs or not

Model Taxonomy

Discrete Event Simulation, A First Course. Steve Park and Larry Leemis, College of William and Mary

Example: Call Center

White and Ingalls, Introduction to Simulation, 2009

Matching the Concepts

- > Telephone calls are dynamic entities with three attributes
 - productType (car stereo or others),
 - startTime (the time arrives at IVR)
 - BeginWait (the time joins the queue to begin waiting for the service)
- The system state has three variables
 - the number of calls in process on the IVR
 - the number of calls of car stereo type waiting for service
 - the number of calls of other types waiting for service
- Two resource
 - Sales representatives for the two types of products
 - Note that IVR has enough capacity and is not considered as a resource
- Two types of delay activities
 - calls receiving service from the two types of sales representatives
- Two types of queue activities
 - calls waiting in the two queues
- Several logic activities
 - E.g., IVR decides whether to accept a call or not
- Events ?

The Calendar at Noon

Table 1: The Calendar at Noon

Entity	Event	Event Time	Product_Type	Start_Time	Begin_Wait
34	Arrive at Call Center	12:01:40 PM			
33	Complete Service IVR	12:02:40 PM	car-stereo	11:59:00 AM	
10	Complete Service Car-Stereo	12:04:00 PM	car stereo	11:04:20 AM	11:07:20 AM
26	Complete Service Other	12:06:00 PM	other	11:43:20 AM	11:45:04 AM
27	Complete Service Other	12:07:00 PM	other	11:45:20 AM	11:46:16 AM
1	End replication	02:00:00 PM			

Table 2: Car-Stereo Queue at Noon

Entity	Event	Event Time	Product_Type	Start_Time	Begin_Wait
11	Begin Service		car-stereo	11:17:30 AM	11:16:00 AM
24	Begin Service		car-stereo	11:37:20 AM	11:39:07 AM

Table 3: Other-Product Queue at Noon

Entity	Event	Event Time	Product_Type	Start_Time	Begin_Wait
28	Begin Service		other	11:47:40 AM	11:50:59 AM
30	Begin Service		other	11:51:40 AM	11:53: 12 AM
29	Begin Service		other	11:50:00 AM	11:53:47 AM
31	Begin Service		other	11:53:40 AM	11:55:28 AM
32	Begin Service		other	11:57: 46 AM	11:59:46 AM

White and Ingalls, Introduction to Simulation, 2009

Steps in Simulation

- Problem formulation
- Setting objectives
- Conceptual model: a high level idea
- Specification model: a document
- Computational model: a computer program
- Verified: program consistent to specification
- Validated: program consistent to the system

CONTENTS

Theory and Concepts

- Banks et al., Discrete Event System Simulation, Prentice Hall, 2001
- White and Ingalls, Introduction to Simulation, Proc. Winter Simulation Conf., 2009

Practice

Various online resources and ns2

Time and Execution

- Physical time: time in the physical system
 - Noon, December 31, 1999 to noon January 1, 2000
- Simulation time: time in the simulation
 - floating point values in interval [0.0, 24.0]
- Wall clock time: time of the execution
 - 9:00 to 9:15 AM on September 10, 1999
- Unpaced execution
 - independent simulation and wall clock time
- Paced execution
 - simulation time proportional to wall clock time

Fundamental Concepts

- System state
- Entity and attribute (object)
- Event
 - can modify state variables (state transition)
 - can schedule new events (insert them into eventQueue)
- Event queue, ordered by time
- Scheduler
 - update current time
 - invoke handler

while (true) if (! eQueue.empty()) { Event* e = eQueue.front(); clock=e->time(); e->handler()->handle(e);

What On Earth Is an Event?

- A logic activity is a event
- A delay activity is two events
 - firstEvent.handle() schedules secondEvent
- A queue activity is two events
 - secondEvent is scheduled by other means
- An external event (activity) is a input
 - AtEvent in ns2
 - start and stop are also inputs
- An internal event (activity) is the "meeting" of a dynamic entity with a static entity

Model for Call Center Example

- Dynamic entities: calls
- Static entities: five plus the sink
 - Assume a user takes a fixed time to dial one or two
 - Use a sink to clean up (e.g., write records)
- State variable: ivrCnt, carRepCnt, othRepCnt
 - Better to treat them as attributes of ivr, carRep, and othRep

Inputs: (time, type) tuples in a file

Alternatively, we can treat them as events

Call Events

- Usually define the dynamic entity as the Event object in the program
 - typedef struct {id; time; type; handler; sig} Event;
 - id: used to trace the history
 - time: scheduled time to happen
 - type: car stereo or others
 - handler: which static entity to handle the event
 - sig: how the handler should handle it

IVR

struct lvr {
 int cnt;
 const int Max;
 void handle(Event*);
 void decCnt();
} ivr;

Ivr::handle(Event* e)

- set handler to carQueue or othQueue according to type
- delay() returns a delay that the user dials 1 or 2
- can invoke sink.handle() instead of insert an event; notice that e->time is not updated

if (cnt < Max) {
 update event e={
 time+=delay(),
 handler=carQueue or othQueue,
 sig=ARRIVAL}
 eventQueue.insert(e.time, e)
 cnt++;
} else {
 update event e={
 handler=sink,
 sig=ARRIVAL}
 eventQueue.insert(e.time, e)</pre>

carQueue & othQueue

struct Queue{
 list<Event*> queue;
 Rep* rep;
 void handle(Event*);
} carQueue, othQueue;

Queue::handle(Event* e)

- rep is initialized to carRep or othRep according to type
- DEPARTURE time is unknown, do not insert to eventQueue, put it somewhere else temporarily
- invoke rep to handle if the queue is previously empty

update event e={ handler=rep, sig=ARRIVAL} queue.insert(e); if (queue.size()==1) e->rep.handle(e);

carRep & othRep

struct Rep{ int cnt; const int Max; lvr *ivr; Queue* queue; void handle(Event*); } carRep, othRep;

Queue::handle(Event* e)

- handle both ARRIVAL and DEPARTURE
- ivr, queue and Max are initialized according to the type
- delay() returns an interval to process the call

if(sig = = ARRIVAL)while(cnt <Max && !queue.emtpy()) { cnt++; ivr->decCnt(); e = queue.front(); queue.pop(); *update event e={ time+=delay();* handler=carRep; *sig=DEPARTURE*} eventQueue.insert(e); else if (sig==DEPARTURE) { cnt--; while(!queue.emtpy()) { cnt++; ivr.decCnt(); e = queue.front(); queue.pop(); *update event e={* handler=sink, sig=ARRIVAL eventQueue.insert(e);

Summary

- > An event queue is an ordered list of events,
- An event can be inserted into the event queue by another event or as inputs
- Scheduler run is a indefinite loop
- A logic activity can be
 - executed right away, or
 - scheduled as an event occurring at the current time
- A delay activity is two events, the second is scheduled by the first
- A queue activity is two events, the second needs to be temporarily stored somewhere, and is not put into the event queue by the first

Exercise About ns2

- How to model a source that sends at rate B?
- How to model a point-to-point link LK with delay D and bandwidth B?
- How to model a CSMA/CD link?
- How to model a node that has an output buffer of size S and uses PQ scheduling?
- How to model the layer 2—4 processing of packets inside a node?
- How to model a routing protocol (e.g., RIP) on a network?