
Sums of Uncertainty: Refinements Go Gradual
Long version of paper to appear at POPL 2017, including supplementary material

Khurram A. Jafery Jana Dunfield
University of British Columbia

Vancouver, Canada
kjafery@cs.ubc.ca jd169@queensu.ca

Abstract

A long-standing shortcoming of statically typed functional lan-
guages is that type checking does not rule out pattern-matching
failures (run-time match exceptions). Refinement types distinguish
different values of datatypes; if a program annotated with refine-
ments passes type checking, pattern-matching failures become im-
possible. Unfortunately, refinement is a monolithic property of a
type, exacerbating the difficulty of adding refinement types to non-
trivial programs.

Gradual typing has explored how to incrementally move be-
tween static typing and dynamic typing. We develop a type sys-
tem of gradual sums that combines refinement with imprecision.
Then, we develop a bidirectional version of the type system, which
rules out excessive imprecision, and give a type-directed transla-
tion to a target language with explicit casts. We prove that the static
sublanguage cannot have match failures, that a well-typed program
remains well-typed if its type annotations are made less precise,
and that making annotations less precise causes target programs to
fail later. Several of these results correspond to criteria for gradual
typing given by Siek et al. (2015).

Categories and Subject Descriptors F.3.3 [Mathematical Logic
and Formal Languages]: Studies of Program Constructs—Type
structure

Keywords gradual typing, refinement types

1. Introduction

A central feature of statically typed functional languages is pattern
matching over user-defined datatypes that combine several funda-
mental constructs: sum types (for example, an element of a bool
datatype can be either True or False), recursive types (such as
lists), and polymorphic types. The aspect of ML datatypes that cor-
responds to sum types is the focus of this paper.

Static typing is said to catch run-time errors—at least, errors
that would manifest in a dynamically typed language as tag check
failures, such as subtracting a string from a number. Using the ven-
erable encoding of dynamic typing as injections into a datatype
Dynamic (Abadi et al. 1991), these tag check failures become er-
rors raised in the “fall-through” arm of a case expression over
Dynamic. The impossibility of such errors is a convincing argu-
ment in favour of static typing.

[Copyright notice will appear here once ’preprint’ option is removed.]

Yet Standard ML programmers frequently write code that is es-
sentially the same as the scorned operations on Dynamic—and that
has the same unfortunate risk of run-time errors. The definition of
SML (Milner et al. 1997) requires compilers to accept nonexhaus-
tive case expressions, which do not cover all the possible instances
of the datatype. A nonexhaustive case expression is isomorphic to
an implicit tag check over Dynamic: the non-error case is the only
one written out explicitly, while an error case is inserted by the
sneaky compiler.

In fairness, the definition encourages compilers to warn about
nonexhaustive case expressions. But this only causes programmers
to write their own “raise Match” arms, even when the fall-through
case is impossible because of an invariant known by the program-
mer. This leads to verbose code. In response, Freeman and Pfenning
(1991) developed datasort refinements that can encode many invari-
ants about datatypes, allowing compilers to accept “nonexhaustive”
case expressions when they are known to cover all possible cases.
For case analyses of refined types, the nonexhaustiveness warning
becomes a nonexhaustiveness error, which the programmer should
solve by declaring and using refinements of the datatype.

Unfortunately, this approach is all-or-nothing: either a type is
refined and the compiler rejects a nonexhaustive match over it,
or the type is not refined and the compiler issues a noncommit-
tal warning. In practice, programmers may want to migrate code
written with unrefined types to code that uses refined types; doing
this in a single pass over a nontrivial program is extremely diffi-
cult. Instead, programmers should be able to add type annotations
gradually. This was essentially the motivation for gradual typing
(Siek and Taha 2006), except that, where they contemplated migra-
tion from dynamically typed code to statically typed code, we are
interested in migration from code that is statically typed (modulo
nonexhaustiveness) to code that is more statically typed.

Gradual typing is about the possibility of uncertainty: in some
cases, one knows exactly what type one has; in other cases, one
does not even know whether something is an integer. In this paper,
we always know whether something is an integer (or a function,
etc.); uncertainty is possible, but only about sum types. This is
like the uncertainty of SML datatypes, with one key difference: we
allow SML-style uncertainty and refinement-style certainty.

As an example, consider a red-black tree library that passes the
SML type checker, but does not use refinement types. Datasort re-
finements can express the colour invariant, which says that every
red node’s children must be black. By reasoning about how the li-
brary functions should work, a programmer can add annotations
that say when the colour invariant should hold, which the refine-
ment type checker will verify. With gradual refinements, this rea-
soning can be done gradually and in tandem with testing. In fact,
the programmer could start by annotating a single function r. If all
test cases use r in accordance with its refinement type annotation,
the programmer gains confidence that the annotation is correct; if
any tests violate the annotation, then either the annotation is wrong,

1 2020/8/16

or there is a bug somewhere else. Thus, the more precise invariants
guaranteed by refinements can be verified piecemeal.

Contributions. We make the following contributions:

• We define a type assignment system of gradual sums that in-
cludes both static refinement sums and dynamic sums. Pro-
grams, and even individual types, can be partly static and partly
dynamic. However, this system does not readily yield an algo-
rithm, and it allows typing derivations that are gratuitously dy-
namic (more dynamic than indicated by the programmer’s type
annotations), which give rise to gratuitous run-time errors.

• We define a bidirectional type system that is easy to implement
and suppresses gratuitous dynamism, and prove that it corre-
sponds to the type assignment system. We also prove that a
well-typed program remains well-typed if its type annotations
are made less precise (more dynamic).

• We define a type-directed translation to a target language with
explicit casts. We prove that, given one program with two sets
of type annotations (one more precise than the other), the more
precisely typed one “fails earlier”: either they produce the same
result, or they both fail, or the more precisely typed program
fails earlier. (For technical reasons, part of this result uses a
slightly different version of the translation.)

• We define static and dynamic fragments of the source type sys-
tem. The static fragment is related to classic datasort refinement
type systems; the dynamic fragment is related to Standard ML.
We prove that translating a program in the static fragment yields
a program that cannot raise Match.

e⇒⇐A

Source
bidirectional
type system

e : A
Thm. 2

Thm. 3
M : T

type-directed
translation

Thm. 9

Source
type assignment

system

M ′ : T
steps to

type safety (Thms. 6, 7)

Target type system

eS ⇒
⇐AS

static sublanguage

M : T
matchfail-free

by Thm. 10

M ′ : T
matchfail-free

by Thm. 8

Figure 1. Some key results

Figure 1 depicts some of the results: source programs e are
translated to target terms M, which step to M ′, preserving typing;
source programs eS with only static types are translated to target
terms with no match failures.

For space reasons, lemmas, proofs, and a few definitions can be
found in the supplementary material.

2. Overview

We define a type system that has one of the essential capabilities
of datasort refinements: the types can express the knowledge that a
value is a particular alternative of a datatype; for example, that a
value is not simply a list—either Nil or Cons(. . .)—but specifically
Cons(. . .). We represent this knowledge through sum types, not
through the usual form of datasort refinements, but that is not the
important difference.

• Like conventional datatype systems and datasort refinement
systems, we can express that a value is either inj1 e1 where
e1 has type A1 or inj2 e2 where e2 has type A2. Like datasort
refinement systems, we only allow an exhaustive (two-armed)
case expression over such a type: if we don’t know which

injection it is, the programmer must handle both cases. This
is a standard sum type A1 + A2.

• Like datasort refinement systems, we can express that a value
must be a particular injection. We use a subscript sum A1 +kA2

for the type of the kth injection into A1 + A2. For example,
inj2 True has type Int +2 Bool, but inj1 5 has type Int +1

Bool. Also like datasort refinement systems, we allow case
expressions over such types to have just one arm, because we
know which injection we have; there is no need to handle an
impossible case.

• Like conventional datatype systems, but unlike datasort refine-
ment systems, we can also express that we don’t know which
injection we have, but want to allow nonexhaustive matches: the
dynamic sum A1 +? A2 can be deconstructed by a one-armed
case expression. If, at run time, the specified arm does not match
the scrutinee, it is a run-time error.

The three sum types +, +1, and +2 are essentially a datasort
refinement system. Following datasort refinement systems, A1 +1

A2 and A1 +2 A2 are subtypes of A1 + A2.
We can also make +? a subtype of +: the only elimination form

permitted for + is a two-armed case, which is always safe. But +?

must not be a subtype of +1 and +2, because +? contains both left
and right injections; through subsumption, we could use a one-
armed case on the left injection inj1 to eliminate a value of type
+2, which would fail at run time.

This yields the following subtype relation:

A1 + A2

A1 +1 A2 A1 +2 A2

A1 +? A2

For brevity, we can omit A1 and A2 from the diagram.

+

+1 +2

+?

Comparison to datasort refinements. Our type A1 + A2 corre-
sponds to the top datasort of a datatype—the datasort that contains
all the values of that datatype. A case expression on + must provide
two arms, one for each injection.

Our type A1 +1 A2 corresponds to a datasort that includes
exactly the values of the form c1(v1) where v1 : A1; similarly,
A1 +2 A2 corresponds to a datasort whose values are c2(v2) where
v2 : A2.

In contrast, our type A1 +? A2 corresponds to the unrefined
datatype. In datasort refinement systems, unrefined datatypes are
part of the unrefined type system; the top datasort for a datatype
contains the same values as the unrefined datatype, and is often
notated in exactly the same way—but the unrefined datatype is not
usable as a datasort. In contrast, both + and +? are types in our
system. Moreover, they can be freely combined.

2.1 Developing Typing and Subtyping

Verificationists and pragmatists. In the verificationist approach
to type theory, followed by Gentzen (1934) and Martin-Löf (1996),
introduction forms are taken as the definition of a type; for exam-
ple, a boolean type is defined by its constructors True and False.
The elimination forms are secondary. In the pragmatist approach
considered by Dummett (1991) and Zeilberger (2009), elimination
forms are taken as the definition, and the introduction forms are

2 2020/8/16

secondary. For example, a boolean type is defined primarily by its
elimination form (say, an if-then-else expression).

In our setting, neither strict verificationism nor strict pragma-
tism seems adequate. Verificationism serves refinements well: the
introduction rules directly express the intuition that refinements
identify subsets of values. But introduction rules alone cannot dis-
tinguish A1 +A2 and A1 +? A2, because they have identical sets of
inhabiting values (namely, all inj1 v1 and inj2 v2 such that v1 : A1

and v2 : A2). The difference must lie in the elimination forms: only
a two-armed case can eliminate +, while +? can be eliminated by
a two-armed case or a one-armed case (since the point is to allow
nonexhaustive matches). To start from a better-understood founda-
tion, we begin with the introduction rules.

Designing a type system can require trading off simplicity in
one set of rules for complexity in another. We choose to minimize
the number of typing rules, even though it leads to more compli-
cated subtyping.

Introduction rules. Sum types need introduction forms. Since +1

should contain only left injections, and +2 should contain only right
injections, we could have a rule

Γ ⊢ e : Ak

Γ ⊢ (injk e) : (A1 +k A2)
+kIntro

(This rule is really two rules, one for (inj1 v) with a premise
Γ ⊢ e : A1 and one for (inj2 v) with a premise Γ ⊢ e : A2.)

Combined with subsumption, this rule gives the desired inhab-
itants to +, that is, both left and right injections. However, it does
not add any inhabitants to +?, so we could add another rule:

Γ ⊢ e : Ak

Γ ⊢ (injk e) : (A1 +
?
A2)

+?Intro

This goes against our goal of minimizing the number of typing
rules: now there are two rules that type injk e directly, that is,
without using subsumption. The types +k (given by +kIntro) and +?

(given by +Intro) are not in a subtyping relation with each other—
neither is a subtype of the other. Hence, neither rule encompasses
the other, and both are required.

We can avoid this nondeterminism by adding more sum types.
By placing the additional sum types at the bottom of the subtyping
relation, we can write a single introduction rule that will (through
subsumption) populate all of our types with the desired injections.

+

+1 +2

+?

+?
1 +?

2

Now, we need only one introduction rule:

Γ ⊢ e : Ak

Γ ⊢ (injk e) : (A1 +
?
k A2)

+?
k

Intro

We can think of +?
1 and +?

2 as “innate” types: when an injection injk
is created, it has type +?

k. Through subtyping, we can interpret +?
k

as +k, or as the dynamic sum +?.

Elimination rules. To design the elimination rules, it is helpful
to annotate the subtyping diagram with the elimination forms that
each type should allow. We write L for a one-armed case expression

on the left injection (inj1), R for a one-armed case on the right
injection (inj2), and B for a two-armed case.

+
B

+1L, B +2 R, B

+?

L, R, B+?
1 +?

2L, R, B L, R, B

According to this diagram, all types support a two-armed case
expression B. The types +1 and +?

1 are inhabited only by inj1, so
they support the left one-armed case L; similarly, +2 and +?

2 support
the right one-armed case R. However, +?

1 and +?
2 are subtypes of +?,

so by subsumption they also support the “wrong” one-armed cases.
The dynamic sum +? supports all three eliminations, with the risk
of failing at run time.

Handling the two-armed case expression is straightforward: all
the sum types support that elimination form, and all the sum types
are subtypes of +, so we can write a single rule that types the
scrutinee with +. Given e : (A1 φA2) where φ is any of our sum
types, subsumption can be used to derive e : (A1 + A2).

Γ ⊢ e : (A1 + A2)
Γ, x1 : A1 ⊢ e1 : B
Γ, x2 : A2 ⊢ e2 : B

Γ ⊢ case(e, inj1 x1.e1, inj2 x2.e2) : B
+Elim

One-armed case expressions are more troublesome. Consider a left
one-armed case, which matches only values of the form inj1 v. Any
subtype of +1 will work, so we can write a rule that handles +1 and
+?
1 (and symmetrically, +2 and +?

2). However, +? should support a
left one-armed case, but +? is not a subtype of +1, leading us to a
second rule that handles +?.

Since +? supports one-armed cases, it violates a type-theoretic
principle: the introduction and elimination rules of a logical con-
nective should be in harmony—that is, they should be locally sound
(Dummett 1991) and locally complete (Pfenning and Davies 2001).
Local soundness holds when the elimination rules are not more
powerful than the introduction rules. Consider some standard rules
for pairs:

Γ ⊢ e1 : A1 Γ ⊢ e2 : A2

Γ ⊢ (e1, e2) : (A1 ×A2)

Γ ⊢ e : (A1 ×A2)

Γ ⊢ (projk e) : Ak

These rules are locally sound: given something of type (A1 ×A2),
projection can only extract things of type A1 and A2.

Dually, local completeness says that the elimination rules can
extract all the information used in the introduction rules. (For a
concise explanation of harmony, see Pfenning (2009).)

When the Curry–Howard correspondence holds, a type is in-
habited iff the corresponding proposition is provable. Consider the
following derivation (eliding empty contexts):

e : A1

(inj1 e) : (A1 +
?
1 A2) (A1 +

?
1 A2) ≤ (A1 +

?
A2)

(inj1 e) : (A1 +
?
A2) x : A2 ⊢ x : A2

case(inj1 e, inj2 x.x) : A2

By constructing inj1 e, we have shown that A1 is inhabited. By
subsumption, inj1 e has type A1 +? A2. An elimination rule for +?

must permit a one-armed case on the second injection, ostensibly
having type A2. Simply returning x as the result of the case should
show that the proposition corresponding to A2 is provable. But we
never constructed something of type A2, so +? does not satisfy local
soundness.

3 2020/8/16

As we did for the introduction forms, a single elimination rule
can suffice: we just need more sum types. For the introduction
forms, we added types at the bottom of the subtyping relation. Since
eliminations should behave dually, we will add types at (or, at least,
near) the top of the subtyping relation.

+
B

+∗

1L, B +∗

2 R, B

+1L, B +2 R, B+?

L, R, B
+?
1 +?

2L, R, B L, R, B

The types +∗

1 and +∗

2 support exactly the same eliminations as the
subscript sums +1 and +2, but unlike the subscript sums, they are
supertypes of the dynamic sum +?.

Then the single elimination rule for one-armed cases is

Γ ⊢ e : (A1 +
∗

k A2) Γ, x : Ak ⊢ ek : B

Γ ⊢ case(e, injk x.ek) : B
+∗

kElim

We could simplify the diagram slightly by removing the edge from
+? to +, since we now have an alternate routing via the +∗

k types.

The high-water mark. Have we added enough sum types? We
believe so. First, the additional types (beyond +, +1, +2 and +?)
are motivated by limiting the number of typing rules. Second,
there seem to be no other types that could be useful. Consider the
following table:

elimination forms supported
inhabitants B only B and L B and R B, L, and R

inj1 note (a) +1 note (b) +?
1

inj2 note (a) note (b) +2 +?
2

inj1 and inj2 + +∗

1 +∗

2 +?

In the spaces marked “note (a)”, such a type would pointlessly
restrict the possible elimination forms: the top left space would be a
type that could only be eliminated by a two-armed case (“B only”),
but was inhabited only by left injections inj1.

In the spaces marked “note (b)”, such a type would allow one-
armed cases that always fail: a left one-armed case L on inj2, or a
right one-armed case R on inj1. We provide +? to give programmers
the freedom to use one-armed cases that may fail; it seems pointless
to give them one-armed cases that are guaranteed to fail.

If anything, we may have more sum types than we want in
practice: having fewer typing rules is good, but showing +∗

1 or +?
2

in a compiler error message seems unhelpful.

2.2 Developing Precision

Our ultimate goal is a language in which precisely typed code and
imprecisely typed code can coexist. In precisely typed code, the
impossibility of match failures is a consequence of typing. In im-
precisely typed code, bugs may lead to match failures, but impre-
cisely typed code can be correct: a one-armed case expression may
be exhaustive in practice, thanks to some invariant not expressed
through the type system.

The approach to typing and subtyping, developed above, al-
ready permits some forms of coexistence. For example, if a func-
tion f expects a sum type + and we have some x of type +?, we can

pass x to f. In the derivation below, Γ = f : (A1 + A2) → B, x :

(A1 +? A2).

Γ ⊢ f : (A1 + A2) → B

Γ ⊢ x : A1+
?
A2 A1+

?
A2 ≤ A1+A2

Γ ⊢ x : A1 + A2

Γ ⊢ f x : B

What about the reverse situation? Suppose a function g from the
imprecisely typed part of the program expects +?, and we want to
pass something of type +. This is possible, but annoying: we have
to use a two-armed case to decompose the sum, and immediately
rebuild it at type +?. Here, Γ = g : (A1 +? A2) → B, y : (A1 +A2).

. . .

Γ, x1 : A1 ⊢ inj1 x1 : (A1 +
?
A2)

Γ, x2 : A2 ⊢ inj2 x2 : (A1 +
?
A2)

Γ ⊢ g
(

case(y, inj1 x1.inj1 x1, inj2 x2.inj2 x2)
)

: B

To support directly calling imprecise code from precise code, we
develop precision relations on sum constructors and types. These
relations are inspired by precision relations developed in gradual
typing, e.g. Siek and Vachharajani (2008) and Garcia et al. (2016),
where ? (or ⋆) is an unknown, and thus very imprecise, type.

Our static sums +, +1, +2 are precise in the sense that the
“reach” of their information is known. If we have a closed value
v of type A1 + A2, the type system “knows” only that v is either
a left or right injection, with no further information. So the type
system rejects a one-armed case on v.

On the other hand, the dynamic sum +? is imprecise. Some
programs that use +? will have run-time match failures, but some
programs that use +? will not have such failures, even some that
use one-armed cases. If such one-armed cases always succeed, it
is because the program follows invariants that are not expressed in
the types—but which may be known by the programmer.

So we would expect + to be more precise than +?, notated
+ ⊑ +? (which can also be read “+ is less imprecise than +?”). What
about +1 and +2? They should be more precise than +?; indeed, +?

should be more imprecise than everything else. How do +1 and
+ compare? It is true that +1 has fewer inhabitants than +, but
precision is not subtyping. All the static sums have the same degree
of certainty: they are equally certain about different propositions
(being a left injection, being a right injection, or being either). Thus,
we will put +1, +2 and + together at the bottom of the precision
relation ⊑ (they are the least imprecise), with +? at the top:

+?

+1 +2+

What properties should precision have? In gradual typing, an im-
portant property of precision is that a program should remain well-
typed when type annotations are made less precise. In the limit,
we should be able to replace all static sums in annotations with +?.
We call this property varying precision; it is part of the “gradual
guarantee” of Siek et al. (2015). (Making annotations more precise
does not necessarily preserve typing: for example, changing a +?

annotation on inj2() to +1.)
This property reinforces the intuition that +? should be at the

top: this is what lets us substitute +? for more-precise sums. Dually,
the static sums should be at the bottom: replacing a sum with a
static sum should not, in general, preserve typing.

With this property in mind, how precise are +?
i and +∗

i , which we
put in to reduce the number of typing rules? It doesn’t make sense
to “mix subscripts”: moving between +2 and +?

1 in an annotation, or
between +1 to +∗

2, never preserves typing. Types with 1 subscripts
should stay on the left of the edge from + to +?, and 2 subscripts
should stay on the right.

4 2020/8/16

Hence, we will place +?
1 and +∗

1 left of the vertical edge (from +

to +?), and +?
2 and +∗

2 right of the vertical edge.
Moving to a less precise type should not lose inhabitants, be-

cause the lost inhabitants will become ill-typed. Suppose we put
+∗

1 below +?
1, making +∗

1 more precise. The sum +∗

1 contains both
left and right injections (by the above subtyping relation, +?

2 ≤
+∗

1), meaning that +∗

1 has more inhabitants than +?
1. Therefore, we

should not have +∗

1 ⊑ +?
1.

The reverse, where +?
1 ⊑ +∗

1, is more plausible but would have
unfortunate consequences (discussed at the end of this section). So
we have no edge between +?

1 and +∗

1.

+?

+∗

1 +∗

2

+?
1 +?

2

++1 +2

Lifting this relation ⊑ on sum constructors to sum types is straight-
forward: if δ ′ ⊑ δ then (A ′

1 δ
′A ′

2) ⊑ (A1 δA2), provided A ′

1 ⊑
A1 and A ′

2 ⊑ A2. For function types, we diverge from subtyp-
ing: precision is covariant in the codomain and in the domain. This
is consistent with precision in gradual typing, e.g. Siek and Vach-
harajani (2008) and Garcia et al. (2016), and with the refinement
relations of Freeman (1994, p. 31) and Davies (2005).

Can we use this relation to type the above example g y, where
we want to pass a value of type + to a function expecting something
of +? type? Subtyping is internalized through a subsumption rule
(the rule on the left); we extend the rule to allow loss of precision:
in addition to moving from A to a supertype B, we can move from
B to a less-precise B ′.

Γ ⊢ e : A A ≤ B

Γ ⊢ e : B
sub.

Γ ⊢ e : A A ≤ B B ⊑ B
′

Γ ⊢ e : B
′

sub.+loss

Imprecision is fundamentally unsound: Using B ⊑ B ′, we move
from a precise type (containing, say, + and +2) to an imprecise
type containing +?. Above, we showed that +? does not satisfy
local soundness. The purpose of the B ⊑ B ′ premise is to allow
more-precisely-typed code to interface with less-precisely-typed
code. However, a type checker that lost precision wherever possible
would behave like a type checker for a system that only had +?.

In addition to losing precision after subtyping, we allow gaining
precision before subtyping:

Γ ⊢ e : A
′

A ⊑ A
′

A ≤ B B ⊑ B
′

Γ ⊢ e : B
′

gain+sub.+loss

Gaining precision is clearly unsound: A ⊑ A ′ allows moving from
+? to +1 or +2. While unsound, this is needed for the property
of varying precision: the typing of a single part of a program can
become more or less precise, independent of the typing of the rest
of the program.

We compose the three premises—gaining precision A ⊑ A ′,
subtyping A ≤ B, and losing precision B ⊑ B ′—into a relation
A ′

❀ B ′, called directed consistency.
With this relation, allowing +?

1 ⊑ +∗

1 would nearly erase the
distinction between +∗

1 and +∗

2: first, +?
1 ⊑ +∗

1; second, +?
1 ≤ +∗

2;
third, +∗

2 ⊑ +∗

2. (An earlier version of our system did allow +?
1 ⊑

+∗

1—see Appendix C.)
Ideally, we should apply imprecision only when the program-

mer intends it. This goal motivates the bidirectional system in Sec-
tion 4.

3. Source Type System

i ::= 1 | 2

Source sums δ ::= + | +i | +? | +?
i | +∗

i

Source expressions e ::= () | x | λx. e | e1 e2 | (e :: A)
| inji e
| case(e, inj1 x1.e1, inj2 x2.e2)
| case(e, inji x.ei)

Source types A,B ::= Unit | AδB | A → B

Source typing contexts Γ ::= · | Γ, x : A

Figure 2. Source syntax

The syntax of the source language is in Figure 2. Here, and
throughout the paper, i ranges over 1 and 2. The symbol δ ranges
over the sum constructors: + is the standard (static) sum, +1 and
+2 are subscript sums denoting the ith injections, and +? is the
gradual or dynamic sum. The final sum constructors, +?

i and +∗

i , are
motivated by the desire to have the smallest number of introduction
and elimination rules, as described in Section 2.

Source expressions are the unit (), variables x, abstraction
λx. e and application e1 e2, sum injection inji e, annotation (or
ascription) (e :: A), a two-armed case that eliminates +, and a
one-armed case that eliminates +∗

i .
Types A and B are Unit, sums AδB, and functions A → B.

Typing contexts Γ are unordered sets of typings x : A, where the x
are assumed to be distinct.

3.1 Subtyping and Precision

Figure 3 gives the rules for a subsum judgment on sum constructors,
written δ ′ ≤ δ. These rules follow the diagram in Section 2. The
subtyping rule for sum types uses the subsum judgment. As is
standard, the subtyping rule for functions is contravariant in the
domain (A1 ≤ A ′

1) and covariant in the codomain (A ′

2 ≤ A2).
Precision on sum constructors (top of Figure 4) corresponds

to the diagram from Section 2. On function types, precision is
covariant in the domain, as discussed above.

In both subtyping and precision (for types), reflexivity and tran-
sitivity are admissible rules. Including transitivity rules would be
fine on paper, but hard to implement since the middle type must be
guessed. (The relations on sum constructors are a small finite set, so
we do include transitivity rules; for an implementation, we would
take the transitive closure.)

Subtyping and precision compose to form the directed consis-
tency relation, which has a single rule, DirConsU, in Figure 5. The
“U” in the name comes from the depiction to the right of the rule.
Since precision is reflexive, DirConsU includes all pairs of types
that are related by subtyping.

3.2 Typing Rules

Typing rules for the source language are shown in Figure 6. The
rule for variables, SVar, is standard. Rules SAnno and SUnitIntro
are standard, as are the rules S→Intro and S→Elim for functions.

Rule SCSub is a consistent subsumption rule: if e has type A ′

and A ′ is directed consistent (Figure 5) with A, then e has type A.
The rules for sums (SSumIntro, SSumElim1, SSumElim2)

were developed in Section 2.1.

4. Bidirectional Source Typing

Motivation. The type assignment system of Section 3 includes all
the sensible sum types, along with subtyping and precision. By it-
self, the consistent subsumption rule SCSub makes type inference,
and even type-checking, nontrivial: we should apply SCSub only

5 2020/8/16

δ ′ ≤ δ Sum δ ′ is a subsum of δ

δ ≤ δ +
?
i ≤ +

?
+

? ≤ +
∗

i +
?
i ≤ +i

+i ≤ +
∗

i +
∗

i ≤ +

δ
′ ≤ δ1 δ1 ≤ δ

δ
′ ≤ δ

A ′ ≤ A Type A ′ is a subtype of A

Unit ≤ Unit

A
′

1 ≤ A1 A
′

2 ≤ A2 δ
′ ≤ δ

(A
′

1 δ
′
A

′

2) ≤ (A1 δA2)

A1 ≤ A
′

1 A
′

2 ≤ A2

(A
′

1 → A
′

2) ≤ (A1 → A2)

Figure 3. Source subtyping

δ ′ ⊑ δ Sum δ ′ is more precise than δ

δ ⊑ δ +i ⊑ +
?
i +i ⊑ +

∗

i +
∗

i ⊑ +
?

+
?
i ⊑ +

?
+ ⊑ +

?

δ
′ ⊑ δ1 δ1 ⊑ δ

δ
′ ⊑ δ

A ′ ⊑ A Type A ′ is more precise than A

Unit ⊑ Unit

A
′

1 ⊑ A1 A
′

2 ⊑ A2 δ
′ ⊑ δ

(A
′

1 δ
′
A

′

2) ⊑ (A1 δA2)

A
′

1 ⊑ A1 A
′

2 ⊑ A2

(A
′

1 → A
′

2) ⊑ (A1 → A2)

Figure 4. Precision

A ′
❀ B ′ Type A ′ is directed consistent

with B ′

A ⊑ A
′

A ≤ B B ⊑ B
′

A
′
❀ B

′
DirConsU

A ′

A ≤ B

B ′

⊑ ⊑

Figure 5. Directed consistency

where necessary. This problem arises even with ordinary subsump-
tion (subtyping, without changes of precision), which “forgets” that
e has a smaller type. Allowing changes of precision makes the
problem worse: loss of precision “forgets” that e has a more precise
type, while gain of precision may add a downcast that fails at run
time.

Such algorithmic difficulties could, perhaps, be resolved through
careful design; the real problem with the type assignment system
is that it types too many programs. Since SCSub is always applica-
ble, any expression meant to be typed using only + could be typed
using +? instead.

A related problem is that our elimination rules for sums, while
elegant, are excessively permissive: since +?

2 is a subtype of +∗

1, an
expression of type +?

2 can be eliminated with a left-arm case—even
though such an elimination is guaranteed to cause a match failure
at run time. Since this is a consequence of the subtyping part of
SCSub, it wouldn’t help to remove the changes of precision from
directed consistency.

Γ ⊢ e : A Under typing context Γ , expression e has type A

Γ(x) = A

Γ ⊢ x : A
SVar

Γ ⊢ e : A
′

A
′
❀ A

Γ ⊢ e : A
SCSub

Γ ⊢ e : A

Γ ⊢ (e :: A) : A
SAnno

Γ ⊢ () : Unit
SUnitIntro

Γ, x : A ⊢ e : B

Γ ⊢ (λx. e) : (A → B)
S→Intro

Γ ⊢ e1 : A → B
Γ ⊢ e2 : A

Γ ⊢ (e1 e2) : B
S→Elim

Γ ⊢ e : Ai

Γ ⊢ (inji e) : (A1 +
?
i A2)

SSumIntro

Γ ⊢ e0 : A1 +
∗

i A2 Γ, x : Ai ⊢ e : A

Γ ⊢ case(e0, inji x.e) : A
SSumElim1

Γ ⊢ e0 : A1 + A2

Γ, x1 : A1 ⊢ e1 : A
Γ, x2 : A2 ⊢ e2 : A

Γ ⊢ case(e0, inj1 x1.e1, inj2 x2.e2) : A
SSumElim2

Figure 6. Source typing

We solve all of these problems via a bidirectional version of
the system. In many settings, bidirectional typing has been chosen
to overcome fundamental limitations of type inference, such as
undecidability of inference for object-oriented subtyping (Pierce
and Turner 1998), dependent types (Xi and Pfenning 1999; Pientka
and Dunfield 2010) and first-class polymorphism (Dunfield and
Krishnaswami 2013). It can also be motivated by better localization
of type error messages. Our motivation is different: we want to stop
the type-checker from doing certain things unless the programmer
has signalled that they really want to do those things. Programmers
signal their intent through type annotations, which are propagated
through the bidirectional typing rules.

In Section 4.3, we show that the bidirectional system is sound
and complete (under annotation) with respect to the type assign-
ment system of Section 3.

Checking and synthesis. Bidirectional typing splits typing into
two judgments. The checking judgment Γ ⊢ e ⇐ A is read “e
checks against type A”; the synthesis judgment Γ ⊢ e ⇒ A is
read “e synthesizes type A”. Both judgments can be interpreted as
saying that e has type A; the difference is that in checking, the type
A is already known, while synthesis infers A from the available
information (Γ and e). The type in the checking judgment “flows”
from some type annotation, either directly or (usually) indirectly.

An important advantage of the bidirectional system is a kind of
subformula property (Gentzen 1934; Prawitz 1965). In our case,
this property says that in a derivation of Γ ⊢ e ⇒ A, every type
synthesized or checked against is derived from types found in Γ and
e. For Γ ⊢ e ⇐ A, every such type is derived from Γ , e, and A.
Consequently, dynamic sums cannot appear out of nowhere: they
result only from type annotations. We exploit this property in, for
example, the proof of Theorem 5.

From type assignment rules to bidirectional rules. As is often
the case with bidirectional type systems, our bidirectional rules
will strongly resemble our type assignment rules. In general, we
construct a bidirectional rule by replacing “:” with “⇐” or “⇒”.
The main question is when to use checking, and when to use
synthesis. Checking is more powerful than synthesis; for a premise,
we generally prefer to make it a checking judgment, but a checking
conclusion may increase the number of required type annotations.

6 2020/8/16

Γ ⊢ e ⇐ A

Γ ⊢ e ⇒ A

Under context Γ , expr. e checks against type A

Under context Γ , expr. e synthesizes type A

Γ(x) = A

Γ ⊢ x ⇒ A
SynVar

Γ ⊢ e ⇒ A
′

A
′
❀ A

Γ ⊢ e ⇐ A
ChkCSub

Γ ⊢ e ⇐ A

Γ ⊢ (e :: A) ⇒ A
SynAnno

Γ ⊢ () ⇐ Unit
ChkUnitIntro

Γ, x : A ⊢ e ⇐ B

Γ ⊢ (λx. e) ⇐ (A → B)
Chk→Intro

Γ ⊢ e1 ⇒ (A → B) Γ ⊢ e2 ⇐ A

Γ ⊢ (e1 e2) ⇒ B
Syn→Elim

Γ ⊢ e ⇐ Ai +
?
i ≤ δ

Γ ⊢ (inji e) ⇐ (A1 δA2)
ChkSumIntro

Γ ⊢ e0 ⇒ (A1 δA2)
δ ⇒⇒ +

∗

i Γ, x : Ai ⊢ e ⇐ A

Γ ⊢ case(e0, inji x.e) ⇐ A
ChkSumElim1

Γ ⊢ e0 ⇒ (A1 δA2)
δ ⇒⇒ +

Γ, x1 : A1 ⊢ e1 ⇐ A
Γ, x2 : A2 ⊢ e2 ⇐ A

Γ ⊢ case(e0, inj1 x1.e1, inj2 x2.e2) ⇐ A
ChkSumElim2

δ ⇒⇒ δ ′ Sum δ synthesizes sum δ ′

+
?
i ⇒⇒ +

∗

i +i ⇒⇒ +
∗

i +
?
⇒⇒ +

∗

i +
∗

i ⇒⇒ +
∗

i δ ⇒⇒ +

Figure 7. Bidirectional typing (source)

For the most part, we follow the recipe of Davies and Pfenning
(2000); Dunfield and Pfenning (2004): introduction rules check,
and elimination rules synthesize. More precisely, the judgment that
includes the relevant connective—the principal judgment—should
check for an introduction rule, and synthesize for an elimination
rule.

Doing this step naturally determines the directions of many
other judgments. For example, in rule Syn→Elim, the principal
judgment is the first premise Γ ⊢ e1 ⇒ (A1 → A2). Since
the type in a synthesis judgment is output, deriving this premise
tells us what A1 is, enabling us to make the second premise a
checking judgment. The premise also tells us what A2 is—so we
can make the conclusion a synthesis judgment. Consequently, ap-
plications e1 e2 will synthesize a type, without any local annota-
tion, whenever the function e1 synthesizes. In rule Chk→Intro,
not following the recipe—by making the conclusion synthesize,
Γ ⊢ λx. e ⇒ (A1 → A2)—means that we don’t know A1, and
cannot construct the context Γ, x : A1 in the premise. (It may be
possible to design a more complicated system in which λx. e does
synthesize, as Dunfield and Krishnaswami (2013) did for a differ-
ent type system.)

Rule ChkSumIntro says that inj1 e checks against A1 δA2,
where δ is any sum above +?

1—that is, any sum constructor except

+?
2 and +2. This is a checking rule for two reasons. First, it is an

introduction form, so according to the recipe its principal judgment
(the conclusion) should check. Second, the simplest synthesizing
rule would synthesize A1 +?

i A2. But that is a subtype of A1 +? A2,
introducing a possibly undesired dynamic sum.

In the (one-armed) elimination rule SSumElim1, the principal
judgment is the premise Γ ⊢ e0 : A1 +∗

i A2. Following the
recipe, the corresponding premise of ChkSumElim1 synthesizes. It

would be unfortunate to require it to synthesize exactly A1 +∗

i A2:
assuming programmers mostly write type annotations using +1, +2,
+ and +?, virtually no expressions will synthesize +∗

i . On the other
hand, checking e0 against A1 +∗

i A2 would be too permissive: if we
have a left one-armed case case(e0, inj1 x.e), we would accept e0
of type +?

2, even though +?
2 is a right injection, guaranteeing a run-

time failure. Instead, we require that e0 synthesize A1 δA2 where
δ ⇒⇒ +∗

i . The judgment δ ⇒⇒ +∗

1 is derivable when δ is +?
1, +1, +?

or +∗

1.
For consistency with ChkSumElim1, our two-armed elimina-

tion rule ChkSumElim2 has a similar structure (with an additional
premise for the second arm) and also uses the ⇒⇒ judgment; how-
ever, δ ⇒⇒ + is always derivable, because a two-armed case is
safe for every sum constructor. We include this premise anyway, to
highlight the two rules’ similarity.

Several rules are not tied to specific type connectives. An as-
sumption x : A in Γ could be read “x synthesizes A”, so SynVar
synthesizes its type. Rule SynAnno synthesizes the type given in
an annotation (e :: A), provided e checks against A. Following
earlier bidirectional systems (Davies and Pfenning 2000; Dunfield
and Pfenning 2004), the subsumption rule has a checking conclu-
sion and a synthesizing premise. The checking conclusion ensures
that subsumption, which loses information, is applied only with the
programmer’s consent: the type being checked against is derived
from a type annotation. The synthesizing premise ensures that we
“make progress” as we move from the goal e ⇐ A to the sub-
goal e ⇒ A ′: we cannot use ChkCSub as the concluding rule of
its own premise. In addition to subtyping and change of precision,
ChkCSub with A = A ′ (using reflexivity) allows us to use a deriva-
tion of Γ ⊢ e ⇒ A where we need a derivation of Γ ⊢ e ⇐ A.
For example, applying a function to a variable requires this rule:
SynVar synthesizes, but Syn→Elim has a checking premise.

Complexity. Typing in the bidirectional system takes polynomial
time. With one exception, the bidirectional rules are in one-to-one
correspondence with syntactic forms. The exception is ChkCSub,
which can be used to check any synthesizing form. So bidirectional
typing is syntax-directed in a slightly looser sense than the usual
one: For each pair of a syntactic form and a direction (checking or
synthesis), exactly one rule applies; if that rule is ChkCSub, then
exactly one rule applies to derive its synthesizing premise. Thus,
the size of a derivation (if one exists) is, at most, twice the size of
the expression.

Variations on a theme. Several checking rules could be supple-
mented with a synthesizing rule, or (in the case of ChkUnitIntro)
replaced. A synthesizing version of ChkSumIntro, however, would
be problematic: while we might synthesize the sum constructor +i,
synthesizing e for Ai tells us only one component of the sum. Our
system enjoys uniqueness of synthesis: given Γ and e, e synthesizes
(at most) one type. Synthesizing the other component of the sum
would synthesize an infinite number of types. Moreover, a direct
implementation would need to guess the other component.

A synthesizing version of ChkSumElim1 would be straight-
forward; for ChkSumElim2, we could synthesize e1 ⇒ B1 and
e2 ⇒ B2 and synthesize their join B1 ∨ B2 in the conclusion.

Except for ChkUnitIntro, all of these variations—while perhaps
convenient in practice—would make the system larger and more
complicated. This paper presents a core calculus; we leave explo-
ration of such variations to future work.

4.1 Static System

Two restricted versions of the bidirectional system are of interest.
The first is a static system: a simply typed λ-calculus with sums
and refinements over sums, without any dynamic sums. The syntax
(Figure 8) is the same as the source language, except for δS which

7 2020/8/16

Static sums δS ::= + | +i

Static expressions eS ::= () | x | λx. eS | eS

1 e
S

2 | inji e
S | (eS :: AS)

| case(eS, inj1 x1.e
S

1, inj2 x2.e
S

2) | case(e
S, inji x.e

S

i)

Static types AS ::= Unit | AS

1 δ
S AS

2 | AS

1 → AS

2

Static typing contexts ΓS ::= · | ΓS, x : AS

δS
1 ≤S δS

2 Static sum δS

1 is a subsum of δS

2

δ
S ≤S δ

S
+i ≤S +

AS
1 ≤S AS

2 Static type AS

1 is a subtype of AS

2

Unit ≤S Unit

A
S

11 ≤S A
S

12

A
S

21 ≤S A
S

22 δ
S

1 ≤S δ
S

2

(A
S

11 δ
S

1 A
S

21) ≤S (A
S

12 δ
S

2 A
S

22)

A
S

12 ≤S A
S

11 A
S

21 ≤S A
S

22

(A
S

11 → A
S

21) ≤S (A
S

12 → A
S

22)

ΓS ⊢S eS
⇐ AS

ΓS ⊢S eS
⇒ AS

Under typing context ΓS, expression eS checks against type AS

Under typing context ΓS, expression eS synthesizes type AS

Γ
S
(x) = A

S

Γ
S ⊢S x ⇒ A

S
StVar

Γ
S ⊢S e

S
⇒ A

S

0 A
S

0 ≤S A
S

Γ
S ⊢S e

S
⇐ A

S
StSub

Γ
S ⊢S e

S
⇐ A

S

Γ
S ⊢S (e

S
:: A

S
) ⇒ A

S
StAnno

Γ
S ⊢S () ⇐ Unit

StUnitIntro

Γ
S
, x : A

S

1 ⊢S e
S
⇐ A

S

2

Γ
S ⊢S λx. e

S
⇐ A

S

1 → A
S

2

St→Intro
Γ

S ⊢S e
S

1 ⇒ A
S

1 → A
S

2 Γ
S ⊢S e

S

2 ⇐ A
S

1

Γ
S ⊢S e

S

1 e
S

2 ⇒ A
S

2

St→Elim
Γ

S ⊢S e
S
⇐ A

S

i +i ≤S δ
S

Γ
S ⊢S inji e

S
⇐ (A

S

1 δ
S
A

S

2)
StSumIntro

Γ
S ⊢S e

S

0 ⇒ A
S

1 +i A
S

2 Γ
S
, x : A

S

i ⊢S e
S
⇐ A

S

Γ
S ⊢S case(e

S

0, inji x.e
S
) ⇐ A

S
StSumElim1

Γ
S ⊢S e

S

0 ⇒ A
S

1 δ
S
A

S

2

δ
S ≤S +

Γ
S
, x1 : A

S

1 ⊢S e
S

1 ⇐ A
S

Γ
S
, x2 : A

S

2 ⊢S e
S

2 ⇐ A
S

Γ
S ⊢S case(e

S

0, inj1 x1.e
S

1, inj2 x2.e
S

2) ⇐ A
S

StSumElim2

Figure 8. The static system: the bidirectional system restricted to +, +1, +2

can only be +, +1, or +2. We follow the bidirectional system in
deriving rules for sub-sum, subtyping, and typing; the judgments
are decorated with S for “static”. The interesting difference is in the
typing rules for sums: the introduction rule checks that the sum is
above +i (instead of +?

i), and the one-arm elimination StSumElim1
checks that the sum is below +i (instead of +∗

i), that is, the sum is
exactly +i.

4.2 Dynamic System

The static system omits dynamic sums; the dynamic system’s only
sum is the dynamic sum +?. Since one-armed cases are allowed on
type +?, this corresponds to datatypes in Standard ML. The meta-
variables and judgments are decorated with D for “dynamic”. For
space reasons, the definition of this system is in the supplementary
material (Appendix A).

4.3 Metatheory

The bidirectional system is decidable. The δ ′ ≤ δ judgment is
immediately decidable (taking the transitive closure of the rules),
and the A ′ ≤ A judgment is decidable because each rule moves
from larger type expressions to smaller ones. The same holds for ⊑,
so directed consistency is decidable. The argument for the typing
rules is slightly more interesting, as ChkCSub is a stationary rule
(the premise and conclusion type the same expression). However,
since this rule moves from checking to synthesis, and no stationary
rule moves from synthesis to checking (in SynAnno, the expression
becomes smaller), decidability holds.

Theorem 1 (Decidability of bidirectional typing).

1. Given Γ , e and A, the judgment Γ ⊢ e ⇐ A is decidable.
2. Given Γ and e, the judgment Γ ⊢ e ⇒ A is decidable.

The bidirectional system is sound with respect to the type as-
signment system: if e is well-typed in the bidirectional system, it is
well-typed in the type assignment system. (Proofs can be found in
the supplementary material.)

Theorem 2 (Bidirectional soundness).
If Γ ⊢ e ⇐ A or Γ ⊢ e ⇒ A then Γ ⊢ e : A.

The bidirectional system is also complete: given e : A in
the type assignment system, it is always possible to add annota-
tions that make e well-typed in the bidirectional system. We write
e =: e ′ when e ′ is the same as e except that e ′ may have extra
annotations.

Theorem 3 (Annotatability).
If Γ ⊢ e : A then there exist e ′ and e ′′ such that (1) Γ ⊢ e ′

⇐ A
where e =: e ′, and (2) Γ ⊢ e ′′

⇒ A where e =: e ′′.

We also show that bidirectional typing derivations are robust
under imprecision: if e ′

⇐ A ′, replacing annotations in e ′ with
more imprecise types preserves typing. This corresponds to part 1
of the gradual guarantee of Siek et al. (2015, Theorem 5 on p. 11).
An example illustrating this theorem’s significance appears below
in Section 4.4.

First, Γ ′ ⊑ Γ is defined pointwise. Second, let e ′ ⊑ e if, for
each annotation (e ′

0 :: A ′) in e ′, there is a corresponding annotation
(e0 :: A) in e where A ′ ⊑ A. (For full inductive definitions, see
Figures 15 and 16 in the supplementary material.)

Theorem 4 (Varying precision of bidirectional typing).
1. If Γ ′ ⊢ e ′

⇐ A ′ and e ′ ⊑ e and Γ ′ ⊑ Γ and A ′ ⊑ A
then Γ ⊢ e ⇐ A.

2. If Γ ′ ⊢ e ′
⇒ A ′ and e ′ ⊑ e and Γ ′ ⊑ Γ

then there exists A such that Γ ⊢ e ⇒ A and A ′ ⊑ A.

The nonempty context is needed for the proof cases for rules
whose premises add to Γ ′, such as ChkSumElim1.

8 2020/8/16

An earlier version of the system, which did not allow gain of
precision, has a weaker property: in that system, the given expres-
sion e is not necessarily typable, but there exists some “even more
imprecise” expression ej that is typable. See Theorem 14 in Ap-
pendix C.

Static system. As the static system is essentially a restriction of
the bidirectional system, it is easy to turn a derivation in the static
system into a derivation in the bidirectional system; this is the first
part of the following theorem.

Completeness is more interesting: Given a bidirectional deriva-
tion whose conclusion is static—that is, the context Γ , expression e,
and type A are within the restricted static grammar—we can build a
derivation in the static system. This holds because of a subformula
property: if there are no dynamic sums in Γ , e and A, then dynamic
sums cannot appear anywhere in the bidirectional derivation.

Theorem 5 (Static soundness and completeness).
1. Soundness:

(a) If ΓS ⊢S eS
⇐ AS then ΓS ⊢ eS

⇐ AS

(b) If ΓS ⊢S eS
⇒ AS then ΓS ⊢ eS

⇒ AS.
2. Completeness:

(a) If ΓS ⊢ eS
⇐ AS then ΓS ⊢S eS

⇐ AS.
(b) If ΓS ⊢ eS

⇒ AS then ΓS ⊢S eS
⇒ AS.

This theorem directly corresponds to part 1 of Theorem 1 of
Siek et al. (2015, p. 9) for “fully annotated” expressions. In that
work, an expression is fully annotated if it has no gradual type
annotations. In our system, expressions without annotations are
static.

A corresponding theorem holds for the dynamic system and,
in turn, corresponds to part 1 of Theorem 2 of Siek et al. (2015,
p. 9). This is a rough correspondence: in our bidirectional system,
dynamism is restricted to sum types and arises only through anno-
tations. See Theorem 15 in the appendix.

4.4 Example

To see why Theorem 4 matters, consider the following example.
Suppose we want to transform a program that uses dynamic sums
into one that uses static sums. The program has a function f of type
(Unit +? Int) → Int, which is called with an argument x of type
Unit +? Int.

let f = (λy. · · ·) :: (Unit +? Int) → Int in . . .

let x = ex :: (Unit +? Int) in
f x

(We assume that ex is a checking form that needs an annotation;
if ex synthesizes (Unit +? Int), the annotation could be removed.)
The programmer realizes that f only works with a right injection
(perhaps its body is a one-armed case on inj2), and that x should
always be a right injection.

let f = (λy. · · ·) :: (Unit +2 Int) → Int in . . .

let x = ex :: (Unit +2 Int) in
f x

If this program type-checks and contains no remaining dynamic
sum annotations, we know that f and x actually satisfy their anno-
tations, and that the application f x will not cause any match or cast
failures. Theorem 4 says that the annotations can be changed one

at a time: the program with +? in the type of f but +2 in the type of
x is well-typed, as is the program with +2 in the type of f but +? in
the type of x:

let f = (λy. · · ·) :: (Unit +2 Int) → Int in . . .

let x = ex :: (Unit +
?

Int) in
f x

When synthesizing the type of f x, we use ChkCSub to gain preci-
sion in x:

Γ ⊢ f ⇒
(Unit +2 Int) → Int

Γ ⊢ x ⇒ (Unit +
?
Int)

(Unit +
?
Int) ❀ (Unit +2 Int)

Γ ⊢ x ⇐ (Unit +2 Int)
ChkCSub

Γ ⊢ f x ⇒ Int
Syn→Elim

A precise annotation that differs from the correct one, such as
Unit+1 Int on x, may cause an error—either at type-checking time,
or at run time. But a precise annotation that is correct will not cause
an error, and constitutes a step towards a completely static program.

5. Target Language and Translation

5.1 Target Syntax and Semantics

i ::= 1 | 2

Target sums φ ::= + | +i

Target terms M ::= () | x | λx.M | M1 M2 | inji M
| case(M, inj1 x1.M1, inj2 x2.M2)
| case(M, inji x.Mi)
| 〈φ2 ⇐ φ1〉M | matchfail

Values W ::= () | x | λx.M | inji W

Target types T ::= Unit | T1 φT2 | T1 → T2

Target typing contexts Θ ::= · | Θ, x : T

Figure 9. Target syntax

Our target language is a statically typed λ-calculus with static
sum types and a cast construct. The syntax is shown in Figure 9.
We write M for target terms (expressions), W for values, and T for
target types. The target sum constructors are all the static sum types
from the source language: +, +1, and +2. In addition, we have a cast
construct 〈φ2 ⇐ φ1〉M, which casts from sum φ1 to φ2. A failing
cast, such as 〈+2 ⇐ +〉(inj1 ()), steps to the error term matchfail.

Much of the target type system (Figure 10) follows the source
type assignment system, if that system were restricted to static sum
types. Since the target lacks any dynamic sum constructors (like
+?), target subtyping says only that +1 and +2 are subtypes of +; this
corresponds to datasort refinement systems, where every datasort is
a subsort of a “top” datasort for the type being refined. Our type-
directed translation (Section 5.2) transforms the gradual property
of types into dynamic checks at the term level; rule TCast casts
between sum constructors, and rule TMatchfail gives any type to
matchfail, which represents the failure of a cast.

Our target language (Figure 11) has a standard call-by-value
small-step semantics, extended with casts. Evaluation contexts E
are terms with a hole [], where the hole represents a term in an
evaluation position: if target term M = E [M0], and M0 reduces—
written M0 7→R M ′

0—then the larger term M steps to E [M ′

0].
The cast reduction rules represent the three relevant situa-

tions: (1) an upcast to a supertype succeeds (ReduceUpcast);
(2) a downcast from + to +i succeeds if i matches the injection
(ReduceCastSuccess); (3) a downcast from + to +i fails, reducing
to matchfail, if i doesn’t match the injection (ReduceCastFailure).

5.2 Type-Directed Translation →֒

To translate source programs into target programs with explicit
casts between sum types, we use a judgment Γ ⊢ e : A →֒ M.
Most of the rules (in Figure 12) follow the type assignment rules,
with the addition of →֒M. Given e of type A, the rules produce a
target term M of type T where T is the translation of A, written |A|.

9 2020/8/16

φ ′ ≤ φ Sum φ ′ is a subsum of φ

φ ≤ φ +i ≤ +

T ′ ≤ T Target type T ′ is a subtype of T

Unit ≤ Unit

T
′

1 ≤ T1 T
′

2 ≤ T2 φ
′ ≤ φ

(T
′

1 φ
′
T

′

2) ≤ (T1 φT2)

T1 ≤ T
′

1 T
′

2 ≤ T2

(T
′

1 → T
′

2) ≤ (T1 → T2)

Θ ⊢ M : T Under context Θ, target term M has target type T

Θ(x) = T

Θ ⊢ x : T
TVar

Θ ⊢ M : T
′

T
′ ≤ T

Θ ⊢ M : T
TSub

Θ ⊢ M : (T1 φ
′
T2)

Θ ⊢ 〈φ ⇐ φ
′〉M : (T1 φT2)

TCast

Θ ⊢ matchfail : T
TMatchfail

Θ ⊢ () : Unit
TUnitIntro

Θ ⊢ M : Ti

Θ ⊢ inji M : (T1 +i T2)
T+iIntro

Θ ⊢ M0 : T1 +i T2 Θ, x : Ti ⊢ M : T

Θ ⊢ case(M0, inji x.M) : T
T+iElim

Θ ⊢ M0 : T1 + T2

Θ, x1 : T1 ⊢ M1 : T
Θ, x2 : T2 ⊢ M2 : T

Θ ⊢ case(M0, inj1 x1.M1, inj2 x2.M2) : T
T+Elim

Θ, x : T1 ⊢ M : T2

Θ ⊢ λx.M : (T1 → T2)
T→Intro

Θ ⊢ M1 : T
′
→ T Θ ⊢ M2 : T

′

Θ ⊢ M1 M2 : T
T→Elim

Figure 10. Target subtyping and typing

Evaluation contexts
E ::= []

| inji E
| case(E , inji x.M)
| case(E , inj1 x1.M1, inj2 x2.M2)
| 〈φ ⇐ φ ′〉E
| E M2 | W1 E

M 7→R M ′ Target term M reduces to M ′

〈φ ⇐ φ ′〉W 7→R W
where φ ′ ≤ φ ReduceUpcast

〈+i ⇐ +〉(inji W) 7→R inji W ReduceCastSuccess

〈+k ⇐ φ ′〉(inji W) 7→R matchfail
where φ ′ ∈ {+i,+} and i 6= k ReduceCastFailure

case(inj i W, inj i x.M) 7→R [W/x]M ReduceCase1

case(inji W, inj1 x1.M1, inj2 x2.M2) 7→R [W/xi]Mi ReduceCase2

(λx.M)W 7→R [W/x]M Reduceβ

M 7→ M ′ Target term M steps to M ′

M 7→R M
′

E [M] 7→ E [M ′
]

StepContext
E 6= []

E [matchfail] 7→ matchfail
StepMatchfail

Figure 11. Small-step semantics of the target language

This translation (Figure 12, top) maps the source sums + and +? to
the target sum +, and maps the other source sums to +i.

We extend type assignment, rather than the bidirectional system,
because translation should be independent of bidirectionality: Type
assignment is stable under variations in the bidirectional “recipe”,
so if we decided to synthesize a type for (), we could leave
the translation untouched. That said, an implementation would be
based on a bidirectional version of the translation—replacing “:”
with “⇐” or “⇒”, following Figure 7.

The interesting translation rule is STCSub, which inserts a
coercion context C. This context coerces between two directed-
consistent types, so it composes up to three coercions (cf. Figure
5): from a more imprecise type to a less imprecise type, from that
type to a supertype, and from the supertype to a more imprecise
type.

Our coercion judgment A ′
⇒ A →֒ C produces a context C, a

target term containing a hole such that, if M has type T ′ = |A ′|,
then C[M] has type T = |A|. Rule CoeUnit produces a hole, which
behaves as the identity function. Rule Coe→ produces a function:
given a hole [] filled by a function of type T ′

1 → T ′

2 , it constructs
λx. C2

[

[] C1[x]
]

. This function has type T1 → T2: it applies cast
C1 to x, yielding a value of type T ′

1 . Applying the original function
yields an T ′

2 , which cast C2 transforms into an T2.

Three rules generate coercions between sum types: CoeCase1L,
CoeCase1R, and CoeCase2. The first two rules handle sums that
are definitely a left injection, or definitely a right injection: we
apply CoeCase1L whenever we are coercing from A ′

1 δ
′ A ′

2 where
δ ′ is +1 or +?

1, and CoeCase1R when δ ′ is +2 or +?
2.

In CoeCase1L, we recursively generate a coercion C1 from A ′

1,
and a cast C3 from δ ′. The conclusion generates a coercion by
matching the given value (replacing []) against inj1 x1, construct-
ing inj1 (C1[x1]), to which we apply C3. CoeCase1R is symmetric.

CoeCase2 handles the cases not covered by the previous two
rules. In addition to doing the work of the previous two rules, it
generates casts C ′

1 and C ′

2, applying them in each arm. According
to STSumIntro, an injection inj1 has a type whose sum constructor
is +?

1, so CoeCase2 applies C ′

1 which takes +?
1 to δ ′. Similarly, the

rule applies C ′

2, which takes +?
2 to δ ′. Since CoeCase2 applies C3

(from δ ′ to δ) to the entire case, the result will be δ.

5.3 Target Precision 4

We will prove that more precise source typings—differently anno-
tated versions of the same source expression—produce more pre-
cise target terms. We will also prove that precision of the target
terms is preserved by stepping, and that if a more precise target
term converges (steps to a value), so does a less precise target term.

10 2020/8/16

Sum translation |δ| = φ

|+| = |+?| = +

|+i| = |+?
i | = |+∗

i | = +i

Type translation |A| = T

|Unit| = Unit
|A1 δA2| = |A1| |δ| |A2|

|A1 → A2| = |A1| → |A2|

Typing context trans. |Γ | = Θ

|·| = ·
|Γ, x : A| = |Γ |, x : |A|

Coercion contexts
C ::= []

| case(C, inji x.Mi)
| case(C, inj1 x1.M1, inj2 x2.M2)
| 〈φ ⇐ φ ′〉C
| λx. C | CM2

δ ′
⇒ δ →֒ C Coercion C coerces sum |δ ′| to sum |δ|

|δ
′
| ≤ |δ|

δ
′
⇒ δ →֒ []

CoeSub
|δ

′
| 6≤ |δ|

δ
′
⇒ δ →֒ 〈|δ| ⇐ |δ

′
|〉[]

CoeCast

A ′
⇒ A →֒ C Coercion C coerces target type |A ′| to |A|

Unit ⇒ Unit →֒ []
CoeUnit

A1 ⇒ A
′

1 →֒ C1 A
′

2 ⇒ A2 →֒ C2

(A
′

1 → A
′

2) ⇒ (A1 → A2) →֒ λx. C2

[

[] C1[x]
] Coe→

δ
′ ∈ {+

?
1,+1} A

′

1 ⇒ A1 →֒ C1 δ
′
⇒ δ →֒ C3

(A
′

1 δ
′
A

′

2) ⇒ (A1 δA2)

→֒ C3

[

case([], inj1 x1.inj1 C1[x1])
]

CoeCase1L
δ
′ ∈ {+

?
2,+2} A

′

2 ⇒ A2 →֒ C2 δ
′
⇒ δ →֒ C3

(A
′

1 δ
′
A

′

2)⇒ (A1 δA2)

→֒ C3

[

case([], inj2 x2.inj2 C2[x2])
]

CoeCase1R

δ
′ ∈ {+

?
, +

∗

1,+
∗

2,+}

+
?
1 ⇒ δ

′
→֒ C ′

1

A
′

1 ⇒ A1 →֒ C1

+
?
2 ⇒ δ

′
→֒ C ′

2

A
′

2 ⇒ A2 →֒ C2 δ
′
⇒ δ →֒ C3

(A
′

1 δ
′
A

′

2) ⇒ (A1 δA2) →֒ C3

[

case([], inj1 x1.C
′

1[inj1 C1[x1]], inj2 x2.C
′

2[inj2 C2[x2]])
] CoeCase2

Γ ⊢ e : A →֒ M Under typing context Γ , expression e has type A and translates to target term M

Γ(x) = A

Γ ⊢ x : A →֒ x
STVar

Γ ⊢ e : A
′
→֒ M

′

A
′
❀ A

A
′
⇒ A →֒ C

Γ ⊢ e : A →֒ C[M ′
]

STCSub
Γ ⊢ e : A →֒ M

Γ ⊢ (e :: A) : A →֒ M
STAnno

Γ ⊢ () : Unit →֒ ()
STUnitIntro

Γ ⊢ e : Ai →֒ M

Γ ⊢ inji e : (A1 +
?
i A2) →֒ inji M

STSumIntro

Γ ⊢ e0 : A1 +
∗

i A2 →֒ M0 Γ, x : Ai ⊢ e : A →֒ M

Γ ⊢ case(e0, inji x.e) : A →֒ case(M0, inji x.M)
STSumElim1

Γ ⊢ e0 : A1 + A2 →֒ M0

Γ, x1 : A1 ⊢ e1 : A →֒ M1

Γ, x2 : A2 ⊢ e2 : A →֒ M2

Γ ⊢ case(e0, inj1 x1.e1, inj2 x2.e2) : A
→֒ case(M0, inj1 x1.M1, inj2 x2.M2)

STSumElim2

Γ, x : A1 ⊢ e : A2 →֒ M

Γ ⊢ λx. e : A1 → A2 →֒ λx.M
ST→Intro

Γ ⊢ e1 : A1 → A2 →֒ M1 Γ ⊢ e2 : A1 →֒ M2

Γ ⊢ e1 e2 : A2 →֒ M1 M2

ST→Elim

Figure 12. Type-directed translation

Our relation, and the form of the result, were inspired by the ap-
proximation relation of Ahmed et al. (2011), as well as the term
precision relation of Siek et al. (2015).

For source expressions, we defined e ′ ⊑ e simply by applying
⊑ to the types in annotations. For target terms, we have no type
precision relation; the target type system only has static sums, so
T ′ ⊑ T would degenerate to T ′ = T . Instead, we define target
precision 4 for terms only.

If e ′ ⊑ e, and these expressions translate to M ′ and M respec-
tively, we want to show M ′

4 M. The difference between e ′ and
e is only in their annotations, so M ′ and M must share a lot of
structure—except that different annotations may lead to different
casts. Thus, most of the rules in Figure 13 are homomorphic.

What about casts, which can step to matchfail? A static source
typing is very precise, and the target term it produces never fails,
so we might expect a more precisely typed term to “fail less”—but
this would lead us astray. A better intuition is that imprecisely typed
code “doesn’t care”, so it tends not to fail—while precisely typed
code can fail, if it collides with imprecisely typed code. Therefore,
terms with casts should be more precise than terms without. In
addition, since casts can step to matchfail, and we want stepping
to preserve precision, matchfail 4 M for any M.

Given two terms with casts M ′ = 〈φ ′

2 ⇐ φ ′

1〉 and M =
〈φ2 ⇐ φ1〉, we will consider M ′ more precise than M if the cast
in M ′ is more precise: 〈φ ′

2 ⇐ φ ′

1〉 4 〈φ2 ⇐ φ1〉. Let ac be a
cast; it must be either a safe cast sc like 〈+ ⇐ +〉 or 〈+ ⇐ +1〉,
a backward cast bc of the form 〈+i ⇐ +〉, or a (doomed) match-
failure cast mc—〈+2 ⇐ +1〉 or 〈+1 ⇐ +2〉. These are classified by
the grammar in Figure 13.

Equal casts should be equally precise, so rule Cast4Refl makes
the relation ac ′

4 ac reflexive. Following the idea that the more
precisely typed term should “fail more”, a safer cast should be less
precise; this leads to CastM4B, CastB4S, and CastM4S.

The other rules are subtle. They compare particular safe casts
and/or backward casts, relying implicitly on typing. For example,
the last rule says (with i = 1) that 〈+ ⇐ +〉 4 〈+ ⇐ +1〉. We
will ultimately need to show that if the cast on the left succeeds,
so does the cast on the right. The left-hand cast is 〈+ ⇐ +〉, which
always succeeds. The right-hand cast succeeds if it is given inj1. If
the value being cast is well-typed, then (by TCast) it will indeed
have type +1.

Finally, note that a more precise source typing may result in a
one-armed case in a coercion, while the less precise typing results
in a two-armed case. For example, +? is less precise than +1;

11 2020/8/16

Safe casts sc ::= 〈+1 ⇐ +1〉 | 〈+ ⇐ +1〉
| 〈+2 ⇐ +2〉 | 〈+ ⇐ +2〉
| 〈+ ⇐ +〉

Backward casts bc ::= 〈+1 ⇐ +〉 | 〈+2 ⇐ +〉
Match-failure casts mc ::= 〈+2 ⇐ +1〉 | 〈+1 ⇐ +2〉
Casts ac ::= sc | bc | mc

ac
′
4 ac Cast ac ′ is more precise than ac

ac 4 ac
Cast4Refl

mc 4 bc
CastM4B

bc 4 sc
CastB4S

mc 4 sc
CastM4S

〈+i ⇐ +i〉 4 〈+i ⇐ +〉

sc ∈ {〈+ ⇐ +i〉, 〈+ ⇐ +〉}

〈+i ⇐ +i〉 4 sc

sc ∈ {〈+ ⇐ +〉, 〈+i ⇐ +i〉}

〈+ ⇐ +i〉 4 sc

sc ∈ {〈+ ⇐ +i〉, 〈+i ⇐ +i〉}

〈+ ⇐ +〉 4 sc

M ′
4 M Target term M ′ is more precise than M

() 4 () x 4 x

M
′
4 M

λx.M
′
4 λx.M

M
′

1 4 M1 M
′

2 4 M2

M
′

1 M
′

2 4 M1 M2

M
′
4 M

(inji M
′
) 4 (inji M)

M
′
4 M 〈φ ′

2 ⇐ φ
′

1〉 4 〈φ2 ⇐ φ1〉

〈φ ′

2 ⇐ φ
′

1〉M
′
4 〈φ2 ⇐ φ1〉M

M
′
4 M M 6= 〈φ2 ⇐ φ1〉 · · ·

〈φ ′

2 ⇐ φ
′

1〉M
′
4 M matchfail 4 M

M
′
4 M M

′

i 4 Mi

case(M
′
, inji x.M

′

i) 4 case(M, inji x.Mi)

M
′
4 M M

′

i 4 Mi

case(M
′
, inji xi.M

′

i) 4 case(M, inj1 x1.M1, inj2 x2.M2)

M
′
4 M M

′

1 4 M1 M
′

2 4 M2

case(M
′
, inj1 x1.M

′

1, inj2 x2.M
′

2) 4 case(M, inj1 x1.M1, inj2 x2.M2)

Figure 13. Precision 4 on target terms

coercing +1 to + results in one-armed case, and coercing +? to +
results in a two-armed case. Hence, a one-armed case can be more
precise than a two-armed case.

5.4 Metatheory

The target system satisfies preservation and progress:

Theorem 6 (Type preservation).
If · ⊢ M : T and M 7→ M ′ then · ⊢ M ′ : T .

Theorem 7 (Progress).
If · ⊢ M : T then either (a) M is a value, or (b) there exists M ′

such that M 7→ M ′, or (c) M = matchfail.

By itself, the above progress statement leaves open the possibil-
ity that a well-typed target term M will step to matchfail. How-
ever, if M has no casts, it will not step to matchfail.

Theorem 8 (matchfail-freeness).
If M is cast-free and matchfail-free and M 7→ M ′ then M ′ is
cast-free and matchfail-free.

For cast-free terms, combining Theorems 7 and 8 gives a ver-
sion of progress without the possibility of match failure.

Corollary. If M is cast-free and matchfail-free and · ⊢ M : T then
either (a) M is a value, or (b) there exists M ′ such that M 7→ M ′.

We also prove that the translation takes well-typed source pro-
grams to well-typed target programs. The theorem takes a type as-
signment derivation, but Theorem 2 can produce such a derivation
from a bidirectional typing derivation.

Theorem 9 (Translation soundness).
If Γ ⊢ e : A then there exists M such that Γ ⊢ e : A →֒ M and
|Γ | ⊢ M : |A|.

The proof relies on several lemmas, e.g. that the generated
coercions C are well-typed; see the supplementary material.

A great advantage of static typing is that, for a suitable definition
of “wrong”, static programs don’t go wrong. The theorem below
proves that translating a static program yields a target term M that
has no casts; by Theorem 8, M will never step to matchfail.

Theorem 10 (Static derivations don’t have match failures).
If ΓS ⊢ eS

⇐ AS or ΓS ⊢ eS
⇒ AS

then there exists M such that ΓS ⊢ eS : AS
→֒ M

and M is free of casts and matchfail.

Together, preservation and progress correspond to Theorem 3
(type safety) of Siek et al. (2015, p. 9). Their blame-subtyping
Theorem 4 says that safe casts (casts from a subtype to a supertype)
cannot be blamed (cannot fail); our translation does not insert safe
casts at all, and our Theorem 10 shows that expressions without
dynamic sums produce target terms without casts.

The remaining results concern precision. We show that more
precise annotations translate to more precise terms, that target pre-
cision is preserved by stepping, and that if a target term converges,
then a less precise version also converges.

We must note that the first of these results, Theorem 11, uses a
modified version of the translation: one that always inserts casts,
even safe ones; this simplifies part of the proof. In effect, the
modified translation (Figure 21 in the appendix) does not have
rule CoeSub and always uses rule CoeCast. Similarly, we modify
CoeCase1L and CoeCase1R to always insert casts within each
arm, like C ′

1 and C ′

2 in CoeCase2. Since the only difference is the
presence of casts that cannot fail, the terms generated by either
translation must both step to the same value, or both generate
matchfail.

Theorem 11 (Translation preserves precision).
Suppose Γ ′ ⊑ Γ and e ′ ⊑ e.

1. If Γ ′ ⊢ e ′
⇐ A ′ and Γ ⊢ e ⇐ A and A ′ ⊑ A then

Γ ′ ⊢ e ′ : A ′
→֒ M ′ and Γ ⊢ e : A →֒ M where M ′

4 M.
2. If Γ ′ ⊢ e ′

⇒ A ′ and Γ ⊢ e ⇒ A then Γ ′ ⊢ e ′ : A ′
→֒ M ′

and Γ ⊢ e : A →֒ M where A ′ ⊑ A and M ′
4 M.

Theorem 12 (Stepping preserves precision).
If · ⊢ M ′

1 : T ′

1 and · ⊢ M1 : T1 and M ′

1 4 M1 and M ′

1 7→ M ′

2

then either
(a) M1 is a value and M ′

2 4 M1, or
(b) there exists M2 such that M1 7→ M2 and M ′

2 4 M2, or
(c) M1 = matchfail and M ′

2 4 M1.

12 2020/8/16

Definition 1. A closed term M converges if M 7→∗ W for some
value W, and diverges if the stepping sequence never terminates.

Note that matchfail neither converges nor diverges, and that
divergence is not possible in our language.

Theorem 13 (4 respects convergence).
If M ′

4 M where · ⊢ M ′ : T ′ and · ⊢ M : T
and M ′ converges then M also converges.

If M ′
4 M, and they converge to injections inji W

′ and
injk W, then Theorem 13 gives inji W

′
4 injk W. By inversion

on the definition of 4, we have i = k. Similar results would hold if
4 were extended for base types.

Together with Theorem 11, this means that if we translate two
source expressions e ′ ⊑ e to M ′ and M, and M ′ converges to
a value of base type, M will converge to the same value. This
corresponds to Theorem 5 (gradual guarantee), part 2, of Siek et al.
(2015).

6. Related Work

Sums and refinements. Sum types are well-established in a vari-
ety of programming languages, though practical languages tend to
embed them within larger mechanisms: ML datatypes can encode
sums, but also recursion. Refinement type systems, such as data-
sort refinements (Freeman and Pfenning 1991; Davies 2005) and
indexed types (Xi and Pfenning 1999), have been built on these
larger mechanisms. This gives a close connection to practice, but
needs additional machinery such as constructor types and signa-
tures. Such machinery is not central to our investigation; in con-
trast, we distill datasort refinements to one essential feature: distin-
guishing whether we have a left or right injection.

These systems often have a refinement relation ⊏: if A is a
sort (refined type) and τ is an unrefined type, A ⊏ τ says that A
refines τ. Both the symbol and the high-level concept resemble our
relation A ′ ⊑ A, but the refinement relation is more rigid: it cannot
compare two sorts, or two unrefined types, and it certainly cannot
derive (A1 → A) ⊏ (A1 → τ), where (A1 → τ) mixes a refined
type A1 with an unrefined type τ. Nonetheless, the covariance of
this relation on function types—in contrast to subtyping, which
must be contravariant—made us more confident that our precision
relation should be covariant.

Koot and Hage (2015) formulate a constraint-based type sys-
tem that analyzes pattern matches, using a characterization of data
somewhat reminiscent of datasort refinements. Their system needs
no type annotations, but is (necessarily) incomplete.

Gradual typing. Our approach to expressing uncertainty in a type
system was inspired by gradual typing, introduced by Siek and
Taha (2006), in which ? (often written ⋆) is an uncertain type
(it could be Int, a function type, or anything else). We confine
uncertainty to refinement properties of sum types, making the effect
on the overall type system less dramatic; still, several mechanisms
of gradual typing appear in our work. For example, we also have
precision relations on types and (through annotations) expressions.

Our directed consistency is somewhat similar to consistent sub-
typing for gradual object-based languages (Siek and Taha 2007).
Consistent subtyping augments subsumption with consistent equal-
ity (roughly, gain and loss of precision) on either the subtype or
supertype, but not both. Drawing on abstract interpretation, Garcia
et al. (2016) give a different but equivalent formulation of consis-
tent subtyping. In these systems, the underlying subtyping relation
is defined over static types only. Allende et al. (2014) also have a
notion of directed consistency, but the connection to our relation is
less clear.

Siek et al. (2015) propose several criteria as desirable for grad-
ual type systems. We prove properties that correspond to some of

their criteria: Theorems 5 and 15 correspond to the first parts of
Theorems 1 and 2 of Siek et al. (2015), our Theorem 10 corre-
sponds to their Theorem 4, our Theorem 4 corresponds to part 1 of
their Theorem 5 (gradual guarantee), and our Theorems 11 and 13
corresponds to part 2 of their Theorem 5.

Some systems of gradual typing include a notion of blame
(Wadler and Findler 2009), associating program labels to casts
so that a failing cast “blames” some program location. It may be
possible to incorporate blame into our approach; we omit it to focus
on other issues.

We are not the first to apply ideas from gradual typing to less-
traditional areas: for example, Bañados Schwerter et al. (2014) de-
velop a gradual effect system, and McDonell et al. (2016) develop
a tool for moving between ADTs and more precise GADTs.

Bidirectional typing. Originating as folklore and first discussed
explicitly by Pierce and Turner (1998), bidirectional typing has
been used extensively in type systems for which full inference
is undecidable or otherwise problematic (Freeman and Pfenning
1991; Coquand 1996; Xi and Pfenning 1999; Davies and Pfenning
2000; Pientka 2008). A strength of many bidirectional type sys-
tems, sometimes overlooked, is that they have some variety of sub-
formula property. In some systems, this property serves to make
type checking more feasible—for example, for Davies (2005) and
Dunfield (2007), it controls the spread of intersection types. For
Dunfield (2015), where evaluation order is implicit in terms and ex-
plicit in types, it prevents the spontaneous generation of by-name
types; in our system, it prevents the spontaneous generation of grad-
ual sum types.

The gradual type system of Garcia and Cimini (2015, p. 306)
is not bidirectional, but enjoys a similar property: “dynamicity
[the uncertain type ?] is introduced only via program annotations”.
However, their rules can be viewed as a bidirectional system that
always synthesizes, except at annotations.

7. Future Work

We plan to implement the bidirectional type system, which will al-
low us to test whether our approach is practical. We are particularly
interested in whether our formulation of precision, combined with
the annotation discipline of bidirectional typing, strikes a good bal-
ance: the annotation burden should be reasonable, but imprecision
should not appear out of nowhere. Also, it is unclear whether pro-
grammers would have any use for the sum types +?

i and +∗

i ; if not,
error messages should read “expected +1 or +?” rather than “ex-
pected +∗

1”, for example.
We would also like to enrich the language with intersec-

tion types, recursive types, and polymorphism. Intersection types
are important for datasort refinements: for example, if we en-
code booleans as Unit + Unit, the datasorts True and False are
Unit +1 Unit and Unit +2 Unit. Then negation should have type
(True → False) ∩ (False → True). We also want to evaluate the
run-time efficiency of coercions—a common concern in gradual
type systems.

Acknowledgments

We would like to thank Ronald Garcia, Felipe Bañados Schw-
erter, Joey Eremondi, Rui Ge, Jodi Spacek, Alec Thériault, and the
anonymous reviewers for their feedback on several versions of this
work.

References

Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon
Plotkin. Dynamic typing in a statically typed language. ACM
Trans. Prog. Lang. Syst., 13(2):237–268, 1991.

13 2020/8/16

Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip
Wadler. Blame for all. In Principles of Programming Lan-
guages, pages 201–214, 2011.

Esteban Allende, Johan Fabry, Ronald Garcia, and Éric Tanter.
Confined gradual typing. In OOPSLA, pages 251–270, 2014.

Felipe Bañados Schwerter, Ronald Garcia, and Éric Tanter. A
theory of gradual effect systems. In ICFP, pages 283–295, 2014.

Thierry Coquand. An algorithm for type-checking dependent types.
Science of Computer Programming, 26(1–3):167–177, 1996.

Rowan Davies. Practical Refinement-Type Checking. PhD thesis,
Carnegie Mellon University, 2005. CMU-CS-05-110.

Rowan Davies and Frank Pfenning. Intersection types and compu-
tational effects. In ICFP, pages 198–208, 2000.

Michael Dummett. The Logical Basis of Metaphysics. Harvard
University Press, 1991. The William James Lectures, 1976.

Jana Dunfield. A Unified System of Type Refinements. PhD thesis,
Carnegie Mellon University, 2007. CMU-CS-07-129.

Jana Dunfield. Elaborating evaluation-order polymorphism. In
Int’l Conf. Functional Programming, 2015. arXiv:1504.07680
[cs.PL].

Jana Dunfield and Neelakantan R. Krishnaswami. Complete and
easy bidirectional typechecking for higher-rank polymorphism.
In ICFP, 2013. arXiv:1306.6032 [cs.PL].

Jana Dunfield and Frank Pfenning. Tridirectional typechecking. In
Principles of Programming Languages, pages 281–292, 2004.

Tim Freeman. Refinement Types for ML. PhD thesis, Carnegie
Mellon University, 1994. CMU-CS-94-110.

Tim Freeman and Frank Pfenning. Refinement types for ML.
In Programming Language Design and Implementation, pages
268–277, 1991.

Ronald Garcia and Matteo Cimini. Principal type schemes for
gradual programs. In Principles of Programming Languages,
pages 303–315, 2015.

Ronald Garcia, Alison M. Clark, and Éric Tanter. Abstracting
gradual typing. In Principles of Programming Languages, pages
429–442, 2016.

Gerhard Gentzen. Untersuchungen über das logische Schließen.
Mathematische Zeitschrift, 39:176–210, 405–431, 1934. English
translation, Investigations into logical deduction, in M. Szabo,
editor, Collected papers of Gerhard Gentzen (North-Holland,
1969), pages 68–131.

Ruud Koot and Jurriaan Hage. Type-based exception analysis
for non-strict higher-order functional languages with imprecise
exception semantics. In Proceedings of the 2015 Workshop on
Partial Evaluation and Program Manipulation, pages 127–138,
2015.

Per Martin-Löf. On the meanings of the logical constants and the
justifications of the logical laws. Nordic Journal of Philosophi-
cal Logic, 1(1):11–60, 1996. Notes for lectures given in 1983 in
Siena, Italy.

Trevor L. McDonell, Timothy A. K. Zakian, Matteo Cimini, and
Ryan R. Newton. Ghostbuster: A tool for simplifying and con-
verting GADTs. In ICFP, pages 338–350, 2016.

Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The Definition of Standard ML (Revised). MIT Press, 1997.

Frank Pfenning. Lecture notes on harmony. Lec-
ture notes for 15–317: Constructive Logic,
Carnegie Mellon University, September 2009.
www.cs.cmu.edu/∼fp/courses/15317-f09/lectures/03-harmony.pdf.

Frank Pfenning and Rowan Davies. A judgmental reconstruction
of modal logic. Mathematical Structures in Computer Science,
11(4):511–540, 2001.

Brigitte Pientka. A type-theoretic foundation for programming
with higher-order abstract syntax and first-class substitutions. In
Principles of Programming Languages, pages 371–382, 2008.

Brigitte Pientka and Jana Dunfield. Beluga: A framework for
programming and reasoning with deductive systems (system
description). In Int’l Joint Conference on Automated Reasoning
(IJCAR), pages 15–21, 2010.

Benjamin C. Pierce and David N. Turner. Local type inference. In
Principles of Programming Languages, pages 252–265, 1998.
Full version in ACM Trans. Prog. Lang. Sys., 22(1):1–44, 2000.

Dag Prawitz. Natural Deduction. Almqvist & Wiksells, 1965.

Jeremy Siek and Walid Taha. Gradual typing for objects. In
European Conference on Object-Oriented Programming, pages
2–27. Springer, 2007.

Jeremy G. Siek and Walid Taha. Gradual typing for functional lan-
guages. In Proceedings of the Scheme and Functional Program-
ming Workshop, pages 81–92, September 2006.

Jeremy G. Siek and Manish Vachharajani. Gradual typing with
unification-based inference. In Symposium on Dynamic Lan-
guages (DLS), pages 7:1–7:12, 2008.

Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and
John Tang Boyland. Refined criteria for gradual typing. In
LIPIcs-Leibniz International Proceedings in Informatics, vol-
ume 32. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2015.

Philip Wadler and Robert Bruce Findler. Well-typed programs can’t
be blamed. In European Symposium on Programming, pages 1–
16, 2009.

Hongwei Xi and Frank Pfenning. Dependent types in practical
programming. In Principles of Programming Languages, pages
214–227, 1999.

Noam Zeilberger. The Logical Basis of Evaluation Order and
Pattern-Matching. PhD thesis, Carnegie Mellon University,
2009. CMU-CS-09-122.

14 2020/8/16

http://arxiv.org/abs/1504.07680
http://arxiv.org/abs/1306.6032
https://www.cs.cmu.edu/~fp/courses/15317-f09/lectures/03-harmony.pdf

Appendix to “Sums of Uncertainty: Refinements go gradual” (POPL 2017)

A. Dynamic System

Dynamic expressions eD ::= () | x | λx. eD | eD

1 eD

2 | inji e
D | (eD :: AD)

| case(eD, inj1 x1.e
D

1 , inj2 x2.e
D

2) | case(eD, inji x.e
D

i)

Dynamic types AD ::= Unit | AD

1 +? AD

2 | AD

1 → AD

2

Dynamic typing contexts ΓD ::= · | ΓD, x : AD

ΓD ⊢D eD
⇐ AD

ΓD ⊢D eD
⇒ AD

Under typing context ΓD, expression eD checks against type AD

Under typing context ΓD, expression eD synthesizes type AD

Γ
D
(x) = A

D

Γ
D ⊢D x ⇒ A

D
DVar

Γ
D ⊢D e

D
⇒ A

D

Γ
D ⊢D e

D
⇐ A

D
DSub

Γ
D ⊢D e

D
⇐ A

D

Γ
D ⊢D (e

D
:: A

D
) ⇒ A

D
DAnno

Γ
D ⊢D () ⇐ Unit

DUnitIntro

Γ
D
, x : A

D

1 ⊢D e
D
⇐ A

D

2

Γ
D ⊢D λx. e

D
⇐ A

D

1 → A
D

2

D→Intro
Γ

D ⊢D e
D

1 ⇒ A
D

1 → A
D

2 Γ
D ⊢D e

D

2 ⇐ A
D

1

Γ
D ⊢D e

D

1 e
D

2 ⇒ A
D

2

D→Elim
Γ

D ⊢D e
D
⇐ A

D

i

Γ
D ⊢D inji e

D
⇐ (A

D

1 +
?
A

D

2)
D+?Intro

Γ
D ⊢D e

D

0 ⇒ A
D

1 +
?
A

D

2 Γ
D
, x : A

D

i ⊢D e
D
⇐ A

D

Γ
D ⊢D case(e

D

0 , inji x.e
D
) ⇐ A

D
D+?Elim1

Γ
D ⊢D e

D

0 ⇒ A
D

1 +
?
A

D

2

Γ
D
, x1 : A

D

1 ⊢D e
D

1 ⇐ A
D

Γ
D
, x2 : A

D

2 ⊢D e
D

2 ⇐ A
D

Γ
D ⊢D case(e

D

0 , inj1 x1.e
D

1 , inj2 x2.e
D

2) ⇐ A
D

D+?Elim2

Figure 14. The dynamic system: the bidirectional system restricted to +?

Figure 14 shows the syntax and typing rules for the dynamic system—the restriction of the bidirectional type system to the dynamic sum
+?.

B. Omitted Definitions

e ′ ⊑ e Expression e ′ is more precise than e

() ⊑ () x ⊑ x

e
′ ⊑ e

λx. e
′ ⊑ λx. e

e
′

1 ⊑ e1 e
′

2 ⊑ e2

e
′

1 e
′

2 ⊑ e1 e2

e
′ ⊑ e

(inji e
′
) ⊑ (inji e)

e
′ ⊑ e A

′ ⊑ A

(e
′
:: A

′
) ⊑ (e :: A)

e
′ ⊑ e e

′

1 ⊑ e1 e
′

2 ⊑ e2

case(e
′
, inj1 x1.e

′

1, inj2 x2.e
′

2) ⊑ case(e, inj1 x1.e1, inj2 x2.e2)

e
′ ⊑ e e

′

i ⊑ ei

case(e
′
, inji x.e

′

i) ⊑ case(e, inji x.ei)

Γ ′ ⊑ Γ Typing context Γ ′ is more precise than Γ

· ⊑ ·

Γ
′ ⊑ Γ A

′ ⊑ A

(Γ
′
, x : A

′
) ⊑ (Γ, x : A)

Figure 15. Precision on expressions and contexts

Several results involve precision of expressions and typing contexts, shown in Figure 15; these are the straightforward lifting of type
precision (Figure 4).

e ′ =: e Expression e ′ is annotative-ly equivalent to e

() =: () x =: x

e
′
=: e

e
′
=: (e :: A)

e
′
=: e

λx. e
′
=: λx. e

e
′

1 =: e1 e
′

2 =: e2

e
′

1 e
′

2 =: e1 e2

e
′
=: e

(inji e
′
) =: (inji e)

e
′
=: e A

′
= A

(e
′
:: A

′
) =: (e :: A)

e
′
=: e e

′

1 =: e1 e
′

2 =: e2

case(e
′
, inj1 x1.e

′

1, inj2 x2.e
′

2) =: case(e, inj1 x1.e1, inj2 x2.e2)

e
′
=: e e

′

i =: ei

case(e
′
, inji x.e

′

i) =: case(e, inji x.ei)

Figure 16. Annotation equivalence

15 2020/8/16

C. Differences from the Original Version

The paper that was submitted to POPL differs in two important ways from the final version.

No directed consistency. In the final version, ChkCSub, SCSub, etc. allow (a) gain of precision, (b) subtyping, and (c) loss of precision,
formulated via directed consistency. In contrast, the original system had (in each system) two rules: one rule that allowed subtyping (exactly
like a traditional subsumption rule), and one rule that allowed loss of precision. For example, the bidirectional system had

Γ ⊢ e ⇒ A
′

A
′ ≤ A

Γ ⊢ e ⇐ A
**ChkSub

Γ ⊢ e ⇒ A
′

A
′ ⊑ A

Γ ⊢ e ⇐ A
**ChkImp

These rules could not type the same expression without an extra annotation (to transition from the checking conclusion of one rule to the
synthesizing conclusion of the other).

Moreover, there was no rule to gain precision. In a traditional gradual type system, this would be completely untenable: the point of the
“unknown type” in a gradual system is that it can be downcasted to a static type. In the previous version of our system, programmers could
write coercions “by hand”:

f : (A1 +1 A2) → B, y : (A1 +
?
A2) ⊢ f

(

case(y, inj1 x.x)
)

⇒ B

But this requires a change to the expression that goes beyond changing an annotation: the expression itself is being changed.
The lack of a way to gain precision, combined with the need for an extra annotation to use subtyping and loss of precision, meant that

the varying precision property—Theorem 4 in the final version—did not hold. A weaker property—Theorem 14, below—did hold, but this
property only provides that some expression ej, which could be more imprecise than e, is well typed.

Different definition of imprecision. In Section 2, we explained why +∗

1 ⊑ +?
1 doesn’t make sense. We also argued against +?

1 ⊑ +∗

1, on the
basis that in directed consistency (SCSub) one could gain precision from +∗

1 to +?
1, then use subtyping from +?

1 to +∗

2. In the old system, there
was no gain of precision, and even loss of precision could not be combined with subtyping (without extra annotation). Thus, we saw no clear
argument against +?

1 ⊑ +∗

1, and included it in the relation. However, in the absence of gain of precision, the only way the type system could
use this was by moving from +?

i to +∗

i , which was also possible via subtyping.

+?

+∗

1 +∗

2

+?
1 +?

2

+1 +2+

Figure 17. Original, obsolete definition of precision

C.1 Original, weak version of varying precision

Theorem 4 does not hold for the original system. Instead, the following holds, where e ⊑: ej means that ej is a version of e with more-
imprecise annotations (like e ′ ⊑ e) and extra annotations. For example, x ⊑: (x :: A).

Theorem 14 (Weak version of varying precision).
1. If Γ ′ ⊢ e ′

⇐ A ′ and e ′ ⊑ e and Γ ′ ⊑ Γ
then there exist ej and A such that Γ ⊢ ej ⇐ A and e ⊑: ej and A ′ ⊑ A .

2. If Γ ′ ⊢ e ′
⇒ A ′ and e ′ ⊑ e and Γ ′ ⊑ Γ

then there exist ej and A

such that Γ ⊢ ej ⇒ A and e ⊑: ej and A ′ ⊑ A.

Given e ′ ⊑ e, this weak version of varying precision yields some ej that may be more imprecise, e ′ ⊑ e ⊑: ej. This is needed because—
in the absence of ChkCSub, which allows precision to be adjusted whenever subsumption is used—a more imprecise annotation may require
changing other annotations to make them more imprecise. For example, suppose we are given

e ′ =
(

(λx. (x :: B +2 B)) :: (B +2 B) → (B +2 B)
)

e =
(

(λx. (x :: B +
?
B)) :: (B +2 B) → (B +2 B)

)

We can synthesize A ′ = (B +2 B) → (B +2 B) for e ′, but not for e, because the inner annotation on x makes the λ fail to check against the
outer annotation. But we can produce ej =

(

(λx. (x :: B +? B)) :: (B +2 B) → (B +
?
B)

)

. Now the uses of +? match, and ej synthesizes
A = (B+2B) → (B+? B). The remaining +2 is okay, because of **ChkImp: in (x :: B+? B), we have Γ(x) = B+2B, which is less imprecise
than B +? B.

16 2020/8/16

D. Proofs

D.1 Source System

D.1.1 Subtyping

Lemma 1 (Subtyping inversion).
1. If Unit ≤ A then A = Unit.
2. If A ′ ≤ Unit then A ′ = Unit.
3. If A ′

1 δ
′ A ′

2 ≤ A then A = A1 δA2 where A ′

1 ≤ A1 and A ′

2 ≤ A2 and δ ′ ≤ δ.
4. If A ′ ≤ A1 δA2 then A ′ = A ′

1 δ
′ A ′

2 where A ′

1 ≤ A1 and A ′

2 ≤ A2 and δ ′ ≤ δ.
5. If A ′

1 → A ′

2 ≤ A then A = A1 → A2 where A1 ≤ A ′

1 and A ′

2 ≤ A2.
6. If A ′ ≤ A1 → A2 then A ′ = A ′

1 → A ′

2 where A1 ≤ A ′

1 and A ′

2 ≤ A2.

Proof.

1. By case analysis on Unit ≤ A.
• Case Unit ≤ Unit: Immediate that A = Unit.

2. Symmetric to the previous statement, hence omitted.
3. By case analysis on A ′

1 δ
′ A ′

2 ≤ A.
• Case A ′

1 δ
′ A ′

2 ≤ A1 δA2: Immediate as A = A1 δA2 and subderivations are A ′

1 ≤ A1 and A ′

2 ≤ A2 and δ ′ ≤ δ.
4. Symmetric to the previous statement, hence omitted.
5. By case analysis on A ′

1 → A ′

2 ≤ A.
• Case A ′

1 → A ′

2 ≤ A1 → A2: Immediate as A = A1 → A2 and subderivations are A1 ≤ A ′

1 and A ′

2 ≤ A2.
6. Symmetric to the previous statement, hence omitted.

Lemma 2 (Reflexivity of subtyping).
For all types A, it is the case that A ≤ A.

Proof. By induction on the structure of A.

• Case A = Unit: By the definition of precision, A ≤ A.
• Case A = A1 δA2: By the induction hypothesis, A1 ≤ A1 and A2 ≤ A2. By the reflexivity of subsum, δ ≤ δ. Thus, by the definition

of subtyping, A ≤ A.
• Case A = A2 → A2: By the induction hypothesis, A1 ≤ A1 and A2 ≤ A2. Thus, by the definition of subtyping, A ≤ A.

Lemma 3 (Transitivity of subtyping).
If A1 ≤ A2 and A2 ≤ A3 then A1 ≤ A2

Proof. By induction on the structure of A2.

• Case A2 = Unit:

A1 ≤ Unit Given
Unit ≤ A3 Given
A1 = Unit By Lemma 1 (Subtyping inversion)
A3 = Unit By Lemma 1 (Subtyping inversion)

Unit ≤ Unit By Lemma 2 (Reflexivity of subtyping)
A1 ≤ A3 Equivalent

• Case A2 = A12 δ2 A22:

A1 ≤ A12 δ2 A22 Given
A1 = A11 δ1 A21 By Lemma 1 (Subtyping inversion)
A11 ≤ A12

′′

A21 ≤ A22
′′

δ1 ≤ δ2
′′

A12 δ2 A22 ≤ A3 Given
A3 = A13 δ3 A23 By Lemma 1 (Subtyping inversion)
A12 ≤ A13

′′

A22 ≤ A23
′′

δ2 ≤ δ3
′′

17 2020/8/16

A11 ≤ A13 By the induction hypothesis
A21 ≤ A23 By the induction hypothesis
δ1 ≤ δ3 By the transitivity of ≤

A11 δ1 A21 ≤ A13 δ3 A23 By the definition of ≤
A1 ≤ A3 Equivalent

• Case A2 = A12 → A22:

A1 ≤ A12 → A22 Given
A1 = A11 → A21 By Lemma 1 (Subtyping inversion)
A12 ≤ A11

′′

A21 ≤ A22
′′

A12 → A22 ≤ A3 Given
A3 = A13 → A23 By Lemma 1 (Subtyping inversion)
A13 ≤ A12

′′

A22 ≤ A23
′′

A13 ≤ A11 By the induction hypothesis
A21 ≤ A23 By the induction hypothesis

A11 → A21 ≤ A13 → A23 By the definition of ≤
A1 ≤ A3 Equivalent

D.1.2 Precision

Lemma 4 (Precision inversion).
1. If Unit ⊑ A then A = Unit.
2. If A ′ ⊑ Unit then A ′ = Unit.
3. If A ′

1 δ
′ A ′

2 ⊑ A then A = A1 δA2 where A ′

1 ⊑ A1 and A ′

2 ⊑ A2 and δ ′ ⊑ δ.
4. If A ′ ⊑ A1 δA2 then A ′ = A ′

1 δ
′ A ′

2 where A ′

1 ⊑ A1 and A ′

2 ⊑ A2 and δ ′ ⊑ δ.
5. If A ′

1 → A ′

2 ⊑ A then A = A1 → A2 where A ′

1 ⊑ A1 and A ′

2 ⊑ A2.
6. If A ′ ⊑ A1 → A2 then A ′ = A ′

1 → A ′

2 where A ′

1 ⊑ A1 and A ′

2 ⊑ A2.

Proof.

1. By case analysis on Unit ⊑ A.
• Case Unit ⊑ Unit: Immediate that A = Unit.

2. Symmetric to the previous statement, hence omitted.
3. By case analysis on A ′

1 δ
′ A ′

2 ⊑ A.
• Case A ′

1 δ
′ A ′

2 ⊑ A1 δA2: Immediate as A = A1 δA2 and subderivations are A ′

1 ⊑ A1 and A ′

2 ⊑ A2 and δ ′ ⊑ δ.
4. Symmetric to the previous statement, hence omitted.
5. By case analysis on A ′

1 → A ′

2 ⊑ A.
• Case A ′

1 → A ′

2 ⊑ A1 → A2: Immediate as A = A1 → A2 and subderivations are A ′

1 ⊑ A1 and A ′

2 ⊑ A2.
6. Symmetric to the previous statement, hence omitted.

Lemma 5 (Reflexivity of precision).
For all types A, it is the case that A ⊑ A.

Proof. By induction on the structure of A.

• Case A = Unit: By the definition of precision, A ⊑ A.
• Case A = A1 δA2: By the induction hypothesis, A1 ⊑ A1 and A2 ⊑ A2. By the reflexivity of precision on sums, δ ⊑ δ. Thus, by the

definition of subtyping, A ⊑ A.
• Case A = A2 → A2: By the induction hypothesis, A1 ⊑ A1 and A2 ⊑ A2. Thus, by the definition of subtyping, A ⊑ A.

Lemma 6 (Transitivity of precision).
If A1 ⊑ A2 and A2 ⊑ A3 then A1 ⊑ A2.

Proof. By induction on the structure of A2.

• Case A2 = Unit:

18 2020/8/16

A1 ⊑ Unit Given
Unit ⊑ A3 Given
A1 = Unit By Lemma 4 (Precision inversion)
A3 = Unit By Lemma 4 (Precision inversion)

Unit ⊑ Unit By Lemma 5 (Reflexivity of precision)
A1 ⊑ A3 Equivalent

• Case A2 = A12 δ2 A22:

A1 ⊑ A12 δ2 A22 Given
A1 = A11 δ1 A21 By Lemma 4 (Precision inversion)
A11 ⊑ A12

′′

A21 ⊑ A22
′′

δ1 ⊑ δ2
′′

A12 δ2 A22 ⊑ A3 Given
A3 = A13 δ3 A23 By Lemma 4 (Precision inversion)
A12 ⊑ A13

′′

A22 ⊑ A23
′′

δ2 ⊑ δ3
′′

A11 ⊑ A13 By the induction hypothesis
A21 ⊑ A23 By the induction hypothesis
δ1 ⊑ δ3 By transitivity of ⊑

A11 δ1 A21 ⊑ A13 δ3 A23 By the definition of ⊑
A1 ⊑ A3 Equivalent

• Case A2 = A12 → A22:

A1 ⊑ A12 → A22 Given
A1 = A11 → A21 By Lemma 4 (Precision inversion)
A11 ⊑ A12

′′

A21 ⊑ A22
′′

A12 → A22 ⊑ A3 Given
A3 = A13 → A23 By Lemma 4 (Precision inversion)
A12 ⊑ A13

′′

A22 ⊑ A23
′′

A11 ⊑ A13 By the induction hypothesis
A21 ⊑ A23 By the induction hypothesis

A11 → A21 ⊑ A13 → A23 By the definition of ⊑
A1 ⊑ A3 Equivalent

D.1.3 Directed Consistency

Lemma 7 (Reflexivity of directed consistency).
For all types A, it is the case that A ❀ A.

Proof. Immediate from Lemma 5 (Reflexivity of precision), Lemma 2 (Reflexivity of subtyping) and rule DirConsU.

Lemma 8 (Subtyping obeys directed consistency).
If A ≤ B then A ❀ B.

Proof. By Lemma 5 (Reflexivity of precision), A ⊑ A and B ⊑ B. It is given that A ≤ B. Therefore, by rule DirConsU, A ❀ B.

Lemma 9 (Loss in precision obeys directed consistency).
If A ⊑ B then A ❀ B.

Proof. By Lemma 5 (Reflexivity of precision), A ⊑ A. By Lemma 2 (Reflexivity of subtyping), A ≤ A. It is given that A ⊑ B. Therefore,
by rule DirConsU, A ❀ B.

Lemma 10 (Gain in precision obeys directed consistency).
If A ⊑ B then B ❀ A.

Proof. It is given that A ⊑ B. By Lemma 2 (Reflexivity of subtyping), A ≤ A. By Lemma 5 (Reflexivity of precision), A ⊑ A. Therefore,
by rule DirConsU, B ❀ A.

19 2020/8/16

A ′ ≃ A Type A ′ is structurally equivalent to A

Unit ≃ Unit

A
′

1 ≃ A1 A
′

2 ≃ A2

(A
′

1 δ
′
A

′

2) ≃ (A1 δA2)

A
′

1 ≃ A1 A
′

2 ≃ A2

(A
′

1 → A
′

2) ≃ (A1 → A2)

Figure 18. Source structural equivalence

D.1.4 Structural Equivalence

Lemma 11 (Reflexivity of Structural Equivalence).
For all types A, it is the case that A ≃ A.

Proof. By induction on the structure of A. All cases are immediate by the induction hypothesis and the definition of ≃.

Lemma 12 (Symmetry of Structural Equivalence).
If A ′ ≃ A then A ≃ A ′.

Proof. By structural induction on the derivation of A ′ ≃ A. All cases are immediate by the induction hypothesis and the definition of ≃.

Lemma 13 (Transitivity of Structural Equivalence).
If A1 ≃ A2 and A2 ≃ A3 then A1 ≃ A3.

Proof. By induction on the structure of the type A2. All cases are immediate from inversion on structural equivalence, the induction
hypothesis, and the definition of ≃.

Corollary 14 (Structural Equivalence is an equivalence relation).
The binary relation ≃ on types is an equivalence relation.

Proof. Immediate from Lemma 11 (Reflexivity of Structural Equivalence), Lemma 12 (Symmetry of Structural Equivalence), and Lemma
13 (Transitivity of Structural Equivalence).

Lemma 15 (Subtyping obeys Structural Equivalence).
If A ′ ≤ A then A ′ ≃ A.

Proof. By induction on the structure of the derivation of A ′ ≤ A.

• Case Unit ≤ Unit: By definition of structural equivalence, Unit ≃ Unit.

• Case A
′

1 ≤ A1 A
′

2 ≤ A2 δ
′ ≤ δ

(A
′

1 δ
′
A

′

2) ≤ (A1 δA2)

A ′

1 ≤ A1 Subderivation
A ′

2 ≤ A2 Subderivation
A ′

1 ≃ A1 By the induction hypothesis
A ′

2 ≃ A2 By the induction hypothesis
A ′

1 δ
′ A ′

2 ≃ A1 δA2 By definition of ≃

• Case A1 ≤ A
′

1 A
′

2 ≤ A2

(A
′

1 → A
′

2) ≤ (A1 → A2)

A1 ≤ A ′

1 Subderivation
A ′

2 ≤ A2 Subderivation
A1 ≃ A ′

1 By the induction hypothesis
A ′

1 ≃ A1 By Lemma 12 (Symmetry of Structural Equivalence)
A ′

2 ≃ A2 By the induction hypothesis
A ′

1 → A ′

2 ≃ A1 → A2 By definition of ≃

Lemma 16 (Precision obeys Structural Equivalence).
If A ′ ⊑ A then A ′ ≃ A.

Proof. By induction on the structure of the derivation of A ′ ⊑ A. All cases are immediate by the induction hypothesis and the definition of
structural equivalence.

Lemma 17 (Directed consistency obeys Structural Equivalence).
If A ❀ B then A ≃ B.

20 2020/8/16

Proof. It is given that A ❀ B. By inversion on DirConsU, there exist A ′ and B ′ such that A ′ ⊑ A and A ′ ≤ B ′ and B ′ ⊑ B. By Lemma 16
(Precision obeys Structural Equivalence), A ′ ≃ A and B ′ ≃ B. By Lemma 11 (Reflexivity of Structural Equivalence), A ≃ A ′. By Lemma
15 (Subtyping obeys Structural Equivalence), A ′ ≃ B ′. Therefore, by Lemma 13 (Transitivity of Structural Equivalence), A ≃ B.

D.1.5 Decidability

In this section, we write J decidable in proofs to indicate that the associated judgment form J is decidable.

δ ′ ≤ δ Sum δ ′ is a sub-sum of δ

+
?
i ≤ +

?
i +

?
i ≤ +

?
+

?
i ≤ +i +

?
i ≤ +

∗

k +
?
i ≤ + +

? ≤ +
?

+
? ≤ +

∗

i

+
? ≤ + +i ≤ +i +i ≤ +

∗

i +i ≤ + +
∗

i ≤ +
∗

i +
∗

i ≤ + + ≤ +

Figure 19. Reflexive, transitive closure of source subsum

Lemma 18 (Decidability of subsum).
Given δ ′ and δ, the judgment δ ′ ≤ δ is decidable.

Proof. We present the reflexive, transitive closure of the subsum relation on source sums in Figure 19. We can view this relation as a finite
set of ordered sums. Thus, the decidability of the subsum relation is equivalent to a membership check on this set.

Lemma 19 (Decidability of subtyping).
Given A ′ and A, the judgment A ′ ≤ A is decidable.

Proof. By simultaneous induction on the structure of A ′ and A.
Proceed by case analysis on the head constructors of A ′ and A. Either they agree or they disagree.
If they disagree, then no rule can possibly derive A ′ ≤ A.
If they agree, then:

• Case A ′ = Unit and A = Unit: By definition of subtyping, Unit ≤ Unit.
• Case A ′ = A ′

1 δ
′ A ′

2 and A = A1 δA2:

A ′

1 ≤A1 decidable By the induction hypothesis
A ′

2 ≤A2 decidable By the induction hypothesis
δ ′ ≤ δ decidable By Lemma 18 (Decidability of subsum)

A ′

1 δ
′ A ′

2 ≤A1 δA2 decidable By decidability of premises

• Case A ′ = A ′

1 → A ′

2 and A = A1 → A2:

A1 ≤A ′

1 decidable By the induction hypothesis
A ′

2 ≤A2 decidable By the induction hypothesis
A ′

1 → A ′

2 ≤A1 → A2 decidable By decidability of premises

δ ′ ⊑ δ Sum δ ′ is more precise than δ

+i ⊑ +i +i ⊑ +
?
i +i ⊑ +

∗

i +i ⊑ +
?

+ ⊑ + + ⊑ +
?

+
?
i ⊑ +

?
i +

?
i ⊑ +

?
+
∗

i ⊑ +
∗

i +
∗

i ⊑ +
?

+
? ⊑ +

?

Figure 20. Reflexive, transitive closure of precision on sums

Lemma 20 (Decidability of precision on sums).
Given δ ′ and δ, the judgment δ ′ ⊑ δ is decidable.

Proof. We present the reflexive, transitive closure of the precision relation on source sums in Figure 20. We could view this relation as a finite
set of ordered sums. Thus, the decidability of the precision relation is equivalent to a membership check on this set. Therefore, given δ ′ and
δ, check whether or not (δ ′, δ) ∈⊑.

Lemma 21 (Decidability of precision on types).
Given A ′ and A, the judgment A ′ ⊑ A is decidable.

21 2020/8/16

Proof. By simultaneous induction on the structure of A ′ and A.
Proceed by case analysis on the head constructors of A ′ and A. Either they agree or they disagree.
If they disagree, then no rule can possibly derive A ′ ⊑ A.
If they agree, then:

• Case A ′ = Unit and A = Unit: By definition of precision, Unit ⊑ Unit and therefore derivablity is decidable.
• Case A ′ = A ′

1 δ
′ A ′

2 and A = A1 δA2:

A ′

1 ⊑A1 decidable By the induction hypothesis
A ′

2 ⊑A2 decidable By the induction hypothesis
δ ′ ⊑ δ decidable By Lemma 20 (Decidability of precision on sums)

A ′

1 δ
′ A ′

2 ⊑A1 δA2 decidable By decidability of premises

• Case A ′ = A ′

1 → A ′

2 and A = A1 → A2:

A ′

1 ⊑A1 decidable By the induction hypothesis
A ′

2 ⊑A2 decidable By the induction hypothesis
A ′

1 → A ′

2 ⊑A1 → A2 decidable By decidability of premises

Lemma 22 (Decidability of directed consistency).
Given A ′ and B ′, the relation A ′

❀ B ′ is decidable.

Proof. We have A ′
❀ B ′ if and only if there exist A and B such that A ⊑ A ′ and A ≤ B and B ⊑ B ′. We are given A ′; there are only

finitely many types such that A ⊑ A ′. Each such A has only finitely many supertypes, that is, types B such that A ≤ B. Since these two
relations are decidable, A ′

❀ B ′ is decidable.

Theorem 1 (Decidability of bidirectional typing).

1. Given Γ , e and A, the judgment Γ ⊢ e ⇐ A is decidable.
2. Given Γ and e, the judgment Γ ⊢ e ⇒ A is decidable.

Proof. By lexicographic induction on (1) the expression e, then on (2) the judgment form, with ⇒ smaller than ⇐.
In most rules, the expression gets smaller in all the premises: SynAnno, Chk→Intro, Syn→Elim, ChkSumIntro, ChkSumElim1, and

ChkSumElim2.
In ChkCSub, the premise types the same expression but is a synthesizing judgment, which is smaller under our induction measure. By

Lemma 22, the second premise of ChkCSub is decidable.

D.1.6 Equivalence of type assignment and bidirectional system

Lemma 23 (All sums below +).
For all source sums δ, it is the case that δ ≤ +.

Proof. By case analysis on δ.

• Case δ = +∗

i : By the definition of subtyping, +∗

i ≤ +.
• Case δ = +i: By the definition of subtyping, +i ≤ +∗

i . By the previous case, +∗

i ≤ +. By the transitivity of subtyping, +i ≤ +.
• Case δ = +?

i: By the definition of subtyping, +?
i ≤ +i. By the previous case, +i ≤ +. By the transitivity of subtyping, +?

i ≤ +.
• Case δ = +?: By the definition of subtyping, +? ≤ +∗

i . By the definition of subtyping, +∗

i ≤ +. By the transitivity of subtyping, +? ≤ +.
• Case δ = +: By the reflexivity of subtyping, + ≤ +.

Lemma 24 (⇒⇒ implies subsum).
If δ ′

⇒⇒ δ then δ ′ ≤ δ.

Proof. By case analysis on δ ′
⇒⇒ δ.

• Case +?
i ⇒⇒ +∗

i : By definition of subtyping, +?
i ≤ +i. By definition of subtyping, +i ≤ +∗

i . By transitivity of subtyping, +?
i ≤ +∗

i .
• Case +i ⇒⇒ +∗

i : By definition of subtyping, +i ≤ +∗

i .
• Case +?

⇒⇒ +∗

i : By definition of subtyping, +? ≤ +∗

i .
• Case +∗

i ⇒⇒ +∗

i : By reflexivity of subtyping, +∗

i ≤ +∗

i .
• Case δ ′

⇒⇒ +: By Lemma 23 (All sums below +), δ ′ ≤ +.

Theorem 2 (Bidirectional soundness).
If Γ ⊢ e ⇐ A or Γ ⊢ e ⇒ A then Γ ⊢ e : A.

Proof. By induction on the structure of the given derivation.

• Case SynVar: Apply rule SVar.
• Case ChkCSub: Use the induction hypothesis and apply rule SCSub.

22 2020/8/16

• Case SynAnno: Use the induction hypothesis, and apply rule SAnno.
• Case ChkUnitIntro: Apply rule SUnitIntro.

• Case
Γ ⊢ e0 ⇐ Ai +

?
i ≤ δ

Γ ⊢ inji e0 ⇐ (A1 δA2)
ChkSumIntro

Γ ⊢ e0 ⇐ Ai Subderivation
Γ ⊢ e0 : Ai By the induction hypothesis
Γ ⊢ inji e0 : (A1 +?

i A2) By rule SSumIntro

A1 ≤ A1 By Lemma 2 (Reflexivity of subtyping)
A2 ≤ A2 By Lemma 2 (Reflexivity of subtyping)
+?
i ≤ δ Subderivation

A1 +?
i A2 ≤ A1 δA2 By definition of ≤

A1 +?
i A2 ❀ A1 δA2 By Lemma 8 (Subtyping obeys directed consistency)

Γ ⊢ inji e0 : (A1 δA2) By rule SCSub

• Case Γ ⊢ e0 ⇒ (A1 δA2)
δ ⇒⇒ +

∗

i Γ, x : Ai ⊢ ei ⇐ A

Γ ⊢ case(e0, inji x.ei) ⇐ A
ChkSumElim1

Γ ⊢ e0 ⇒ (A1 δA2) Subderivation
Γ ⊢ e0 : (A1 δA2) By the induction hypothesis

δ⇒⇒+∗

i Subderivation
δ ≤ +∗

i By Lemma 24 (⇒⇒ implies subsum)
A1 ≤ A1 By Lemma 2 (Reflexivity of subtyping)
A2 ≤ A2 By Lemma 2 (Reflexivity of subtyping)

A1 δA2 ≤ A1 +∗

i A2 By definition of ≤
A1 δA2 ❀ A1 +∗

i A2 By Lemma 8 (Subtyping obeys directed consistency)
Γ ⊢ e0 : (A1 +∗

i A2) By rule SCSub

Γ, x : Ai ⊢ ei ⇐ A Subderivation
Γ, x : Ai ⊢ ei : A By the induction hypothesis

Γ ⊢ case(e0, inji x.ei) : A By rule ChkSumElim1

• Case ChkSumElim2: Similar to the ChkSumElim1 case, hence omitted.
• Case Chk→Intro: Use the induction hypothesis, and apply rule S→Intro.
• Case Syn→Elim: Use the induction hypothesis, and apply rule S→Elim.

Lemma 25 (Reflexivity of annotation equivalence). For all expressions e, e =: e.

Proof. By induction on the structure of e.
All cases either hold directly by definition or by first using the induction hypothesis.

Lemma 26 (Synthesis also checks). If Γ ⊢ e ⇒ A then Γ ⊢ e ⇐ A.

Proof. Apply rule ChkCSub as A ❀ A holds by Lemma 5 (Reflexivity of precision).

Theorem 3 (Annotatability).
If Γ ⊢ e : A then there exist e ′ and e ′′ such that (1) Γ ⊢ e ′

⇐ A where e =: e ′, and (2) Γ ⊢ e ′′
⇒ A where e =: e ′′.

Proof. By induction on the structure of the derivation of Γ ⊢ e : A.

• Case Γ(x) = A

Γ ⊢ x : A
SVar

Γ(x) = A Premise
Z Γ ⊢ x ⇒ A By rule SynVar

Z Γ ⊢ x ⇐ A By Lemma 26 (Synthesis also checks)
Z x =: x By definition of =:

23 2020/8/16

• Case Γ ⊢ e : A
′

A
′
❀ A

Γ ⊢ e : A
SCSub

Γ ⊢ e : A ′ Subderivation
Γ ⊢ e ′

⇒ A ′ By the induction hypothesis
Z e =: e ′ ′′

A ′
❀ A Subderivation

Z Γ ⊢ e ′
⇐ A By rule ChkCSub

Z Γ ⊢ (e ′ :: A) ⇒ A By rule SynAnno

Z e =: (e ′ :: A) By definition of =:

• Case Γ ⊢ e0 : A

Γ ⊢ (e0 :: A) : A
SAnno

Γ ⊢ e0 : A Subderivation
Γ ⊢ e ′

0 ⇐ A By the induction hypothesis
e0 =: e ′

0
′′

Z Γ ⊢ (e ′

0 :: A) ⇒ A By rule SynAnno

Z Γ ⊢ (e ′

0 :: A) ⇐ A By Lemma 26 (Synthesis also checks)
Z e0 =: (e ′

0 :: A) By definition of =:

• Case

Γ ⊢ () : Unit
SUnitIntro

Z Γ ⊢ () ⇐ Unit By rule ChkUnitIntro

Z Γ ⊢ (() :: Unit) ⇒ Unit By rule SynAnno

Z () =: () By definition of =:

Z () =: (() :: Unit) By definition of =:

• Case Γ ⊢ e0 : Ai

Γ ⊢ inji e0 : (A1 +
?
i A2)

SSumIntro

Γ ⊢ e0 : Ai Subderivation
Γ ⊢ e ′

0 ⇐ Ai By the induction hypothesis
e0 =: e ′

0
′′

+?
i ≤ +?

i By definition of ≤
Z Γ ⊢ inji e

′

0 ⇐ (A1 +?
i A2) By rule ChkSumIntro

Z Γ ⊢ (inji e
′

0 :: A1 +?
i A2) ⇒ (A1 +?

i A2) By rule SynAnno

Z inji e0 =: inji e
′

0 By definition of =:

Z inji e0 =: (inji e
′

0 :: A1 +?
i A2) By definition of =:

• Case Γ ⊢ e0 : A1 +
∗

i A2 Γ, x : Ai ⊢ ei : A

Γ ⊢ case(e0, inji x.ei) : A
SSumElim1

Γ ⊢ e0 : A1 +∗

i A2 Subderivation
Γ ⊢ e ′

0 ⇒ A1 +∗

i A2 By the induction hypothesis
e0 =: e ′

0
′′

Γ, x : Ai ⊢ ei : A Subderivation
Γ, x : Ai ⊢ e ′

i ⇐ A By the induction hypothesis
ei =: e ′

i
′′

+∗

i ⇒⇒+∗

i By definition of ⇒⇒
Z Γ ⊢ case(e ′

0, inji x.e
′

i) ⇐ A By rule ChkSumElim1

Z Γ ⊢ (case(e ′

0, inji x.e
′

i) :: A) ⇒ A By rule SynAnno

Z case(e0, inji x.ei) =: case(e ′

0, inji x.e
′

i) By definition of =:

Z case(e0, inji x.ei) =: (case(e ′

0, inji x.e
′

i) :: A) By definition of =:

• Case SSumElim2: Similar to the SSumElim1 case, hence omitted.

• Case Γ, x : A1 ⊢ e0 : A2

Γ ⊢ λx. e0 : A1 → A2

S→Intro

24 2020/8/16

Γ, x : A1 ⊢ e0 : A2 Subderivation
Γ, x : A1 ⊢ e ′

0 ⇐ A2 By the induction hypothesis
e0 =: e ′

0
′′

Z Γ ⊢ λx. e ′

0 ⇐ (A1 → A2) By rule Chk→Intro

Z Γ ⊢ (λx. e ′

0 :: A1 → A2) ⇒ (A1 → A2) By rule SynAnno

Z λx. e0 =: λx. e ′

0 By definition of =:

Z λx. e0 =: (λx. e ′

0 :: A1 → A2) By definition of =:

• Case Γ ⊢ e1 : A1 → A2 Γ ⊢ e2 : A1

Γ ⊢ e1 e2 : A2

S→Elim

Γ ⊢ e1 : A1 → A2 Subderivation
Γ ⊢ e ′

1 ⇒ A1 → A2 By the induction hypothesis
e1 =: e ′

1
′′

Γ ⊢ e2 : A1 Subderivation
Γ ⊢ e ′

2 ⇐ A1 By the induction hypothesis
e2 =: e ′

2
′′

Z Γ ⊢ e ′

1 e
′

2 ⇒ A2 By rule Syn→Elim

Z Γ ⊢ e ′

1 e
′

2 ⇐ A2 By Lemma 26 (Synthesis also checks)
Z e1 e2 =: e ′

1 e
′

2 By definition of =:

D.2 Typability under varying precision

Lemma 27 (Pointwise precision preserves domain).
If Γ ′ ⊑ Γ then dom(Γ ′) = dom(Γ).

Proof. By induction on the structure of Γ ′ ⊑ Γ .

Lemma 28 (Context strengthening).
If Γ, y : A ′ ⊢ e : A0 and A ⊑ A ′ then Γ, y : A ⊢ e : A0.

Proof. By induction on the structure of the derivation of Γ, y : A ′ ⊢ e : A0.

• Case
(Γ, y : A

′
)(e) = A0

Γ, y : A
′ ⊢ e : A0

SVar

Either e = y, or e 6= y.
In the first case:
(Γ, y : A ′)(y) = A0 Premise

A ′ = A0 By definition
Γ, y : A ⊢ y : A By rule SVar

A ⊑ A ′ Given
A❀ A ′ By Lemma 9 (Loss in precision obeys directed consistency)

Γ, y : A ⊢ y : A ′ By rule SCSub

Γ, y : A ⊢ e : A0 By above equalities

In the second case:

Γ, y : A ⊢ e : A0 By rule SVar

• Case SCSub: Use the induction hypothesis and apply rule SCSub.
• Case SUnitIntro: Immediate from rule SUnitIntro.
• Case SSumIntro: Use the induction hypothesis and apply rule SSumIntro.
• Case SSumElim1: Use the induction hypothesis and apply rule SSumElim1.
• Case SSumElim2: Use the induction hypothesis and apply rule SSumElim2.
• Case S→Intro: Use the induction hypothesis and apply rule S→Intro.
• Case S→Elim: Use the induction hypothesis and apply rule S→Elim.

Corollary 29.
If Γ ′ ⊢ e : A and Γ ⊑ Γ ′ then Γ ⊢ e : A.

25 2020/8/16

Proof. By induction on the number of variables x such that x ∈ dom(Γ ′) but Γ ′(x) 6= Γ(x).
Note that we don’t impose x ∈ dom(Γ) as dom(Γ) = dom(Γ ′) by Lemma 27 (Pointwise precision preserves domain).
If Γ ′(x) = Γ(x) for all x ∈ dom(Γ ′), then Γ = Γ ′ so we already have the result.
Otherwise, use the induction hypothesis, and apply Lemma 28 (Context strengthening).

Lemma 30 (Relating +?
i-subsum and precision).

If +?
i ≤ δ ′ and δ ′ ⊑ δ then +?

i ≤ δ.

Proof. Proceed by case analysis on +?
i ≤ δ ′.

• Case +?
i ≤ +?

i: From the definition of precision, either δ = +?
i or δ = +?. In both cases, there exists a derivation for +?

i ≤ δ.
• Case +?

i ≤ +i: From the definition of precision, either δ = +i, δ = +?
i , δ = +∗

i or δ = +?. In all cases, there exists a derivation for
+?
i ≤ δ.

• Case +?
i ≤ +?: From the definition of precision, δ = +?. We are given a derivation for +?

i ≤ +?.
• Case +?

i ≤ +∗

k: From the definition of precision, either δ = +∗

k or δ = +?. In both cases, there exists a derivation for +?
i ≤ δ.

• Case +?
i ≤ +: From the definition of precision, either δ = + or δ = +?. In both cases, there exists a derivation for +?

i ≤ δ.

Lemma 31 (Bidirectional sum precision).
If δ ′

⇒⇒ δ1 and δ ′ ⊑ δ then δ ⇒⇒ δ1.

Proof. Proceed by case analysis on δ ′
⇒⇒ δ1.

• Case +?
i ⇒⇒ +∗

i : From the definition of precision, either δ = +?
i or δ = +?. In both cases, there exists a derivation for δ ⇒⇒ +∗

i .
• Case +i ⇒⇒ +∗

i : From the definition of precision, either δ = +i, δ = +?
i , δ = +∗

i , or δ = +?. In all cases, there exists a derivations for
δ ⇒⇒ +∗

i .
• Case +?

⇒⇒ +∗

i : From the definition of precision, δ = +?. We are given a derivation for +?
⇒⇒ +∗

i .
• Case +∗

i ⇒⇒ +∗

i : From the definition of precision, either δ = +∗

i or δ = +?. In both cases, there exists a derivation for δ ⇒⇒ +∗

i .
• Case δ ′

⇒⇒ +: There exists a derivation for δ ⇒⇒ + for all δ.

Theorem 4 (Varying precision of bidirectional typing).
1. If Γ ′ ⊢ e ′

⇐ A ′ and e ′ ⊑ e and Γ ′ ⊑ Γ and A ′ ⊑ A
then Γ ⊢ e ⇐ A.

2. If Γ ′ ⊢ e ′
⇒ A ′ and e ′ ⊑ e and Γ ′ ⊑ Γ

then there exists A such that Γ ⊢ e ⇒ A and A ′ ⊑ A.

Proof. By induction on the structure of the given derivation.

1. By case analysis on the rule concluding Γ ′ ⊢ e ′
⇐ A ′.

• Case

Γ
′ ⊢ ()

︸︷︷︸
e ′

⇐ Unit︸︷︷︸
A ′

ChkUnitIntro

() ⊑ e Given
e = () From definition of ⊑

Unit ⊑ A Given
A = Unit By Lemma 4 (Precision inversion)

Γ ⊢ e ⇐ Unit By rule ChkUnitIntro

• Case Γ
′ ⊢ e

′
⇒ A

′

0 A
′

0 ❀ A
′

Γ
′ ⊢ e

′
⇐ A

′
ChkCSub

26 2020/8/16

Γ ′ ⊢ e ′
⇒ A ′

0 Subderivation
e ′ ⊑ e Given
Γ ′ ⊑ Γ Given
Γ ⊢ e ⇒ A0 By the induction hypothesis

A ′

0 ⊑ A0
′′

A ′

0 ❀ A ′ Subderivation
B ′

0 ⊑ A ′

0 By inversion on DirConsU

B ′

0 ≤ B ′ ′′

B ′ ⊑ A ′ ′′

B ′

0 ⊑ A0 By Lemma 6 (Transitivity of precision)
A ′ ⊑ A Given
B ′ ⊑ A By Lemma 6 (Transitivity of precision)
A0 ❀ A By rule DirConsU

Γ ⊢ e ⇐ A By rule ChkCSub

• Case Γ
′
, x : A

′

1 ⊢ e
′

0 ⇐ A
′

2

Γ
′ ⊢ λx. e

′

0︸ ︷︷ ︸
e ′

⇐ A
′

1 → A
′

2︸ ︷︷ ︸
A ′

Chk→Intro

λx. e ′

0 ⊑ e Given
e = λx. e0 From definition of ⊑

e ′

0 ⊑ e0
′′

A ′

1 → A ′

2 ⊑ A Given
A = A1 → A2 By Lemma 4 (Precision inversion)

A ′

1 ⊑ A1
′′

A ′

2 ⊑ A2
′′

Γ ′ ⊑ Γ Given
Γ ′, x : A ′

1 ⊑ Γ, x : A1 By definition of ⊑
Γ ′, x : A ′

1 ⊢ e ′

0 ⇐ A ′

2 Subderivation
Γ, x : A1 ⊢ e0 ⇐ A2 By the induction hypothesis

Γ ⊢ λx. e0 ⇐ A1 → A2 By rule Chk→Intro

• Case
Γ
′ ⊢ e

′

0 ⇐ A
′

i +
?
i ≤ δ

′

Γ
′ ⊢ inji e

′

0
︸ ︷︷ ︸

e ′

⇐ A
′

1 δ
′
A

′

2︸ ︷︷ ︸
A ′

ChkSumIntro

inji e
′

0 ⊑ e Given
e = inji e0 From definition of ⊑

e ′

0 ⊑ e0
′′

A ′

1 δ
′ A ′

2 ⊑ A Given
A = A1 δA2 By Lemma 4 (Precision inversion)
A ′

i ⊑ Ai
′′

δ ′ ⊑ δ ′′

Γ ′ ⊢ e ′

0 ⇐ A ′

i Subderivation
Γ ′ ⊑ Γ Given
Γ ⊢ e0 ⇐ Ai By the induction hypothesis

+?
i ≤ δ ′ Subderivation

+?
i ≤ δ By Lemma 30 (Relating +?

i-subsum and precision)
Γ ⊢ inji e0 ⇐ (A1 δA2) By rule ChkSumIntro

• Case Γ
′ ⊢ e

′

0 ⇒ A
′

1 δ
′
A

′

2

δ
′
⇒⇒ +

∗

i Γ
′
, x : A

′

i ⊢ e
′

i ⇐ A
′

Γ
′ ⊢ case(e

′

0, inji x.e
′

i)
︸ ︷︷ ︸

e ′

⇐ A
′

ChkSumElim1

27 2020/8/16

e ′ ⊑ e Given
e = case(e0, inji x.ei) From definition of ⊑

e ′

0 ⊑ e0
′′

e ′

i ⊑ ei
′′

Γ ′ ⊢ e ′

0 ⇒ A ′

1 δ
′ A ′

2 Subderivation
Γ ′ ⊑ Γ Given
Γ ⊢ e0 ⇒ A1 δA2 By the induction hypothesis

A ′

1 δ
′ A ′

2 ⊑ A1 δA2
′′

A ′

i ⊑ Ai From definition of ⊑
δ ′ ⊑ δ ′′

δ ′
⇒⇒ +∗

i Subderivation
δ ⇒⇒ +∗

i By Lemma 31 (Bidirectional sum precision)

Γ ′, x : A ′

i ⊑ Γ, x : Ai By definition of ⊑
A ′ ⊑ A Given

Γ ′, x : A ′

i ⊢ e ′

i ⇐ A ′ Subderivation
Γ, x : Ai ⊢ ei ⇐ A By the induction hypothesis

Γ ⊢ case(e0, inji x.ei) ⇐ A By rule ChkSumElim1

• Case Γ
′ ⊢ e

′

0 ⇒ A
′

1 δ
′
A

′

2

δ
′
⇒⇒ +

Γ
′
, x1 : A

′

1 ⊢ e
′

1 ⇐ A
′

Γ
′
, x2 : A

′

2 ⊢ e
′

2 ⇐ A
′

Γ
′ ⊢ case(e

′

0, inj1 x1.e
′

1, inj2 x2.e
′

2)
︸ ︷︷ ︸

e ′

⇐ A
′

ChkSumElim2

e ′ ⊑ e Given
e = case(e0, inj1 x1.e1, inj2 x2.e2) From definition of ⊑

e ′

0 ⊑ e0
′′

e ′

1 ⊑ e1
′′

e ′

2 ⊑ e2
′′

Γ ′ ⊢ e ′

0 ⇒ A ′

1 δ
′ A ′

2 Subderivation
Γ ′ ⊑ Γ Given
Γ ⊢ e0 ⇒ A1 δA2 By the induction hypothesis

A ′

1 δ
′ A ′

2 ⊑ A1 δA2
′′

A ′

1 ⊑ A1 From definition of ⊑
A ′

2 ⊑ A2
′′

δ ′ ⊑ δ ′′

δ ′
⇒⇒ + Subderivation

δ⇒⇒ + By Lemma 31 (Bidirectional sum precision)
A ′ ⊑ A Given

Γ ′, x1 : A ′

1 ⊑ Γ, x1 : A1 By definition of ⊑
Γ ′, x1 : A ′

1 ⊢ e ′

1 ⇐ A ′ Subderivation
Γ, x1 : A1 ⊢ e1 ⇐ A By the induction hypothesis

Γ ′, x2 : A ′

2 ⊑ Γ, x2 : A2 By definition of ⊑
Γ ′, x2 : A ′

2 ⊢ e ′

2 ⇐ A ′ Subderivation
Γ, x2 : A2 ⊢ e2 ⇐ A By the induction hypothesis

Γ ⊢ case(e0, inj1 x1.e1, inj2 x2.e2) ⇐ A By rule ChkSumElim2

2. By case analysis on the rule concluding Γ ′ ⊢ e ′
⇒ A ′.

• Case Γ
′
(x) = A

′

Γ
′ ⊢ x︸︷︷︸

e ′

⇒ A
′

SynVar

Let A = Γ(x).

28 2020/8/16

x ⊑ e Given
e = x From definition of ⊑

Γ ′(x) = A ′ Premise
Γ ′ ⊑ Γ Given

Γ ′(x) ⊑ Γ(x) By definition of ⊑ on contexts
Z A ′ ⊑ A Equivalent
Z Γ ⊢ x ⇒ A By rule SynVar

• Case Γ
′ ⊢ e

′

0 ⇐ A
′

Γ
′ ⊢ (e

′

0 :: A
′
)

︸ ︷︷ ︸
e ′

⇒ A
′

SynAnno

(e ′

0 :: A ′) ⊑ e Given
e = (e0 :: A0) From definition of ⊑

e ′

0 ⊑ e0
′′

Z A ′ ⊑ A ′′

Γ ′ ⊢ e ′

0 ⇐ A ′ Subderivation
Γ ′ ⊑ Γ Given
Γ ⊢ e0 ⇐ A By the induction hypothesis

Z Γ ⊢ (e0 :: A) ⇒ A By rule SynAnno

• Case Γ
′ ⊢ e

′

1 ⇒ A
′

0 → A
′

Γ
′ ⊢ e

′

2 ⇐ A
′

0

Γ
′ ⊢ e

′

1 e
′

2︸ ︷︷ ︸
e ′

⇒ A
′

Syn→Elim

e ′

1 e
′

2 ⊑ e Given
e = e1 e2 From definition of ⊑

e ′

1 ⊑ e1
′′

e ′

2 ⊑ e2
′′

Γ ′ ⊑ Γ Given
Γ ′ ⊢ e ′

1 ⇒ A ′

0 → A ′ Subderivation
Γ ⊢ e1 ⇒ A0 → A By the induction hypothesis

A ′

0 → A ′ ⊑ A0 → A ′′

A ′

0 ⊑ A0 From definition of ⊑
Z A ′ ⊑ A ′′

Γ ′ ⊢ e ′

2 ⇐ A ′

0 Subderivation
Γ ⊢ e2 ⇐ A0 By the induction hypothesis

Z Γ ⊢ e1 e2 ⇒ A By rule Syn→Elim

D.3 Properties of the Static System

Lemma 32 (Static looseness).
If +?

i ≤ δS then +i ≤S δS.

Proof. By case analysis on +?
i ≤ δS.

• Case +?
i ≤ +i: By definition of static subtyping +i ≤S +i.

• Case +?
i ≤ +: By definition of static subtyping +i ≤S +.

Lemma 33 (Static looseness, II).
If δS

⇒⇒ +∗

i then δS = +i.

Proof. By case analysis on δS
⇒⇒ +∗

i .

• Case +i ⇒⇒ +∗

i : It is the case that δS = +i.

The following lemma states that static sums are the most precise and incomparable by the precision relation.

Lemma 34 (Precision for static sums).
If δ1 ⊑ δS

2 then δ1 = δS

2.

Proof. Proceed by case analysis on δS

2.

29 2020/8/16

• Case δS

2 = +i: By the definition of imprecision, δ1 = +i only.
• Case δS

2 = +: By the definition of imprecision, δ1 = + only.

Lemma 35 (Precision for static types).
If A1 ⊑ AS

2 then A1 = AS

2.

Proof. By induction on the structure of AS

2.

• Case AS

2 = Unit: By the definition of imprecision, AS

1 = Unit only.
• Case AS

2 = AS

12 δ
S

2 A
S

22:

A1 ⊑ AS

12 δ
S

2 A
S

22 Given
A1 = A11 δ1 A21 From the definition of ⊑
A11 ⊑ AS

12
′′

A21 ⊑ AS

22
′′

δ1 ⊑ δS

2
′′

A11 = AS

12 By the induction hypothesis
A21 = AS

22 By the induction hypothesis
δ1 = δS

2 By Lemma 34 (Precision for static sums)
A1 = AS

2 By definition of =

• Case AS

2 = AS

12 → AS

22: Similar to the previous case.

Lemma 36 (Equivalence for static subsum).

1. If δS

1 ≤S δS

2 then δS

1 ≤ δS

2.
2. If δS

1 ≤ δS

2 then δS

1 ≤S δS

2.

Proof.

1. By case analysis on δS

1 ≤S δS

2.

• Case δS ≤S δS: By definition of subtyping, δS ≤ δS.
• Case +i ≤S +: By definition of subtyping, +i ≤ +∗

i and +∗

i ≤ +. By transitivity of subtyping, +i ≤ +.

2. By case analysis on δS

1 ≤ δS

2.
• Case δS ≤ δS: By definition of static subtyping, δS ≤S δS.
• Case +i ≤ +: By definition of static subtyping, +i ≤S +.

Lemma 37 (Equivalence for static subtyping).

1. If AS

1 ≤S AS

2 then AS

1 ≤ AS

2.
2. If AS

1 ≤ AS

2 then AS

1 ≤S AS

2.

Proof.

1. By induction on the structure of the derivation of AS

1 ≤S AS

2.
• Case Unit ≤S Unit: By definition of subtyping, Unit ≤ Unit.

• Case
A

S

11 ≤S A
S

12 A
S

21 ≤S A
S

22 δ
S

1 ≤S δ
S

2

(A
S

11 δ
S

1 A
S

21) ≤S (A
S

21 δ
S

2 A
S

22)

AS

11 ≤S A
S

12 Subderivation
AS

21 ≤S A
S

22 Subderivation
δS

1 ≤S δ
S

2 Subderivation
AS

11 ≤ AS

12 By the induction hypothesis
AS

21 ≤ AS

22 By the induction hypothesis
δS

1 ≤ δS

2 By Lemma 36 (Equivalence for static subsum)
AS

11 δ
S

1 A
S

21 ≤ AS

12 δ
S

2 A
S

22 By definition of ≤

• Case
A

S

12 ≤S A
S

11 A
S

21 ≤S A
S

22

(A
S

11 → A
S

21) ≤S (A
S

12 → A
S

22)

Similar to the previous case.

2. By induction on the structure of the derivation of AS

1 ≤ AS

2.
• Case Unit ≤ Unit: By definition of subtyping, Unit ≤S Unit.

30 2020/8/16

• Case
A

S

11 ≤ A
S

12 A
S

21 ≤ A
S

22 δ
S

1 ≤ δ
S

2

(A
S

11 δ
S

1 A
S

21) ≤ (A
S

21 δ
S

2 A
S

22)

AS

11 ≤ AS

12 Subderivation
AS

21 ≤ AS

22 Subderivation
δS

1 ≤ δS

2 Subderivation
AS

11 ≤S A
S

12 By the induction hypothesis
AS

21 ≤S A
S

22 By the induction hypothesis
δS

1 ≤S δ
S

2 By Lemma 36 (Equivalence for static subsum)
AS

11 δ
S

1 A
S

21 ≤S A
S

12 δ
S

2 A
S

22 By definition of ≤S

• Case
A

S

12 ≤ A
S

11 A
S

21 ≤ A
S

22

(A
S

11 → A
S

21) ≤ (A
S

12 → A
S

22)

Similar to the previous case.

Lemma 38 (Directed consistency for static types).
If AS

1 ❀ AS

2 then AS

1 ≤ AS

2.

Proof. It is given that AS

1 ❀ AS

2. By inversion on DirConsU, there exist A and B such that A ⊑ AS

1 and A ≤ B and B ⊑ AS

2. By Lemma 35
(Precision for static types), A = AS

1 and B = AS

2. Therefore, A ≤ B is equivalent to AS

1 ≤ AS

2.

Theorem 5 (Static soundness and completeness).
1. Soundness:

(a) If ΓS ⊢S eS
⇐ AS then ΓS ⊢ eS

⇐ AS

(b) If ΓS ⊢S eS
⇒ AS then ΓS ⊢ eS

⇒ AS.
2. Completeness:

(a) If ΓS ⊢ eS
⇐ AS then ΓS ⊢S eS

⇐ AS.
(b) If ΓS ⊢ eS

⇒ AS then ΓS ⊢S eS
⇒ AS.

Proof.

1. By induction on the structure of the given derivation.
• Case StVar: Apply rule SynVar.

• Case
Γ

S ⊢S e
S
⇒ A

S

0 A
S

0 ≤S A
S

Γ
S ⊢S e

S
⇐ A

S
StSub

ΓS ⊢S e
S
⇒ AS

0 Subderivation
AS

0 ≤S A
S Subderivation

ΓS ⊢ eS
⇒ AS

0 By the induction hypothesis
AS

0 ≤ AS By Lemma 37 (Equivalence for static subtyping)
AS

0 ❀ AS By Lemma 8 (Subtyping obeys directed consistency)
ΓS ⊢ eS

⇐ AS By rule ChkCSub

• Case StAnno: Use the induction hypothesis and apply rule SynAnno.
• Case StUnitIntro: Apply rule ChkUnitIntro.

• Case
Γ

S ⊢S e
S

i ⇐ A
S

i +i ≤ δ
S

Γ
S ⊢S inji e

S

i ⇐ (A
S

1 δ
S
A

S

2)
StSumIntro

ΓS ⊢S e
S

i ⇐ AS

i Subderivation
+i ≤S δ

S Subderivation
ΓS ⊢ eS

i ⇐ AS

i By the induction hypothesis
+?
i ≤ +i By definition of ≤

+i ≤ δS By Lemma 36 (Equivalence for static subsum)
+?
i ≤ δS By transitivity of ≤
ΓS ⊢ inji e

S

i ⇐ (AS

1δ
SAS

2) By rule ChkSumIntro

• Case StSumElim1: Use the induction hypothesis, the definition of ⇒⇒ and apply rule ChkSumElim1.
• Case StSumElim2: Use the induction hypothesis, the definition of ⇒⇒ and apply rule ChkSumElim2.
• Case St→Intro: Use the induction hypothesis and apply rule Chk→Intro.
• Case St→Elim: Use the induction hypothesis and apply rule Syn→Elim.

31 2020/8/16

2. By induction on the structure of the given derivation.
• Case SynVar: Apply rule StVar.

• Case
Γ

S ⊢ e
S
⇒ A

S

0 A
S

0 ❀ A
S

Γ
S ⊢ e

S
⇐ A

S
ChkCSub

ΓS ⊢ eS
⇒ AS

0 Subderivation
AS

0 ❀ AS Subderivation
AS

0 ≤ AS By Lemma 38 (Directed consistency for static types)
ΓS ⊢S e

S
⇒ AS

0 By the induction hypothesis
AS

0 ≤S A
S By Lemma 37 (Equivalence for static subtyping)

ΓS ⊢S e
S
⇐ AS By rule StSub

• Case SynAnno: Use the induction hypothesis and apply rule StAnno.
• Case ChkUnitIntro: Apply rule StUnitIntro.

• Case
Γ

S ⊢ e
S

i ⇐ A
S

i +
?
i ≤ δ

S

Γ
S ⊢ inji e

S

i ⇐ (A
S

1 δ
S
A

S

2)
ChkSumIntro

ΓS ⊢ eS

i ⇐ AS

i Subderivation
+?
i ≤ δS Subderivation

ΓS ⊢S e
S

i ⇐ AS

i By the induction hypothesis
+i ≤S δ

S By Lemma 32 (Static looseness)
ΓS ⊢S inji e

S

i ⇐ (AS

1 δ
S AS

2) By rule StSumIntro

• Case
Γ

S ⊢ e
S

0 ⇒ (A
S

1 δ
S
A

S

2)

δ
S
⇒⇒ +

∗

i Γ
S
, x : A

S

i ⊢ e
S

i ⇐ A
S

Γ
S ⊢ case(e

S

0, inji x.e
S

i) ⇐ A
S

ChkSumElim1

ΓS ⊢ eS

0 ⇒ (AS

1 δ
S AS

2) Subderivation
ΓS, x : AS

i ⊢ eS

i ⇐ AS Subderivation
δS

⇒⇒+∗

i Subderivation
ΓS ⊢S e

S

0 ⇒ (AS

1 δ
S AS

2) By the induction hypothesis
ΓS, x : AS

i ⊢S e
S

i ⇐ AS By the induction hypothesis
δS = +i By Lemma 33 (Static looseness, II)
ΓS ⊢S case(eS

0, inji x.e
S

i) ⇐ AS By rule StSumElim1

• Case ChkSumElim2: Use the induction hypothesis, the definition of ≤S and apply rule StSumElim2.
• Case Chk→Intro: Use the induction hypothesis and apply rule St→Intro.
• Case Syn→Elim: Use the induction hypothesis and apply rule St→Elim.

D.4 Properties of the Dynamic System

Lemma 39 (Subtyping for dynamic types).
If AD

1 ≤ AD

2 then AD

2 = AD

1 .

Proof. By induction on the structure of AD

1 .

• Case AD

1 = Unit: By the definition of subtyping, AD

2 = Unit only.
• Case AD

1 = AD

11 +? AD

21:

AD

11 +? AD

21 ≤ AD

2 Given
AD

2 = AD

12 +? AD

22 From the definition of ≤
AD

11 ≤ AD

12
′′

AD

21 ≤ AD

22
′′

AD

12 = AD

11 By the induction hypothesis
AD

22 = AD

21 By the induction hypothesis
AD

2 = AD

1 By definition of =

• Case AD

1 = AD

11 → AD

21: Similar to the previous case.

Lemma 40 (Precision for dynamic types).
If A1 ⊑ AD

2 then A1 = AD

2 .

32 2020/8/16

Proof. By induction on the structure of AD

2 .

• Case AD

2 = Unit: By the definition of imprecision, A1 = Unit only.
• Case AD

2 = AD

12 +? AD

22:

A1 ⊑ AD

2 Given
A1 = A11 +? A21 From the definition of ⊑
A11 ⊑ AD

12
′′

A21 ⊑ AD

22
′′

A11 = AD

12 By the induction hypothesis
A21 = AD

22 By the induction hypothesis
A1 = AD

2 By definition of =

• Case AD

1 = AD

11 → AD

21: Similar to the previous case.

Lemma 41 (Directed consistency for dynamic types).
If AD

1 ❀ AD

2 then AD

1 = AD

2 .

Proof. It is given that AD

1 ❀ AD

2 . By inversion on DirConsU, there exist A and B such that A ⊑ AD

1 and A ≤ B and B ⊑ AD

2 . By Lemma 40
(Precision for dynamic types), A = AD

1 and B = AD

2 . Therefore, A ≤ B is equivalent to AD

1 ≤ AD

2 . By Lemma 39 (Subtyping for dynamic
types), AD

1 = AD

2 .

Theorem 15 (Dynamic soundness and completeness).

1. (a) If ΓD ⊢D eD
⇐ AD then ΓD ⊢ eD

⇐ AD.
(b) If ΓD ⊢D eD

⇒ AD then ΓD ⊢ eD
⇒ AD.

2. (a) If ΓD ⊢ eD
⇐ AD then ΓD ⊢D eD

⇐ AD.
(b) If ΓD ⊢ eD

⇒ AD then ΓD ⊢D eD
⇒ AD.

Proof.

1. By induction on the structure of the given ⊢D-derivation.
• Case DVar: Apply rule SynVar.
• Case DSub: Use the induction hypothesis, reflexivity of directed consistency, and apply rule ChkCSub.
• Case DUnitIntro: Apply rule ChkUnitIntro.

• Case
Γ

D ⊢D e
D

i ⇐ A
D

i

Γ
D ⊢D inji e

D

i ⇐ (A
D

1 +
?
A

D

2)
D+?Intro

ΓD ⊢D eD

i ⇐ AD

i Subderivation
ΓD ⊢ eD

i ⇐ AD

i By the induction hypothesis
+?
i ≤ +? By definition of ≤

ΓD ⊢ inji e
D

i ⇐ (AD

1 +? AD

2) By rule ChkSumIntro

• Case D+?Elim1: Use the induction hypothesis, the definition of ⇒⇒ and apply rule ChkSumElim1.
• Case D+?Elim2: Use the induction hypothesis, the definition of ⇒⇒ and apply rule ChkSumElim2.
• Case D→Intro: Use the induction hypothesis and apply rule Chk→Intro.
• Case D→Elim: Use the induction hypothesis and apply rule Syn→Elim.

2. By induction on the structure of the given ⊢-derivation.
• Case SynVar: Apply rule DVar.

• Case
Γ

D ⊢ e
D
⇒ A

D

0 A
D

0 ❀ A
D

Γ
D ⊢ e

D
⇐ A

D
ChkCSub

AD

0 ❀ AD Subderivation
AD

0 = AD By Lemma 41 (Directed consistency for dynamic types)
ΓD ⊢ eD

⇒ AD

0 Subderivation
ΓD ⊢D eD

⇒ AD

0 By the induction hypothesis
ΓD ⊢D eD

⇒ AD Equivalent
ΓD ⊢D eD

⇐ AD By rule DSub

• Case SynAnno: Use the induction hypothesis and apply rule DAnno.
• Case ChkUnitIntro: Apply rule DUnitIntro.

33 2020/8/16

• Case ChkSumIntro: Use the induction hypothesis, and apply rule D+?Intro.
• Case ChkSumElim1: Use the induction hypothesis, and apply rule D+?Elim1.
• Case ChkSumElim2: Use the induction hypothesis, and apply rule D+?Elim2.
• Case Chk→Intro: Use the induction hypothesis and apply rule D→Intro.
• Case Syn→Elim: Use the induction hypothesis and apply rule D→Elim.

D.5 Target System

D.5.1 Subtyping

Lemma 42 (Subtyping inversion).
1. If T ′ ≤ Unit then T ′ = Unit.
2. If Unit ≤ T then T = Unit.
3. If T ′ ≤ T1 φT2 then T ′ = T ′

1 φ
′ T ′

2 where T ′

1 ≤ T1 and T ′

2 ≤ T2 and φ ′ ≤ φ.
4. If T ′

1 φ
′ T ′

2 ≤ T then T = T1 φT2 where T ′

1 ≤ T1 and T ′

2 ≤ T2 and φ ′ ≤ φ.
5. If T ′ ≤ T1 → T2 then T ′ = T ′

1 → T ′

2 where T1 ≤ T ′

1 and T ′

2 ≤ T2

6. If T ′

1 → T ′

2 ≤ T then T = T1 → T2 where T1 ≤ T ′

1 and T ′

2 ≤ T2.

Proof.

1. By case analysis on T ′ ≤ Unit.
• Case Unit ≤ Unit: Immediate that T ′ = Unit.

2. Symmetric to part 1.
3. By case analysis on T ′ ≤ T1 φT2.

• Case T ′

1 φ
′ T ′

2 ≤ T1 φT2: Immediate as T ′ = T ′

1 φ
′ T ′

2 and subderivations are T ′

1 ≤ T1 and T ′

2 ≤ T2 and φ ′ ≤ φ.
4. Symmetric to part 3.
5. By case analysis on T ′ ≤ T1 → T2.

• Case T ′

1 → T ′

2 ≤ T1 → T2: Immediate as T ′ = T ′

1 → T ′

2 and subderivations are T1 ≤ T ′

1 and T ′

2 ≤ T2.
6. Symmetric to part 5.

Lemma 43 (Reflexivity of subtyping).
For all types T , it is the case that T ≤ T .

Proof. By induction on the structure of T .

• Case T = Unit: By the definition of subtyping, T ≤ T .
• Case T = T1 φT2: By the induction hypothesis, T1 ≤ T1 and T2 ≤ T2. By the reflexivity of subsum, φ ≤ φ. Thus, by the definition of

subtyping, T ≤ T .
• Case T = T1 → T2: By the induction hypothesis, T1 ≤ T1 and T2 ≤ T2. Thus, by the definition of subtyping, T ≤ T .

Lemma 44 (Transitivity of subtyping).
If T1 ≤ T2 and T2 ≤ T3 then T1 ≤ T2.

Proof. By induction on the structure of T2.

• Case T2 = Unit:
T1 ≤ Unit Given

Unit ≤ T3 Given
T1 = Unit By Lemma 42 (Subtyping inversion)
T3 = Unit By Lemma 42 (Subtyping inversion)

Unit ≤ Unit By Lemma 43 (Reflexivity of subtyping)
T1 ≤ T3 Equivalent

• Case T2 = T12 φ2 T22:
T1 ≤ T12 φ2 T22 Given
T1 = T11 φ1 T21 By Lemma 42 (Subtyping inversion)
T11 ≤ T12

′′

T21 ≤ T22
′′

φ1 ≤ φ2
′′

T12 φ2 T22 ≤ T3 Given
T3 = T13 φ3 T23 By Lemma 42 (Subtyping inversion)
T12 ≤ T13

′′

T22 ≤ T23
′′

φ2 ≤ φ3
′′

34 2020/8/16

T11 ≤ T13 By the induction hypothesis
T21 ≤ T23 By the induction hypothesis
φ1 ≤ φ3 By the transitivity of ≤

T11 φ1 T21 ≤ T13 φ3 T23 By the definition of ≤
T1 ≤ T3 Equivalent

• Case T2 = T12 → T22:
T1 ≤ T12 → T22 Given
T1 = T11 → T21 By Lemma 42 (Subtyping inversion)
T12 ≤ T11

′′

T21 ≤ T22
′′

T12 → T22 ≤ T3 Given
T3 = T13 → T23 By Lemma 42 (Subtyping inversion)
T13 ≤ T12

′′

T22 ≤ T23
′′

T13 ≤ T11 By the induction hypothesis
T21 ≤ T23 By the induction hypothesis

T11 → T21 ≤ T13 → T23 By the definition of ≤
T1 ≤ T3 Equivalent

Corollary 45 (Subtyping inversion).
1. If T ′

1 φ
′ T ′

2 ≤ T1 φT2 then T ′

1 ≤ T1 and T ′

2 ≤ T2 and φ ′ ≤ φ.
2. If T ′

1 → T ′

2 ≤ T1 → T2 then T1 ≤ T ′

1 and T ′

2 ≤ T2.

Proof.

1. Let T ′ = T ′

1 φ
′ T ′

2 . We are given T ′ ≤ T1 φT2. Therefore, by Lemma 42 (Subtyping inversion), T ′

1 ≤ T1 and T ′

2 ≤ T2 and φ ′ ≤ φ.
2. Let T ′ = T ′

1 → T ′

2 . We are given T ′ ≤ T1 → T2. Therefore, by Lemma 42 (Subtyping inversion), T1 ≤ T ′

1 and T ′

2 ≤ T2.

D.5.2 Values

Lemma 46 (Value inversion).
1. If · ⊢ W : T and T ≤ (T1 + T2) then W = inji Wi and · ⊢ Wi : Ti.

Moreover, if T ≤ (T1 +k T2) then i = k.
2. If · ⊢ W : T and T ≤ (T1 → T2) then W = λx.M and ·, x : T1 ⊢ M : T2.

Proof.

1. By induction on the structure of the derivation of · ⊢ W : T .
• Case TVar: Impossible because context Θ = · is empty.

• Case · ⊢ W : T
′

T
′ ≤ T

· ⊢ W : T
TSub

T ′ ≤ T Subderivation
T ≤ T1 + T2 Given
T ′ ≤ T1 + T2 By Lemma 44 (Transitivity of subtyping).

Immediate from the induction hypothesis.
• Cases TCast, TMatchfail: Impossible because the subject term is not a value.
• Case TUnitIntro: Impossible because T = Unit cannot be a subtype of T1 + T2.

• Case · ⊢ Wi : T
′

i

· ⊢ inji Wi
︸ ︷︷ ︸

W

: (T
′

1 +i T
′

2)
︸ ︷︷ ︸

T

T+iIntro

By the definition of values W, we know that Wi is a value and W = inji Wi.

T ′

1 +i T
′

2 ≤ T1 + T2 Given
T ′

i ≤ Ti By Corollary 45
· ⊢ Wi : T

′

i Subderivation
Z · ⊢ Wi : Ti By rule TSub

T ′

1 +i T
′

2 ≤ T1 +k T2 Suppose
+i ≤ +k By Corollary 45

Z i = k From definition of ≤

35 2020/8/16

• Cases T+iElim, T+Elim: Impossible because the subject term is not a value.
• Case T→Intro: Impossible because T = T ′

1 → T ′

2 cannot be a subtype of T1 + T2.
• Case T→Elim: Impossible because the subject term is not a value.

2. By induction on the structure of the derivation of · ⊢ W : T .

• Case TVar: Impossible because context Θ = · is empty.

• Case · ⊢ W : T
′

T
′ ≤ T

· ⊢ W : T
TSub

T ′ ≤ T Subderivation
T ≤ T1 → T2 Given
T ′ ≤ T1 → T2 By Lemma 44 (Transitivity of subtyping).

Immediate from the induction hypothesis.
• Cases TCast, TMatchfail: Impossible because the subject term is not a value.
• Case TUnitIntro: Impossible because T = Unit cannot be a subtype of T1 → T2.
• Case T+iIntro: Impossible because T = T ′

1 +?
i T

′

2 cannot be a subtype of T1 → T2.
• Cases T+iElim, T+Elim: Impossible because the subject term is not a value.

• Case ·, x : T
′

1 ⊢ M : T
′

2

· ⊢ λx.M︸ ︷︷ ︸
W

: (T
′

1 → T
′

2)
︸ ︷︷ ︸

T

T→Intro

By the definition of values W, we know that W = λx.M.

T ′

1 → T ′

2 ≤ T1 → T2 Given
T1 ≤ T ′

1 By Corollary 45
T ′

2 ≤ T2
′′

·, x : T ′

1 ⊢ M : T ′

2 Subderivation
·, x : T1 ⊢ M : T ′

2 By Lemma 50 (Context Strengthening)
Z ·, x : T1 ⊢ M : T2 By rule TSub

• Case T→Elim: Impossible because the subject term is not a value.

Corollary 47 (Target value inversion for +i).
If · ⊢ W : (T1 +i T2) then W = inji Wi and · ⊢ Wi : Ti.

Proof. Let T = T1 +i T2.

T1 ≤ T1 By Lemma 43 (Reflexivity of subtyping)
T2 ≤ T2 By Lemma 43 (Reflexivity of subtyping)
+i ≤ + By definition of ≤
T ≤ T1 + T2 By definition of ≤
· ⊢ W : T Given

W = injk Wk By Lemma 46 (Value inversion)
· ⊢ Wk : Tk

′′

(T ≤ T1 +i T2) implies (k = i) ′′

T ≤ T By Lemma 43 (Reflexivity of subtyping)
i = k Implication

Z W = inji Wi Equivalent
Z · ⊢ Wi : Ti Equivalent

Corollary 48 (Target value inversion for +).
If · ⊢ W : (T1 + T2) then W = inji Wi and · ⊢ Wi : Ti.

Proof. By Lemma 46 (Value inversion) with T = T1 + T2, using Lemma 43 (Reflexivity of subtyping).

Corollary 49.
If · ⊢ W : (T1 → T2) then W = λx.M0 and ·, x : T1 ⊢ M0 : T2.

Proof. By Lemma 46 (Value inversion) with T = T1 → T2, using Lemma 43 (Reflexivity of subtyping).

36 2020/8/16

D.5.3 Typing and Evaluation Contexts

Lemma 50 (Context Strengthening).
If Θ, y : T ′ ⊢ M : T0 and T ≤ T ′ then Θ, y : T ⊢ M : T0.

Proof. By induction on the structure of the derivation of Θ, y : T ′ ⊢ M : T0.

• Case
(Θ, y : T

′
)(M) = T0

Θ, y : T
′ ⊢ M : T0

TVar

Either M = y, or M 6= y.
In the first case:
(Θ, y : T ′)(M) = T0 Premise

T ′ = T0 By definition
Θ, y : T ⊢ y : T By rule TVar

T ≤ T ′ Given
Θ, y : T ⊢ y : T ′ By rule TSub

Θ, y : T ⊢ M : T0 By above equalities

In the second case:

Θ, y : T ⊢ M : T0 By rule TVar

• Case TSub: Use the induction hypothesis and apply rule TSub.
• Case TCast: Use the induction hypothesis and apply rule TCast.
• Case TMatchfail: Immediate from rule TMatchfail.
• Case TUnitIntro: Immediate from rule TUnitIntro.
• Case T+iIntro: Use the induction hypothesis and apply rule T+iIntro.
• Case T+iElim: Use the induction hypothesis and apply rule T+iElim.
• Case T+Elim: Use the induction hypothesis and apply rule T+Elim.
• Case T→Intro: Use the induction hypothesis and apply rule T→Intro.
• Case T→Elim: Use the induction hypothesis and apply rule T→Elim.

Lemma 51 (Substitution).
If Θ, x : T ′ ⊢ M : T and · ⊢ W : T ′ then Θ ⊢ [W/x]M : T .

Proof. By induction on the structure of the derivation of Θ, x : T ′ ⊢ M : T .

• Case TVar: Use the definition of substitution, well-formedness of Θ, and rule TVar.
• Case TSub: Use the induction hypothesis and apply rule TSub.
• Case TCast: Use the definition of substitution, the induction hypothesis and apply rule TCast.
• Case TMatchfail: Use the definition of substitution and apply rule TMatchfail.
• Case TUnitIntro: Use the definition of substitution and apply rule TUnitIntro.
• Case T+iIntro: Use the definition of substitution, the induction hypothesis and apply rule T+iIntro.
• Case T+iElim: Use the definition of substitution, the induction hypothesis and apply rule T+iElim.
• Case T+Elim: Use the definition of substitution, the induction hypothesis and apply rule T+Elim.
• Case T→Intro: Use the definition of substitution, the induction hypothesis and apply rule T→Intro.
• Case T→Elim: Use the definition of substitution, the induction hypothesis and apply rule T→Elim.

Lemma 52 (Evaluation context typing).
If Θ ⊢ E [M0] : T then there exists T0 such that Θ ⊢ M0 : T0.

Proof. By induction on the structure of the derivation of Θ ⊢ E [M0] : T .

• Case TVar: Immediate as E [M0] = M0, so T0 = T .
• Case TSub: Immediate from the induction hypothesis.
• Case TCast: Immediate from the induction hypothesis.
• Case TMatchfail: Immediate as E [M0] = M0, so T0 = T .
• Case TUnitIntro: Immediate as E [M0] = M0, so T0 = T .
• Case T+iIntro: Immediate from the induction hypothesis.
• Case T+iElim: Immediate from the induction hypothesis.
• Case T+Elim: Immediate from the induction hypothesis.
• Case T→Intro: Immediate as E [M0] = M0, so T0 = T .

37 2020/8/16

• Case T→Elim: Proceed by case analysis on E . Each case is immediate from the induction hypothesis.

Lemma 53 (Evaluation context replacement).
If Θ ⊢ E [M0] : T and Θ ⊢ M0 : T0 and Θ ⊢ M ′

0 : T0 then Θ ⊢ E [M ′

0] : T .

Proof. By induction on the structure of the derivation of Θ ⊢ E [M0] : T .

• Case TVar: Immediate as E [M0] = M0, so T0 = T and E [M ′

0] = M ′

0.
• Case TSub: Use the induction hypothesis and apply rule TSub.
• Case TCast: Use the induction hypothesis and apply rule TCast.
• Case TMatchfail: Immediate as E [M0] = M0, so T0 = T and E [M ′

0] = M ′

0.
• Case TUnitIntro: Immediate as E [M0] = M0, so T0 = T and E [M ′

0] = M ′

0.
• Case T+iIntro: Use the induction hypothesis and apply rule T+iIntro.
• Case T+iElim: Use the induction hypothesis and apply rule T+iElim.
• Case T+Elim: Use the induction hypothesis and apply rule T+Elim.
• Case T→Intro: Immediate as E [M0] = M0, so T0 = T and E [M ′

0] = M ′

0.
• Case T→Elim: Proceed by case analysis on E . For each case, use the induction hypothesis and apply rule T→Elim.

D.5.4 Type Safety

Lemma 54 (Type preservation under reduction).
If · ⊢ M : T and M 7→R M ′ then · ⊢ M ′ : T .

Proof. By induction on the structure of the derivation of · ⊢ M : T .

• Case TVar: Impossible because the context Θ = · is empty.
• Case TSub: Use the induction hypothesis and apply rule TSub.

• Case · ⊢ M0 : (T1 φ
′
T2)

· ⊢ 〈φ ⇐ φ
′〉M0

︸ ︷︷ ︸
M

: (T1 φT2)
︸ ︷︷ ︸

T

TCast

Proceed by case analysis on M 7→R M ′.

Case φ
′ ≤ φ

〈φ ⇐ φ
′〉 W︸︷︷︸

M0

7→R W︸︷︷︸
M ′

ReduceUpcast

T1 ≤ T1 By Lemma 43 (Reflexivity of subtyping)
T2 ≤ T2 By Lemma 43 (Reflexivity of subtyping)
φ ′ ≤ φ Given

(T1 φ
′ T2) ≤ (T1 φT2) Definition of ≤

· ⊢ W : (T1 φ
′ T2) Subderivation

· ⊢ W : (T1 φT2) By rule TSub

Case

〈+i ⇐ +〉 (inji W)
︸ ︷︷ ︸

M0

7→R inji W︸ ︷︷ ︸
M ′

ReduceCastSuccess

· ⊢ inji W : (T1 + T2) Subderivation
· ⊢ W : Ti By Corollary 48
· ⊢ inji W : (T1 +i T2) By rule T+iIntro

Case φ
′ ∈ {+i, +} i 6= k

〈+k ⇐ φ
′〉 (inji W)
︸ ︷︷ ︸

M0

7→R matchfail︸ ︷︷ ︸
M ′

ReduceCastFailure

· ⊢ matchfail : T By rule TMatchfail

• Case TMatchfail: Impossible because matchfail 67→R M ′ for any M ′.
• Case TUnitIntro: Impossible because () 67→R M ′ for any M ′.
• Case T+iIntro: Impossible because M = inji M0 67→R M ′ for any M ′.

38 2020/8/16

• Case · ⊢ M0 : T1 +i T2 ·, x : Ti ⊢ Mi : T

· ⊢ case(M0, inji x.Mi)
︸ ︷︷ ︸

M

: T
T+iElim

Proceed by case analysis on M 7→R M ′.

Case

case(inji W︸ ︷︷ ︸
M0

, inji x.Mi) 7→R [W/x]Mi
︸ ︷︷ ︸

M ′

ReduceCase1

· ⊢ inji W : T1 +i T2 Subderivation
· ⊢ W : Ti By Corollary 47

·, x : Ti ⊢ Mi : T Subderivation
· ⊢ [W/x]Mi : T By Lemma 51 (Substitution)

• Case T+Elim: Similar to the T+iElim case. Apply Corollary 48 instead of Corollary 47 when considering the ReduceCase2 case.
• Case T→Intro: Impossible because M = λx.M0 67→R M ′ for any M ′.

• Case · ⊢ M1 : T
′
→ T · ⊢ M2 : T

′

· ⊢ M1 M2︸ ︷︷ ︸
M

: T
T→Elim

Proceed by case analysis on M 7→R M ′.

Case

(λx.M0)
︸ ︷︷ ︸

M1

W︸︷︷︸
M2

7→R [W/x]M0
︸ ︷︷ ︸

M ′

Reduceβ

· ⊢ W : T ′ Subderivation
· ⊢ λx.M0 : T ′

→ T Subderivation
·, x : T ′ ⊢ M0 : T By Corollary 49

· ⊢ [W/x]M0 : T By Lemma 51 (Substitution)

Theorem 6 (Type preservation).
If · ⊢ M : T and M 7→ M ′ then · ⊢ M ′ : T .

Proof. By case analysis on M 7→ M ′.

• Case M0 7→R M
′

0

E [M0] 7→ E [M ′

0]
StepContext

· ⊢ E [M0] : T Given
· ⊢ M0 : T0 By Lemma 52 (Evaluation context typing)

M0 7→R M ′

0 Subderivation
· ⊢ M ′

0 : T0 By Lemma 54 (Type preservation under reduction)
· ⊢ E [M ′

0] : T By Lemma 53 (Evaluation context replacement)

• Case E 6= []

E [matchfail] 7→ matchfail
StepMatchfail

Immediate by TMatchfail.

Theorem 7 (Progress).
If · ⊢ M : T then either (a) M is a value, or (b) there exists M ′ such that M 7→ M ′, or (c) M = matchfail.

Proof. By induction on the structure of the derivation of · ⊢ M : T .

• Case TVar: Impossible, because the context Θ is empty.
• Case TSub: Immediate by the induction hypothesis.
• Case TCast:

We have M = 〈φ ⇐ φ ′〉M0 and T = T1 φT2 where · ⊢ M0 : (T1 φ
′ T2).

By the induction hypothesis, either M0 is a value or there exists M ′

0 such that M0 7→ M ′

0.
In the first case, we need to consider all possible assignments to φ ′ and φ.
Suppose φ ′ ≤ φ, then M 7→ M0.
Suppose φ ′ = +i and φ = +k where i 6= k, then M0 = inji W by Corollary 47, so M 7→ matchfail.

39 2020/8/16

Suppose φ ′ = + and φ = +i, then M0 = injk W by Corollary 48. Proceed by cases analysis on i, if i = k then M 7→ M0, otherwise
M 7→ matchfail.
In the second case, 〈φ ⇐ φ ′〉M0 7→ 〈φ ⇐ φ ′〉M ′

0.
• Case TUnitIntro: We have M = (), a value, which is alternative (a).
• Case TMatchfail: We have M = matchfail, which is alternative (c).
• Case T+iIntro:

We have M = inji M0 and T = T1 +?
i T2 where · ⊢ M0 : Ti.

By the induction hypothesis, either M0 is a value or there exists M ′

0 such that M0 7→ M ′

0.
In the first case, inji M0 = M is a value.
In the second case, inji M0 7→ inji M

′

0.
• Case T+iElim:

We have M = case(M0, inji x.Mi) where · ⊢ M0 : T1 +i T2 and ·, x : Ti ⊢ Mi : T .
By the induction hypothesis, either M0 is a value or there exists M ′

0 such that M0 7→ M ′

0.
In the first case, M0 = inji W by Corollary 47, so case(M0, inji x.Mi) 7→ [W/x]Mi.
In the second case, case(M0, inji x.Mi) 7→ case(M ′

0, inji x.Mi).
• Case T+Elim: Similar to the T+iElim case, using Corollary 48 instead of Corollary 47.
• Case T→Intro: We have M = λx.M0, a value.
• Case T→Elim:

We have M = M1 M2 where · ⊢ M1 : T1 → T2 and · ⊢ M2 : T1.
By the induction hypothesis, either M1 is a value or there exists M ′

1 such that M1 7→ M ′

1.
In the first case, M1 = λx.M0 by Corollary 49.
By the induction hypothesis, either M2 is a value or there exists M ′

2 such that M2 7→ M ′

2.
In the first subcase, M2 is a value, so (λx.M0)M2 7→ [M2/x]M0.
In the second subcase, (λx.M0)M2 7→ (λx.M0)M

′

2.
In the second case, M1 M2 7→ M ′

1 M2.

Theorem 8 (matchfail-freeness).
If M is cast-free and matchfail-free and M 7→ M ′ then M ′ is cast-free and matchfail-free.

Proof. By induction on the derivation of M 7→ M ′.
By the assumption that M is matchfail-free, rule StepMatchfail is impossible. Therefore, the derivation is by StepContext with

subderivation M0 7→R M ′

0, where M = E [M0] and M ′ = E [M ′

0].

• Cases ReduceUpcast, ReduceCastSuccess, ReduceCastFailure: In these cases, M0 contains a cast, contradicting the assumption that
M = E [M0] is cast-free. Hence, these cases are impossible.

• Case ReduceCase1:
We have M0 = case(inji W, inji x.Mi) and M ′

0 = [W/x]Mi.
Since M0 is cast- and matchfail-free, its subterms W and Mi are cast- and matchfail-free.
Therefore, [W/x]Mi is cast- and matchfail-free.

• Cases ReduceCase2, Reduceβ: Similar to the ReduceCase1 case.

D.5.5 Precision

Lemma 55 (Precision on values).
If W ′

4 M then M = W for some value M.

Proof. By induction on the structure of the derivation of W ′
4 M.

• Case () 4 M: From definition of 4, it is immediate that M = (), a value.
• Case x 4 M: From definition of 4, it is immediate that M = x, a value.
• Case λx.M ′

0 4 M: From definition of 4, it is immediate that M = λx.M0, a value.
• Case inji W

′

0 4 M: From definition of 4, M = inji M0 and W ′

0 4 M0. By the induction hypothesis, M0 = W0 for some value W0.
Therefore, M = inji W0, a value.

Lemma 56 (Substitution preserves precision).
If M ′

4 M and W ′
4 W then [W ′/x]M ′

4 [W/x]M.

Proof. By induction on the structure of the derivation of M ′
4 M. All cases are immediate by the induction hypothesis, the definition of

substitution, and the definition of 4.

Lemma 57 (Precision inversion on evaluation contexts).
If E ′[M ′

0] 4 M then there exists E and M0 such that M = E [M0] and M ′

0 4 M0.

Proof. Proceed by induction on the structure of E ′.

• Case E ′ = []: Choose E = [] and M0 = M then M ′

0 4 M0 is given.

40 2020/8/16

• Case E ′ = inji E
′

0:

E ′[M ′

0] 4 M Given
inji E

′

0[M
′

0] 4 M By above equations
M = inji Mi From the definition of 4

E ′

0[M
′

0] 4 Mi
′′

Mi = E0[M0] By the induction hypothesis
Z M ′

0 4 M0
′′

Z M = inji E0[M0] By above equations

• Case E ′ = case(E ′

0, inji x.M
′

i): Similar to the E ′ = inji E
′

0 case, hence omitted.
• Case E ′ = case(E ′

0, inj1 x1.M
′

1, inj2 x2.M
′

2): Similar to the E ′ = inji E
′

0 case, hence omitted.
• Case E ′ = 〈φ ′

2 ⇐ φ ′

1〉E
′

0:
By inversion on 〈φ ′

2 ⇐ φ ′

1〉E
′

0[M
′

0] 4 M, either M = 〈φ2 ⇐ φ1〉M1 or M 6= 〈φ2 ⇐ φ1〉M1.
In the former case:

E ′

0[M
′

0] 4 M1 From the definition of 4
M1 = E0[M0] By the induction hypothesis

Z M ′

0 4 M0
′′

Z M = 〈φ2 ⇐ φ1〉E0[M0] By above equations

In the latter case:
E ′

0[M
′

0] 4 M From the definition of 4
Z M = E [M0] By the induction hypothesis
Z M ′

0 4 M0
′′

• Case E ′ = E ′

0 M
′

2:

E ′[M ′

0] 4 M Given
E ′

0[M
′

0]M
′

2 4 M By above equations
M = M1 M2 From the definition of 4

E ′

0[M
′

0] 4 M1
′′

M1 = E0[M0] By the induction hypothesis
Z M ′

0 4 M0
′′

Z M = E0[M0]M2 By above equations

• Case E ′ = W1 E
′

0:

E ′[M ′

0] 4 M Given
W ′

1 E
′

0[M
′

0] 4 M By above equations
M = M1 M2 From the definition of 4

E ′

0[M
′

0] 4 M2
′′

M2 = E0[M0] By the induction hypothesis
Z M ′

0 4 M0
′′

Z M = W1 E0[M0] By above equations

Lemma 58 (Evaluation contexts preserve precision).
If E ′[M ′

0] 4 E [M0] and M ′

0 4 M0 and M ′

1 4 M1 then E ′[M ′

1] 4 E [M1].

Proof. By induction on the derivation of E ′[M ′

0] 4 E [M0]. All cases are straightforward, using the induction hypothesis and the definition
of 4.

Lemma 59 (Reduction preserves precision).
If · ⊢ M ′

1 : T ′

1 and · ⊢ M1 : T1 and M ′

1 4 M1 and M ′

1 7→R M ′

2 then either
(a) M1 is a value and M ′

2 4 M1, or
(b) there exists M2 such that M1 7→R M2 and M ′

2 4 M2.

Proof. Proceed by case analysis on M ′

1 7→R M1.

• Case φ
′

1 ≤ φ
′

2

〈φ ′

2 ⇐ φ
′

1〉W
′

︸ ︷︷ ︸
M ′

1

7→R W
′

︸︷︷︸
M ′

2

ReduceUpcast

Proceed by case analysis on M ′

1 4 M1.

41 2020/8/16

Case W
′
4 M 〈φ ′

2 ⇐ φ
′

1〉 4 〈φ2 ⇐ φ1〉

〈φ ′

2 ⇐ φ
′

1〉W
′
4 〈φ2 ⇐ φ1〉M

︸ ︷︷ ︸
M1

By Lemma 55 (Precision on values), M = W as W ′
4 M. Since φ ′

1 ≤ φ ′

2, it is the case that 〈φ ′

2 ⇐ φ ′

1〉 = sc ′.
Proceed by cases on the rule deriving sc ′

4 〈φ2 ⇐ φ1〉.

− Case Cast4Refl: In this case, 〈φ2 ⇐ φ1〉 = sc ′. Since φ1 ≤ φ2 by rule ReduceUpcast it follows that M1 7→R W, and we
already have M ′

2 4 M2.
− Cases CastM4B, CastB4S, CastM4S: These rules do not have a safe cast on the left, so these cases are impossible.
− Case Rule deriving 〈+i ⇐ +i〉 4 〈+i ⇐ +〉:

In this case, sc ′ = 〈+i ⇐ +i〉 and 〈φ2 ⇐ φ1〉 = 〈+i ⇐ +〉.

· ⊢ 〈+i ⇐ +i〉W
′ : T ′

1 Given
· ⊢ W ′ : T ′

11 +i T
′

21 By inversion on rule TCast

W ′ = inji W
′

0 By Corollary 47
W = inji W0 By inversion on (inji W

′

0) 4 W

M = inji W0 By equality
M1 7→R (inji W0) By ReduceCastSuccess

M ′

2 4 M2 By equality

− Cases Remaining rules:
In the remaining rules, 〈φ2 ⇐ φ1〉 = sc. Thus, φ1 ≤ φ2.
By rule ReduceUpcast it follows that M1 7→R inji W0 and it was already given that M ′

2 4 M2.

Case W
′
4 M1

〈φ ′

2 ⇐ φ
′

1〉W
′
4 M1

W ′
4 M1 Subderivation

Z M1 = W By Lemma 55 (Precision on values)
Z M ′

2 4 M1 By above equations

• Case

〈+i ⇐ +〉inji W
′

︸ ︷︷ ︸
M ′

1

7→R inji W
′

︸ ︷︷ ︸
M ′

2

ReduceCastSuccess

Proceed by case analysis on M ′

1 4 M1.

Case
inji W

′
4 M 〈+i ⇐ +〉 4 〈φ2 ⇐ φ1〉

〈+i ⇐ +〉inji W
′
4 〈φ2 ⇐ φ1〉M

︸ ︷︷ ︸
M1

Inversion on inji W
′
4 M gives M = inji M0 and W ′

4 M0.
By Lemma 55 (Precision on values), M0 = W.
Since 〈+i ⇐ +〉 is a backward cast bc ′, to derive bc ′

4 〈φ2 ⇐ φ1〉, we either used Cast4Refl or CastB4S.
In the former case, we have 〈φ2 ⇐ φ1〉 = bc ′. By rule ReduceCastSuccess we have M1 7→R M, and we already have M ′

2 4 M2.
In the latter case, we have 〈φ2 ⇐ φ1〉 = sc. By definition of being a safe cast, φ1 ≤ φ2. Therefore, by rule ReduceUpcast we have
M1 7→R M, and we already have M ′

2 4 M2.

Case
inji W

′
4 M1

〈+i ⇐ +〉inji W
′
4 M1

inji W
′
4 M1 Subderivation

Z M1 = W By Lemma 55 (Precision on values)
Z M ′

2 4 M1 By above equations

• Case φ
′ ∈ {+i, +} i 6= k

〈+k ⇐ φ
′〉inji W

′

︸ ︷︷ ︸
M ′

1

7→R matchfail︸ ︷︷ ︸
M ′

2

ReduceCastFailure

Proceed by case analysis on M ′

1 4 M1.

42 2020/8/16

Case
inji W

′
4 M 〈+k ⇐ φ

′〉 4 〈φ2 ⇐ φ1〉

〈+k ⇐ φ
′〉inji W

′
4 〈φ2 ⇐ φ1〉M

︸ ︷︷ ︸
M1

Since · ⊢ M1 : T1 and M1 is not a value nor is it matchfail, by Theorem 7 there exists M2 such that M1 7→ M2.
By definition, M ′

2 = matchfail 4 M2.

Case
inji W

′
4 M1

〈+k ⇐ φ
′〉inji W

′
4 M1

inji W
′
4 M1 Subderivation

Z M1 = W By Lemma 55 (Precision on values)
Z M ′

2 4 M1 By definition of 4

• Case

case(inji W
′
, inji x.M

′

i)
︸ ︷︷ ︸

M ′

1

7→R [W
′
/x]M

′

i
︸ ︷︷ ︸

M ′

2

ReduceCase1

Proceed by inversion on case(inji W
′, inji x.M

′

i) 4 M1.
In the first case, M1 = case(M, inji x.Mi):

inji W
′
4 M From definition of 4

M ′

i 4 Mi
′′

M = inji M0 From definition of 4
W ′

4 M0
′′

M0 = W By Lemma 55 (Precision on values)
W ′

4 W By above equations

M1 = case(inji W, inji x.Mi) By above equations
Z M1 7→R [W/x]Mi

︸ ︷︷ ︸
M2

By rule ReduceCase1

Z [W ′/x]M ′

i 4 [W/x]Mi By Lemma 56 (Substitution preserves precision)

In the second case, M1 = case(M, inj1 x1.M11, inj2 x2.M21):

inji W
′
4 M From definition of 4

M ′

i 4 Mi1
′′

M = inji M0 From definition of 4
W ′

4 M0
′′

M0 = W By Lemma 55 (Precision on values)
W ′

4 W By above equations

M1 = case(inji W, inj1 x1.M11, inj2 x2.M21) By above equations
Z M1 7→R [W/xi]Mi1

︸ ︷︷ ︸
M2

By rule ReduceCase2

Z [W ′/x]M ′

i 4 [W/xi]Mi1 By Lemma 56 (Substitution preserves precision)

• Case

case(inji W
′
, inj1 x1.M

′

11, inj2 x2.M
′

21)
︸ ︷︷ ︸

M ′

1

7→R [W
′
/xi]M

′

i1
︸ ︷︷ ︸

M ′

2

ReduceCase2

M ′

1 4 M1 Given
M1 = case(M, inj1 x1.M11, inj2 x2.M21) From definition of 4

inji W
′
4 M ′′

M ′

11 4 M11
′′

M ′

21 4 M21
′′

M = inji M0 From definition of 4
W ′

4 M0
′′

M0 = W By Lemma 55 (Precision on values)
W ′

4 W By above equations

43 2020/8/16

M1 = case(inji W, inj1 x1.M11, inj2 x2.M21) By above equations
Z M1 7→R [W/xi]Mi1

︸ ︷︷ ︸
M2

By rule ReduceCase2

Z [W ′/xi]M
′

i1 4 [W/xi]Mi1 By Lemma 56 (Substitution preserves precision)

• Case

(λx.M
′

0)W
′

︸ ︷︷ ︸
M ′

1

7→R [W
′
/x]M

′

0
︸ ︷︷ ︸

M ′

2

Reduceβ

(λx.M ′

0)W
′
4 M1 Given

M1 = M11 M21 From definition of 4
λx.M ′

0 4 M11
′′

W ′
4 M21

′′

M11 = λx.M0 From definition of 4
M ′

0 4 M0
′′

M21 = W By Lemma 55 (Precision on values)
W ′

4 W By above equations

M1 = (λx.M0)W By above equations
Z (λx.M0)W 7→R [W/x]M0

︸ ︷︷ ︸
M2

By rule Reduceβ

Z [W ′/x]M0 4 [W/x]M By Lemma 56 (Substitution preserves precision)

Theorem 12 (Stepping preserves precision).
If · ⊢ M ′

1 : T ′

1 and · ⊢ M1 : T1 and M ′

1 4 M1 and M ′

1 7→ M ′

2 then either
(a) M1 is a value and M ′

2 4 M1, or
(b) there exists M2 such that M1 7→ M2 and M ′

2 4 M2, or
(c) M1 = matchfail and M ′

2 4 M1.

Proof. Proceed by case analysis on M ′

1 7→ M ′

2.

• Case M
′

01 7→R M
′

02

E ′
[M

′

01]
︸ ︷︷ ︸

M ′

1

7→ E ′
[M

′

02]
︸ ︷︷ ︸

M ′

2

StepContext

E ′[M ′

01] 4 M1 Given
M1 = E [M01] By Lemma 57 (Precision inversion on evaluation contexts)
M ′

01 4 M01
′′

· ⊢ E ′[M ′

01] : T
′

1 Given
· ⊢ E [M01] : T1 Given
· ⊢ M ′

01 : T ′

01 By Lemma 52 (Evaluation context typing)
· ⊢ M01 : T01 By Lemma 52 (Evaluation context typing)

M ′

01 7→R M ′

02 Given

Proceed by case analysis on the result of applying Lemma 59 (Reduction preserves precision).
In the first case, M01 is a value and M ′

02 4 M01. Since M ′

01 4 M01 and E ′[M ′

01] 4 E [M01], by Lemma 58 (Evaluation contexts
preserve precision) it follows that E ′[M ′

02] 4 E [M01]. This is alternative (a).
In the second case, M01 7→R M02 and M ′

02 4 M02. Therefore, by rule StepContext it follows M1 7→ E [M02]. Since M ′

01 4 M01 and
E ′[M ′

01] 4 E [M01], by Lemma 58 (Evaluation contexts preserve precision) it follows that E ′[M ′

02] 4 E [M02]. This is alternative (b).

• Case E ′ 6= []

E ′
[matchfail]

︸ ︷︷ ︸
M ′

1

7→ matchfail︸ ︷︷ ︸
M ′

2

StepMatchfail

Since · ⊢ M1 : T1, by Theorem 7 it follows that either M1 is a value, or there exists M2 such that M1 7→ M2, or M1 = matchfail.
In the first case, M ′

2 = matchfail 4 M1 by definition of 4, which is alternative (a).
In the second case, M ′

2 = matchfail 4 M2 by definition of 4, which is alternative (b).
In the first case, M ′

2 = matchfail 4 matchfail = M1 by definition of 4, which is alternative (c).

Theorem 13 (4 respects convergence).
If M ′

4 M where · ⊢ M ′ : T ′ and · ⊢ M : T
and M ′ converges then M also converges.

44 2020/8/16

Proof. It is given that M ′ converges. By Definition 1, there exists a value W ′ such that M ′ 7→∗ W ′. Proceed by induction on the number of
steps in M ′ 7→∗ W ′.

If M ′ = W ′ then W ′
4 M. By Lemma 55 (Precision on values), M = W for some value W. Therefore, M converges as well.

Otherwise, M ′ takes at least one step, that is, M ′ 7→ M ′

0 7→∗ W ′. Then M ′

0 must also converge, with M ′

0 7→∗ W ′ in fewer steps than
M ′ 7→∗ W ′. Since M ′ 7→ M ′

0, proceed by case analysis on the result of applying Theorem 12.

• In the first case (a), M is a value, so M converges.
• In the second case (b), there exists M0 such that M 7→ M0 and M ′

0 4 M0.
By Theorem 6, · ⊢ M ′

0 : T ′ and similarly · ⊢ M0 : T .
By the induction hypothesis, M0 converges. Since M0 converges, M must also converge to the same value.

• In the third case (c), M = matchfail and M ′

0 4 M.
By inversion on M ′

0 4 matchfail it follows that M ′

0 = matchfail. But we know that M ′

0 converges, a contradiction. Hence, this case is
impossible.

D.6 Translation

D.6.1 Soundness

Theorem 16 (Sum Translation soundness).
Given δ ′ and δ, there exists C such that δ ′

⇒ δ →֒ C.
Moreover, if Θ ⊢ M : (T1 |δ

′| T2) then Θ ⊢ C[M] : (T1 |δ| T2).

Proof. Proceed by case analysis on whether |δ ′| ≤ |δ|.

• Case |δ ′| ≤ |δ|:

T1 ≤ T1 By Lemma 43 (Reflexivity of subtyping)
T2 ≤ T2 By Lemma 43 (Reflexivity of subtyping)
|δ ′| ≤ |δ| Given

(T1 |δ
′| T2) ≤ (T1 |δ| T2) By definition of ≤

δ ′
⇒ δ →֒ [] By rule CoeSub

Θ ⊢ M : (T1 |δ
′| T2) Suppose

Θ ⊢ M : (T1 |δ| T2) By rule TSub

C[M] = M By definition
Θ ⊢ C[M] : (T1 |δ| T2) By above equations

• Case |δ ′| 6≤ |δ|:

|δ ′| 6≤ |δ| Given
|δ ′| ⇒ |δ| →֒ 〈|δ| ⇐ |δ ′|〉[] By rule CoeCast

Θ ⊢ M : (T1 |δ
′| T2) Suppose

Θ ⊢ 〈|δ| ⇐ |δ ′|〉M : (T1 |δ| T2) By rule TCast

C[M] = 〈|δ| ⇐ |δ ′|〉M By definition
Θ ⊢ C[M] : (T1 |δ| T2) By above equations

Theorem 17 (Type translation soundness).
If A ′ ≃ A then there exists C such that A ′

⇒ A →֒ C.
Moreover, if Θ ⊢ M : |A ′| then Θ ⊢ C[M] : |A|.

Proof. By induction on the structure of the derivation of A ′ ≃ A.

• Case Unit ≃ Unit:
Unit ⇒ Unit →֒ [] By rule CoeUnit

Θ ⊢ M : |Unit| Suppose
Θ ⊢ C[M] : |Unit| By definition of C

• Case A
′

1 ≃ A1 A
′

2 ≃ A2

(A
′

1 δ
′
A

′

2)
︸ ︷︷ ︸

A ′

≃ (A1 δA2)
︸ ︷︷ ︸

A

Proceed by case analysis on the definition of δ ′.
In the first case, suppose δ ′ ∈ {+?

1,+1}.

45 2020/8/16

|A ′

1| ≤ |A ′

1| By Lemma 43 (Reflexivity of subtyping)
|A ′

2| ≤ |A ′

2| By Lemma 43 (Reflexivity of subtyping)
|δ ′| ≤ +1 By definition of ≤

|A ′

1| |δ
′| |A ′

2| ≤ |A ′

1| +1 |A
′

2| By definition of ≤

Θ ⊢ M : |(A ′

1 δ
′ A ′

2)| Suppose
Θ ⊢ M : (|A ′

1| |δ
′| |A ′

2|) By definition of type translation
Θ ⊢ M : (|A ′

1| +1 |A
′

2|) By rule TSub

|A1| ≤ |A1| By Lemma 43 (Reflexivity of subtyping)
|A2| ≤ |A2| By Lemma 43 (Reflexivity of subtyping)

+1 ≤ |δ ′| By definition of ≤
|A1| +1 |A2| ≤ |A1| |δ

′| |A2| By definition of ≤

Θ, x1 : |A ′

1| ⊢ x1 : |A ′

1| By rule TVar

A ′

1 ≃ A1 Subderivation
A ′

1 ⇒ A1 →֒ C1 By the induction hypothesis
Θ, x1 : |A ′

1| ⊢ C1[x1] : |A1|
′′

Θ, x1 : |A ′

1| ⊢ inj1 C1[x1] : (|A1| +1 |A2|) By rule T+iIntro

Θ, x1 : |A ′

1| ⊢ inj1 C1[x1] : (|A1| |δ
′| |A2|) By rule TSub

Θ ⊢ case(M, inj1 x1.inj1 C1[x1]) : (|A1| |δ
′| |A2|) By rule T+iElim

δ ′
⇒ δ →֒ C3 By Theorem 16

Θ ⊢ C3[case(M, inj1 x1.inj1 C1[x1])] : (|A1| |δ| |A2|)
′′

Θ ⊢ C3[case(M, inj1 x1.inj1 C1[x1])] : |(A1 δA2)|
︸ ︷︷ ︸

C[M]

By definition of type translation

(A ′

1 δ
′ A ′

2)⇒ (A1 δA2) →֒ C3[case([], inj1 x1.inj1 C1[x1])]
︸ ︷︷ ︸

C

By rule CoeCase1L

In the second case, suppose δ ′ ∈ {+?
2,+2}. Symmetric to the previous case, hence omitted.

In the last case, suppose δ ′ ∈ {+?, +∗

1,+∗

2,+}.

|A ′

1| ≤ |A ′

1| By Lemma 43 (Reflexivity of subtyping)
|A ′

2| ≤ |A ′

2| By Lemma 43 (Reflexivity of subtyping)
|δ ′| ≤ + By definition of ≤

|A ′

1| |δ
′| |A ′

2| ≤ |A ′

1| + |A ′

2| By definition of ≤

Θ ⊢ M : |(A ′

1 δ
′ A ′

2)| Suppose
Θ ⊢ M : (|A ′

1| |δ
′| |A ′

2|) By definition of type translation
Θ ⊢ M : (|A ′

1| + |A ′

2|) By rule TSub

Θ, x1 : |A ′

1| ⊢ x1 : |A ′

1| By rule TVar

A ′

1 ≃ A1 Subderivation
A ′

1 ⇒ A1 →֒ C1 By the induction hypothesis
Θ, x1 : |A ′

1| ⊢ C1[x1] : |A1|
′′

Θ, x1 : |A ′

1| ⊢ inj1 C1[x1] : (|A1| +1 |A2|) By rule T+iIntro

+?
1 ⇒ δ ′

→֒ C ′

1 By Theorem 16
Θ, x1 : |A ′

1| ⊢ C ′

1[inj1 C1[x1]] : (|A1| |δ
′| |A2|)

′′

Θ, x2 : |A ′

2| ⊢ x2 : |A ′

2| By rule TVar

A ′

2 ≃ A2 Subderivation
A ′

2 ⇒ A2 →֒ C2 By the induction hypothesis
Θ, x2 : |A ′

2| ⊢ C2[x2] : |A2|
′′

Θ, x2 : |A ′

2| ⊢ inj2 C2[x2] : (|A1| +2 |A2|) By rule T+iIntro

+?
2 ⇒ δ ′

→֒ C ′

2 By Theorem 16
Θ, x2 : |A ′

2| ⊢ C ′

2[inj2 C2[x2]] : (|A1| |δ
′| |A2|)

′′

Θ ⊢ case(M, inj1 x1.C
′

1[inj1 C1[x1]], inj2 x2.C
′

2[inj2 C2[x2]])] : (|A1| |δ
′| |A2|) By rule T+Elim

δ ′
⇒ δ →֒ C3 By Theorem 16

Θ ⊢ C3[case(M, inj1 x1.C
′

1[inj1 C1[x1]], inj2 x2.C
′

2[inj2 C2[x2]])]] : (|A1| |δ| |A2|)
′′

Θ ⊢ C3[case(M, inj1 x1.C
′

1[inj1 C1[x1]], inj2 x2.C
′

2[inj2 C2[x2]])]] : |A1 δA2)|
︸ ︷︷ ︸

C[M]

By definition

46 2020/8/16

(A ′

1 δ
′ A ′

2)⇒ (A1 δA2) →֒ C3[case([], inj1 x1.C
′

1[inj1 C1[x1]], inj2 x2.C
′

2[inj2 C2[x2]])]]
︸ ︷︷ ︸

C

By rule CoeCase2

• Case A
′

1 ≃ A1 A
′

2 ≃ A2

(A
′

1 → A
′

2)
︸ ︷︷ ︸

A ′

≃ (A1 → A2)
︸ ︷︷ ︸

A

Θ, x : |A1| ⊢ x : |A1| By rule TVar

A ′

1 ≃ A1 Subderivation
A1 ≃ A ′

1 By Lemma 12 (Symmetry of Structural Equivalence)
A1 ⇒ A ′

1 →֒ C1 By the induction hypothesis
Θ, x : |A1| ⊢ C1[x] : |A

′

1|
′′

Θ ⊢ M : |(A ′

1 → A ′

2)| Suppose
Θ ⊢ M : (|A ′

1| → |A ′

2|) By definition of type translation
Θ, x : |A1| ⊢ M C1[x1] : |A

′

2| By rule T→Elim

A ′

2 ≃ A2 Subderivation
A ′

2 ⇒ A2 →֒ C2 By the induction hypothesis
Θ, x : |A1| ⊢ C2[M C1[x1]] : |A2|

′′

Θ ⊢ λx. C2[M C1[x1]] : (|A1| → |A2|) By rule T→Intro

Θ ⊢ λx. C2[M C1[x1]]
︸ ︷︷ ︸

C[M]

: |(A1 → A2)| By definition of type translation

(A ′

1 → A ′

2) ⇒ (A1 → A2) →֒ λx. C2[[] C1[x]]
︸ ︷︷ ︸

C

By rule Coe→

Theorem 9 (Translation soundness).
If Γ ⊢ e : A then there exists M such that Γ ⊢ e : A →֒ M and |Γ | ⊢ M : |A|.

Proof. By induction on the structure of the derivation of Γ ⊢ e : A.

• Case SVar: Apply rules STVar and TVar.

• Case Γ ⊢ e : A
′

A
′
❀ A

Γ ⊢ e : A
SCSub

Γ ⊢ e : A ′ Subderivation
Γ ⊢ e : A ′

→֒ M ′ By the induction hypothesis
|Γ | ⊢ M ′ : |A ′| ′′

A ′
❀ A Given

A ′ ≃ A By Lemma 17 (Directed consistency obeys Structural Equivalence)
A ′

⇒ A →֒ C By Theorem 17
|Γ | ⊢ C[M ′] : |A| ′′

Γ ⊢ e : A →֒ C[M ′] By rule STCSub

• Case SAnno: Use the induction hypothesis and apply rule STAnno.
• Case SUnitIntro: Apply rules STUnitIntro and TUnitIntro.
• Case SSumIntro: Use the induction hypothesis and apply rules STSumIntro and T+iIntro.
• Case SSumElim1: Use the induction hypothesis and apply rules STSumElim1 and T+iElim.
• Case SSumElim2: Use the induction hypothesis and apply rules STSumElim2 and T+Elim.
• Case S→Intro: Use the induction hypothesis and apply rules ST→Intro and T→Intro.
• Case S→Elim: Use the induction hypothesis and apply rules ST→Elim and T→Elim.

D.6.2 Precision

Theorem 11 depends on Lemma 60 (Cast insertion preserves precision), which uses a modified version of the translation that always inserts
casts, even safe ones. In effect, the modified translation does not have rule CoeSub and always uses rule CoeCast (Figure 12). It also inserts
safe casts C ′

1 and C ′

2, similar to CoeCase2, in rules *CoeCase1L and *CoeCase1R. See Figure 21.

Lemma 60 (Cast insertion preserves precision).
If δ ′

1 ⇒ δ ′

2 →֒ C ′ and δ1 ⇒ δ2 →֒ C
and δ ′

1 ⊑ δ1 and δ ′

2 ⊑ δ2 and M ′
4 M

then C ′[M ′] 4 C[M].

47 2020/8/16

δ ′
⇒ δ →֒ C Coercion C coerces sum |δ ′| to sum |δ|

|δ ′| 6≤ |δ|

δ
′
⇒ δ →֒ 〈|δ| ⇐ |δ

′
|〉[]

*CoeCast

A ′
⇒ A →֒ C Coercion C coerces target type |A ′| to |A|

Unit ⇒ Unit →֒ []
CoeUnit

A1 ⇒ A
′

1 →֒ C1 A
′

2 ⇒ A2 →֒ C2

(A
′

1 → A
′

2) ⇒ (A1 → A2) →֒ λx. C2

[

[] C1[x]
] Coe→

δ
′ ∈ {+

?
1, +1}

A
′

1 ⇒ A1 →֒ C1

+
?
1 ⇒ δ

′
→֒ C ′

1

δ
′
⇒ δ →֒ C3

(A
′

1 δ
′
A

′

2)⇒ (A1 δA2)

→֒ C3

[

case([], inj1 x1.C
′

1 [inj1 C1[x1])
]

*CoeCase1L

δ
′ ∈ {+

?
2,+2}

A
′

2 ⇒ A2 →֒ C2

+
?
2 ⇒ δ

′
→֒ C ′

2

δ
′
⇒ δ →֒ C3

(A
′

1 δ
′
A

′

2)⇒ (A1 δA2)

→֒ C3

[

case([], inj2 x2.C
′

2 [inj2 C2[x2])
]

*CoeCase1R

δ
′ ∈ {+

?
,+

∗

1,+
∗

2,+}

+
?
1 ⇒ δ

′
→֒ C ′

1

A
′

1 ⇒ A1 →֒ C1

+
?
2 ⇒ δ

′
→֒ C ′

2

A
′

2 ⇒ A2 →֒ C2 δ
′
⇒ δ →֒ C3

(A
′

1 δ
′
A

′

2) ⇒ (A1 δA2) →֒ C3

[

case([], inj1 x1.C
′

1[inj1 C1[x1]], inj2 x2.C
′

2[inj2 C2[x2]])
] CoeCase2

Figure 21. Part of the type-directed translation, modified to insert safe casts; differences highlighted

Proof. Note the following reasons for arriving at the result.

(a) If the translated sums are equal, that is, |δ ′

1| = |δ1| and |δ ′

2| = |δ2|, we have C ′ = C. (Casts are unique; in this context, this is immediate
because we are using a translation that generates casts even if they are safe, so there is only one rule, *CoeCast, that derives the judgment.)
Then the result follows from M ′

4 M and the definition of 4.
(b) If C ′ = 〈δ ′

2 ⇐ |δ ′

1|〉[] and C = 〈|δ2| ⇐ |δ1|〉[] and 〈δ ′

2 ⇐ δ ′

1〉 4 〈δ2 ⇐ δ1〉 then C ′[M ′] 4 C[M] by definition of 4 as M ′
4 M.

Proceed by case analysis on δ ′

1 ⊑ δ1 based on the reflexive, transitive closure of precision on sums.

• Cases +i ⊑ +i, +i ⊑ +?
i , +i ⊑ +∗

i , +?
i ⊑ +?

i , +∗

i ⊑ +∗

i : In these cases, |δ ′

1| = |δ1| = +i.
Proceed by case analysis on δ ′

2 ⊑ δ2.

Cases +i ⊑ +i, +i ⊑ +?
i , +i ⊑ +∗

i , +?
i ⊑ +?

i , +∗

i ⊑ +∗

i :
Here, |δ ′

2| = |δ2| = +i.
The translated sums are equal: go to (a) above.
Cases +i ⊑ +?, +?

i ⊑ +?, +∗

i ⊑ +?:
Here, |δ ′

2| = +i and |δ2| = +.
We have 〈+i ⇐ +i〉 4 〈+ ⇐ +i〉. Go to (b).

Cases + ⊑ +, + ⊑ +?, +? ⊑ +?:
Here, |δ ′

2| = |δ2| = +. Go to (a) above.

Cases +k ⊑ +k, +k ⊑ +?
k, +k ⊑ +∗

k, +?
k ⊑ +?

k, +∗

k ⊑ +∗

k:
Here, |δ ′

2| = |δ2| = +k. Go to (a).

Cases +k ⊑ +?, +?
k ⊑ +?, +∗

k ⊑ +?:
Here, |δ ′

2| = +k and |δ2| = +.
We have 〈+k ⇐ +i〉 4 〈+ ⇐ +i〉. Go to (b).

• Cases +i ⊑ +?, +?
i ⊑ +?, +∗

i ⊑ +?: In these cases, |δ ′

1| = +i and |δ1| = +. Proceed by case analysis on δ ′

2 ⊑ δ2.

Cases +i ⊑ +i, +i ⊑ +?
i , +i ⊑ +∗

i , +?
i ⊑ +?

i , +∗

i ⊑ +∗

i : We have 〈+i ⇐ +i〉 4 〈+i ⇐ +〉. Go to (b).

Cases +i ⊑ +?, +?
i ⊑ +?, +∗

i ⊑ +?: We have 〈+i ⇐ +i〉 4 〈+ ⇐ +〉. Go to (b).

Cases + ⊑ +, + ⊑ +?, +? ⊑ +?: We have 〈+ ⇐ +i〉 4 〈+ ⇐ +〉. Go to (b).

Cases +k ⊑ +k, +k ⊑ +?
k, +k ⊑ +∗

k, +?
k ⊑ +?

k, +∗

k ⊑ +∗

k: We have 〈+k ⇐ +i〉 4 〈+k ⇐ +〉. Go to (b).

Cases +k ⊑ +?, +?
k ⊑ +?, +∗

k ⊑ +?: We have 〈+k ⇐ +i〉 4 〈+ ⇐ +〉. Go to (b).

• Cases + ⊑ +, + ⊑ +?, +? ⊑ +?: In these cases, |δ ′

1| = |δ1| = +. Proceed by case analysis on δ ′

2 ⊑ δ2.

Cases +i ⊑ +i, +i ⊑ +?
i , +i ⊑ +∗

i , +?
i ⊑ +?

i , +∗

i ⊑ +∗

i : Here, |δ ′

2| = |δ2| = +i. Go to (a).

Cases +i ⊑ +?, +?
i ⊑ +?, +∗

i ⊑ +?: We have 〈+i ⇐ +〉 4 〈+ ⇐ +〉. Go to (b).

Cases + ⊑ +, + ⊑ +?, +? ⊑ +?: Here, |δ ′

2| = |δ2| = +. Go to (a).

Cases +k ⊑ +k, +k ⊑ +?
k, +k ⊑ +∗

k, +?
k ⊑ +?

k, +∗

k ⊑ +∗

k: Here, |δ ′

2| = |δ2| = +k. Go to (a).

Cases +k ⊑ +?, +?
k ⊑ +?, +∗

k ⊑ +?: We have 〈+k ⇐ +〉 4 〈+ ⇐ +〉. Go to (b).

48 2020/8/16

Lemma 61 (Coercion preserves precision).
If A ′

1 ⇒ A ′

2 →֒ C ′ and A1 ⇒ A2 →֒ C
and A ′

1 ⊑ A1 and A ′

2 ⊑ A2 and M ′
4 M

then C ′[M ′] 4 C[M].

Proof. By induction on the structure of the derivation of A ′

1 ⇒ A ′

2 →֒ C ′.

• Case

Unit ⇒ Unit →֒ []
CoeUnit

Unit ⊑ A1 Given
Unit ⊑ A2 Given
A1 = Unit By Lemma 4 (Precision inversion)
A2 = Unit By Lemma 4 (Precision inversion)

Unit ⇒ Unit →֒ C Given
C = [] By inversion on CoeUnit

M ′
4 M Given

C ′[M ′] 4 C[M] By definition of C ′ and C

• Case A
′

12 ⇒ A
′

11 →֒ C ′

1 A
′

21 ⇒ A
′

22 →֒ C ′

2

(A
′

11 → A
′

21) ⇒ (A
′

12 → A
′

22) →֒ λx. C ′

2

[

[] C ′

1[x]
] Coe→

A ′

11 → A ′

21 ⊑ A1 Given
A1 = A11 → A21 By Lemma 4 (Precision inversion)
A ′

11 ⊑ A11
′′

A ′

21 ⊑ A21
′′

A ′

12 → A ′

22 ⊑ A2 Given
A2 = A12 → A22 By Lemma 4 (Precision inversion)
A ′

12 ⊑ A12
′′

A ′

22 ⊑ A22
′′

(A11 → A21)⇒ (A12 → A22) →֒ C Given
A12 ⇒ A11 →֒ C1 By inversion on Coe→

A21 ⇒ A22 →֒ C2
′′

C = λx. C2

[

[] C1[x]
]

′′

x 4 x By definition of 4
A ′

12 ⇒ A ′

11 →֒ C ′

1 Subderivation
C ′

1[x] 4 C1[x] By the induction hypothesis

M ′
4 M Given

M ′ C ′

1[x] 4 M C1[x] By definition of 4
A ′

21 ⇒ A ′

22 →֒ C ′

2 Subderivation
C ′

2

[

M ′ C ′

1[x]
]

4 C2

[

M C1[x]
]

By the induction hypothesis
λx. C ′

2

[

M ′ C ′

1[x]
]

4 λx. C2

[

M C1[x]
]

By definition of 4

• Case
δ
′

1 ∈ {+
?
1,+1}

A
′

11 ⇒ A
′

12 →֒ C ′

1

+
?
1 ⇒ δ

′

1 →֒ C ′

11

δ
′

1 ⇒ δ
′

2 →֒ C ′

3

(A
′

11 δ
′

1 A
′

21)⇒ (A
′

12 δ
′

2 A
′

22)

→֒ C ′

3

[

case([], inj1 x1.C
′

11[inj1 C
′

1[x1]])
]

CoeCase1L

49 2020/8/16

A ′

12 δ
′

2 A
′

22 ⊑ A2 Given
A2 = A12 δ2 A22 By Lemma 4 (Precision inversion)
A ′

12 ⊑ A12
′′

A ′

22 ⊑ A22
′′

δ ′

2 ⊑ δ2
′′

A ′

11 δ
′

1 A
′

21 ⊑ A1 Given
A1 = A11 δ1 A21 By Lemma 4 (Precision inversion)
A ′

11 ⊑ A11
′′

A ′

21 ⊑ A21
′′

δ ′

1 ⊑ δ1
′′

Since δ ′

1 ∈ {+?
1,+1} and δ ′

1 ⊑ δ1, by definition of ⊑ it follows that δ1 ∈ {+?
1,+1,+∗

1, +?} as well.
Consider the case when δ1 ∈ {+?

1,+1}.

(A11 δ1 A21) ⇒ (A12 δ2 A22) →֒ C Given
A11 ⇒ A12 →֒ C1 By inversion on CoeCase1L

+?
1 ⇒ δ1 →֒ C11

′′

δ1 ⇒ δ2 →֒ C3
′′

C = C3

[

case([], inj1 x1.C11[inj1 C1[x1]])
]

′′

x1 4 x1 By definition of 4
A ′

11 ⇒ A ′

12 →֒ C ′

1 Subderivation
C ′

1[x1] 4 C1[x1] By the induction hypothesis
inj1 C

′

1[x1] 4 inj1 C1[x1] By definition of 4
+?
1 ⇒ δ ′

1 →֒ C ′

11 Subderivation
+?
1 ⊑ +?

1 By definition of ⊑
C ′

11[inj1 C
′

1[x1]]
︸ ︷︷ ︸

M ′

1

4 C11[inj1 C1[x1]]
︸ ︷︷ ︸

M1

By Lemma 60 (Cast insertion preserves precision)

M ′
4 M Given

case(M
′
, inj1 x1.M

′

1)
︸ ︷︷ ︸

M ′

0

4 case(M, inj1 x1.M1)
︸ ︷︷ ︸

M0

By definition of 4

δ ′

1 ⇒ δ ′

2 →֒ C ′

3 Subderivation
C ′

3[M
′

0] 4 C3[M0] By Lemma 60 (Cast insertion preserves precision)

Consider the case when δ1 ∈ {+∗

1, +?}.

(A11 δ1 A21)⇒ (A12 δ2 A22) →֒ C Given
A11 ⇒ A12 →֒ C1 By inversion on CoeCase2

A21 ⇒ A22 →֒ C2
′′

δ1 ⇒ δ2 →֒ C3
′′

+?
1 ⇒ δ1 →֒ C11

′′

+?
2 ⇒ δ1 →֒ C21

′′

C = C3

[

case([], inj1 x1.C11[inj1 C1[x1]], inj2 x2.C21[inj2 C2[x2]])
]

′′

x1 4 x1 By definition of 4
A ′

11 ⇒ A ′

12 →֒ C ′

1 Subderivation
C ′

1[x1] 4 C1[x1] By the induction hypothesis
inj1 C

′

1[x1] 4 inj1 C1[x1] By definition of 4
+?
1 ⇒ δ ′

1 →֒ C ′

11 Subderivation
+?
1 ⊑ +?

1 By definition of ⊑
C ′

11[inj1 C
′

1[x1]]
︸ ︷︷ ︸

M ′

1

4 C11[inj1 C1[x1]]
︸ ︷︷ ︸

M1

By Lemma 60 (Cast insertion preserves precision)

M ′
4 M Given

case(M
′
, inj1 x1.M

′

1)
︸ ︷︷ ︸

M ′

0

4 case(M, inj1 x1.M1, inj2 x2.C21[inj2 C2[x2]])
︸ ︷︷ ︸

M0

By definition of 4

δ ′

1 ⇒ δ ′

2 →֒ C ′

3 Subderivation
C ′

3[M
′

0] 4 C3[M0] By Lemma 60 (Cast insertion preserves precision)

• Case CoeCase1R: Symmetric to the CoeCase1L case.

50 2020/8/16

• Case

δ
′

1 ∈ {+
?
,+

∗

1,+
∗

2, +}

+
?
1 ⇒ δ

′

1 →֒ C ′

11

A
′

11 ⇒ A
′

12 →֒ C ′

1

+
?
2 ⇒ δ

′

1 →֒ C ′

21

A
′

21 ⇒ A
′

22 →֒ C ′

2 δ
′

1 ⇒ δ
′

2 →֒ C ′

3

(A
′

11 δ
′

1 A
′

21) ⇒ (A
′

12 δ
′

2 A
′

22) →֒ C ′

3

[

case([], inj1 x1.C
′

11[inj1 C
′

1[x1]], inj2 x2.C
′

21[inj2 C
′

2[x2]])
] CoeCase2

A ′

12 δ
′

2 A
′

22 ⊑ A2 Given
A2 = A12 δ2 A22 By Lemma 4 (Precision inversion)
A ′

12 ⊑ A12
′′

A ′

22 ⊑ A22
′′

δ ′

2 ⊑ δ2
′′

A ′

11 δ
′

1 A
′

21 ⊑ A1 Given
A1 = A11 δ1 A21 By Lemma 4 (Precision inversion)
A ′

11 ⊑ A11
′′

A ′

21 ⊑ A21
′′

δ ′

1 ⊑ δ1
′′

Since δ ′

1 ∈ {+?, +∗

1,+∗

2,+} and δ ′

1 ⊑ δ1, by definition of ⊑ it follows that δ1 ∈ {+?, +∗

1,+∗

2,+} as well.

(A11 δ1 A21)⇒ (A12 δ2 A22) →֒ C Given
A11 ⇒ A12 →֒ C1 By inversion on CoeCase2

A21 ⇒ A22 →֒ C2
′′

δ1 ⇒ δ2 →֒ C3
′′

+?
1 ⇒ δ1 →֒ C11

′′

+?
2 ⇒ δ1 →֒ C21

′′

C = C3

[

case([], inj1 x1.C11[inj1 C1[x1]], inj2 x2.C21[inj2 C2[x2]])
]

′′

x1 4 x1 By definition of 4
A ′

11 ⇒ A ′

12 →֒ C ′

1 Subderivation
C ′

1[x1] 4 C1[x1] By the induction hypothesis
inj1 C

′

1[x1] 4 inj1 C1[x1] By definition of 4
+?
1 ⇒ δ ′

1 →֒ C ′

11 Subderivation
+?
1 ⊑ +?

1 By definition of ⊑
C ′

11[inj1 C
′

1[x1]]
︸ ︷︷ ︸

M ′

1

4 C11[inj1 C1[x1]]
︸ ︷︷ ︸

M1

By Lemma 60 (Cast insertion preserves precision)

x2 4 x2 By definition of 4
A ′

21 ⇒ A ′

22 →֒ C ′

2 Subderivation
C ′

2[x2] 4 C2[x2] By the induction hypothesis
inj2 C

′

2[x2] 4 inj2 C2[x2] By definition of 4
+?
2 ⇒ δ ′

1 →֒ C ′

21 Subderivation
+?
2 ⊑ +?

2 By definition of ⊑
C ′

21[inj2 C
′

2[x2]]
︸ ︷︷ ︸

M ′

2

4 C21[inj2 C2[x2]]
︸ ︷︷ ︸

M2

By Lemma 60 (Cast insertion preserves precision)

M ′
4 M Given

case(M
′
, inj1 x1.M

′

1, inj2 x2.M
′

2)
︸ ︷︷ ︸

M ′

0

4 case(M, inj1 x1.M1, inj2 x2.M2)
︸ ︷︷ ︸

M0

By definition of 4

δ ′

1 ⇒ δ ′

2 →֒ C ′

3 Subderivation
C ′

3[M
′

0] 4 C3[M0] By Lemma 60 (Cast insertion preserves precision)

Theorem 11 (Translation preserves precision).
Suppose Γ ′ ⊑ Γ and e ′ ⊑ e.

1. If Γ ′ ⊢ e ′
⇐ A ′ and Γ ⊢ e ⇐ A and A ′ ⊑ A then

Γ ′ ⊢ e ′ : A ′
→֒ M ′ and Γ ⊢ e : A →֒ M where M ′

4 M.
2. If Γ ′ ⊢ e ′

⇒ A ′ and Γ ⊢ e ⇒ A then Γ ′ ⊢ e ′ : A ′
→֒ M ′

and Γ ⊢ e : A →֒ M where A ′ ⊑ A and M ′
4 M.

Proof. By induction on the structure of the derivation of Γ ′ ⊢ e ′
⇐ A ′ (part 1) or Γ ′ ⊢ e ′

⇒ A ′ (part 2).

51 2020/8/16

• Case Γ
′
(x) = A

′

Γ
′ ⊢ x ⇒ A

′
SynVar

x ⊑ e Given
e = x From definition of ⊑

Γ ⊢ x ⇐ A Given
Γ(x) = A By inversion on SynVar

Γ ′(x) = A ′ Premise
Z Γ ′ ⊢ x : A ′

→֒ x By rule STVar

Z Γ ⊢ x : A →֒ x By rule STVar

Z x 4 x By definition of 4

• Case Γ
′ ⊢ e

′
⇒ A

′

0 A
′

0 ❀ A
′

Γ
′ ⊢ e

′
⇐ A

′
ChkCSub

By inversion on Γ ⊢ e ⇐ A, rule ChkCSub was applied.

Γ ⊢ e ⇒ A0 By inversion on ChkCSub

A0 ❀ A ′′

Γ ′ ⊢ e ′
⇒ A ′

0 Subderivation
Γ ′ ⊢ e ′ : A ′

0 →֒ M ′

0 By the induction hypothesis
Γ ⊢ e : A0 →֒ M0

′′

A ′

0 ⊑ A0
′′

M ′

0 4 M0
′′

A ′

0 ❀ A ′ Subderivation
A ′

0 ≃ A ′ By Lemma 17 (Directed consistency obeys Structural Equivalence)
A0 ≃ A By Lemma 17 (Directed consistency obeys Structural Equivalence)
A ′

0 ⇒ A ′
→֒ C ′ By Theorem 17

A0 ⇒ A →֒ C By Theorem 17

A ′ ⊑ A Given
Z C ′[M ′

0] 4 C[M0] By Lemma 61 (Coercion preserves precision)
Z Γ ′ ⊢ e ′ : A ′

→֒ C ′[M ′

0] By rule STCSub

Z Γ ⊢ e : A →֒ C[M0] By rule STCSub

• Case Γ
′ ⊢ e

′

0 ⇐ A
′

Γ
′ ⊢ (e

′

0 :: A
′
) ⇒ A

′
SynAnno

(e ′

0 :: A ′) ⊑ e Given
e = (e0 :: A) From definition of ⊑

e ′

0 ⊑ e0
′′

Z A ′ ⊑ A ′′

Γ ⊢ (e0 :: A) ⇒ A Given
Γ ⊢ e0 ⇐ A By inversion on rule SynAnno

Γ ′ ⊑ Γ Given
Γ ′ ⊢ e ′

0 ⇐ A ′ Subderivation
Γ ′ ⊢ e ′

0 : A ′
→֒ M ′ By the induction hypothesis

Γ ⊢ e0 : A →֒ M ′′

Z M ′
4 M ′′

Z Γ ′ ⊢ (e ′

0 :: A ′) : A ′
→֒ M ′ By rule STAnno

Z Γ ⊢ (e0 :: A) : A →֒ M By rule STAnno

• Case

Γ
′ ⊢ () ⇐ Unit

ChkUnitIntro

52 2020/8/16

() ⊑ e Given
e = () From definition of ⊑

Γ ⊢ () ⇐ A Given
A = Unit By inversion on ChkUnitIntro

Z Γ ′ ⊢ () : Unit →֒ () By rule STUnitIntro

Z Γ ⊢ () : Unit →֒ () By rule STUnitIntro

Z () 4 () By definition of 4

• Case
Γ
′ ⊢ e

′

0 ⇐ A
′

i +
?
i ≤ δ

′

Γ
′ ⊢ (inji e

′

0) ⇐ (A
′

1 δ
′
A

′

2)
ChkSumIntro

inji e
′

0 ⊑ e Given
e = inji e0 From definition of ⊑

e ′

0 ⊑ e0
′′

Γ ⊢ (inji e0) ⇐ A Given
Γ ⊢ e0 ⇐ Ai By inversion on ChkSumIntro

A = A1 δA2
′′

+?
i ≤ δ ′′

A ′

1 δ
′ A ′

2 ⊑ A1 δA2 Given
A ′

1 ⊑ A1 From definition of ⊑
A ′

2 ⊑ A2
′′

+?
i ⊑ +?

i By definition of ⊑
A ′

1 +?
i A

′

2 ⊑ A1 +?
i A2 By definition of ⊑

Γ ′ ⊢ e ′

0 ⇐ A ′

i Subderivation
Γ ′ ⊢ e ′

0 : A ′

i →֒ M ′

0 By the induction hypothesis
Γ ⊢ e0 : Ai →֒ M0

′′

M ′

0 4 M0
′′

Γ ′ ⊢ (inji e
′

0) : (A
′

1 +?
i A

′

2) →֒ (inji M
′

0) By rule STSumIntro

Γ ⊢ (inji e0) : (A1 +?
i A2) →֒ (inji M0) By rule STSumIntro

inji M
′

0 4 inji M0 By definition of 4

A ′

1 ≤ A ′

1 By Lemma 2 (Reflexivity of subtyping)
A1 ≤ A1 By Lemma 2 (Reflexivity of subtyping)
A ′

2 ≤ A ′

2 By Lemma 2 (Reflexivity of subtyping)
A2 ≤ A2 By Lemma 2 (Reflexivity of subtyping)

A ′

1 +?
i A

′

2 ≤ A ′

1 δ
′ A ′

2 By definition of ≤
A1 +?

i A2 ≤ A1 δA2 By definition of ≤
A ′

1 +?
i A

′

2 ❀ A ′

1 δ
′ A ′

2 By Lemma 8 (Subtyping obeys directed consistency)
A1 +?

i A2 ❀ A1 δA2 By Lemma 8 (Subtyping obeys directed consistency)

A ′

1 +?
i A

′

2 ≃ A ′

1 δ
′ A ′

2 By Lemma 17 (Directed consistency obeys Structural Equivalence)
A1 +?

i A2 ≃ A1 δA2 By Lemma 17 (Directed consistency obeys Structural Equivalence)
A ′

1 +?
i A

′

2 ⇒ A ′

1 δ
′ A ′

2 →֒ C ′ By Theorem 17
A1 +?

i A2 ⇒ A1 δA2 →֒ C By Theorem 17

Z Γ ′ ⊢ (inji e
′

0) : (A
′

1 δ
′ A ′

2) →֒ C ′[inji M
′

0] By rule STCSub

Z Γ ⊢ (inji e0) : (A1 δA2) →֒ C[inji M0] By rule STCSub

Z C ′[inji M
′

0] 4 C[inji M0] By Lemma 61 (Coercion preserves precision)

• Case Γ
′ ⊢ e

′

0 ⇒ (A
′

1 δ
′
A

′

2)

δ
′
⇒⇒ +

∗

i Γ
′
, x : A

′

i ⊢ e
′

i ⇐ A
′

Γ
′ ⊢ case(e

′

0, inji x.e
′

i) ⇐ A
′

ChkSumElim1

53 2020/8/16

case(e ′

0, inji x.e
′

i) ⊑ e Given
e = case(e0, inji x.ei) From definition of ⊑

e ′

0 ⊑ e0
′′

e ′

i ⊑ ei
′′

Γ ⊢ case(e0, inji x.ei) ⇐ A Given
Γ ⊢ e0 ⇒ (A1 δA2) By inversion on ChkSumElim1

Γ, x : Ai ⊢ ei ⇐ A ′′

δ⇒⇒+∗

i
′′

Γ ′ ⊑ Γ Given
Γ ′ ⊢ e ′

0 ⇒ (A ′

1 δ
′ A ′

2) Subderivation
Γ ′ ⊢ e ′

0 : (A ′

1 δ
′ A ′

2) →֒ M ′

0 By the induction hypothesis
Γ ⊢ e0 : (A1 δA2) →֒ M0

′′

A ′

1 δ
′ A ′

2 ⊑ A1 δA2
′′

M ′

0 4 M0
′′

A ′

1 ⊑ A1 From definition of ⊑
A ′

2 ⊑ A2
′′

+∗

i ⊑ +∗

i By definition of ⊑
A ′

1 +∗

i A ′

2 ⊑ A1 +∗

i A2 By definition of ⊑

δ ′
⇒⇒+∗

i Subderivation
δ ′ ≤ +∗

i By Lemma 24 (⇒⇒ implies subsum)
δ ≤ +∗

i By Lemma 24 (⇒⇒ implies subsum)
A ′

1 ≤ A ′

1 By Lemma 2 (Reflexivity of subtyping)
A1 ≤ A1 By Lemma 2 (Reflexivity of subtyping)
A ′

2 ≤ A ′

2 By Lemma 2 (Reflexivity of subtyping)
A2 ≤ A2 By Lemma 2 (Reflexivity of subtyping)

A ′

1 δ
′ A ′

2 ≤ A ′

1 +∗

i A ′

2 By definition of ≤
A1 δA2 ≤ A1 +∗

i A2 By definition of ≤
A ′

1 δ
′ A ′

2 ❀ A ′

1 +∗

i A ′

2 By Lemma 8 (Subtyping obeys directed consistency)
A1 δA2 ❀ A1 +∗

i A2 By Lemma 8 (Subtyping obeys directed consistency)

A ′

1 δ
′ A ′

2 ≃ A ′

1 +∗

i A ′

2 By Lemma 17 (Directed consistency obeys Structural Equivalence)
A1 δA2 ≃ A1 +∗

i A2 By Lemma 17 (Directed consistency obeys Structural Equivalence)
A ′

1 δ
′ A ′

2 ⇒ A ′

1 +∗

i A ′

2 →֒ C ′ By Theorem 17
A1 δA2 ⇒ A1 +∗

i A2 →֒ C By Theorem 17
Γ ′ ⊢ e ′

0 : (A ′

1 +∗

i A ′

2) →֒ C ′[M ′

0] By rule STCSub

Γ ⊢ e0 : (A1 +∗

i A2) →֒ C[M0] By rule STCSub

C ′[M ′

0] 4 C[M0] By Lemma 61 (Coercion preserves precision)

A ′ ⊑ A Given
Γ ′, x : A ′

i ⊑ Γ, x : Ai By definition of ⊑
Γ ′, x : A ′

i ⊢ e ′

i ⇐ A ′ Subderivation
Γ ′, x : A ′

i ⊢ e ′

i : A
′
→֒ M ′

i By the induction hypothesis
Γ, x : Ai ⊢ ei : A →֒ Mi

′′

M ′

i 4 Mi
′′

Z Γ ′ ⊢ e ′ : A ′
→֒ case(C ′

[M
′

0], inji x.M
′

i)
︸ ︷︷ ︸

M ′

By rule STSumElim1

Z Γ ⊢ e : A →֒ case(C[M0], inji x.Mi)
︸ ︷︷ ︸

M

By rule STSumElim1

Z M ′
4 M By definition of 4

• Case ChkSumElim2: Similar to the ChkSumElim1 case, hence omitted.

• Case Γ
′
, x : A

′

1 ⊢ e
′

0 ⇐ A
′

2

Γ
′ ⊢ (λx. e

′

0) ⇐ (A
′

1 → A
′

2)
Chk→Intro

54 2020/8/16

λx. e ′

0 ⊑ e Given
e = λx. e0 From definition of ⊑

e ′

0 ⊑ e0
′′

Γ ⊢ (λx. e0) ⇐ A Given
Γ, x : A1 ⊢ e0 ⇐ A2 By inversion on Chk→Intro

A = A1 → A2
′′

A ′

1 → A ′

2 ⊑ A1 → A2 Given
A ′

1 ⊑ A1 From definition of ⊑
A ′

2 ⊑ A2
′′

Γ ′ ⊑ Γ Given
Γ ′, x : A ′

1 ⊑ Γ, x : A1 By definition of ⊑
Γ ′, x : A ′

1 ⊢ e ′

0 ⇐ A ′

2 Subderivation
Γ ′, x : A ′

1 ⊢ e ′

0 : A ′

2 →֒ M ′

0 By the induction hypothesis
Γ, x : A1 ⊢ e0 : A2 →֒ M0

′′

M ′

0 4 M0
′′

Z Γ ′ ⊢ (λx. e ′

0) : (A
′

1 → A ′

2) →֒ (λx.M ′

0) By rule ST→Intro

Z Γ ⊢ (λx. e0) : (A1 → A2) →֒ (λx.M0) By rule ST→Intro

Z λx.M ′

0 4 λx.M0 By definition of 4

• Case Γ
′ ⊢ e

′

1 ⇒ (A
′

0 → A
′
) Γ

′ ⊢ e
′

2 ⇐ A
′

0

Γ
′ ⊢ (e

′

1 e
′

2) ⇒ A
′

Syn→Elim

e ′

1 e
′

2 ⊑ e Given
e = e1 e2 From definition of ⊑

e ′

1 ⊑ e1
′′

e ′

2 ⊑ e2
′′

Γ ⊢ (e1 e2) ⇐ A Given
Γ ⊢ e1 ⇒ (A0 → A) By inversion on Syn→Elim

Γ ⊢ e2 ⇐ A0
′′

Γ ′ ⊑ Γ Given
Γ ′ ⊢ e ′

1 ⇒ (A ′

0 → A ′) Subderivation
Γ ′ ⊢ e ′

1 : (A ′

0 → A ′) →֒ M ′

1 By the induction hypothesis
Γ ⊢ e1 : (A0 → A) →֒ M1

′′

A ′

0 → A ′ ⊑ A0 → A ′′

M ′

1 4 M1
′′

Z A ′ ⊑ A From definition of ⊑
A ′

0 ⊑ A0
′′

Γ ′ ⊢ e ′

2 ⇐ A ′

0 Subderivation
Γ ′ ⊢ e ′

2 : A ′

0 →֒ M ′

2 By the induction hypothesis
Γ ⊢ e2 : A0 →֒ M2

′′

M ′

2 4 M2
′′

Z Γ ′ ⊢ (e ′

1 e
′

2) : A
′
→֒ (M ′

1 M
′

2) By rule ST→Intro

Z Γ ⊢ (e1 e2) : A →֒ (M1 M2) By rule ST→Intro

Z M ′

1 M
′

2 4 M1 M2 By definition of 4

D.7 Static programs don’t go wrong

We write Γ |V for Γ restricted to the set of variables V .

Theorem 18 (Static programs don’t go wrong).
If Γ ⊢ e ⇐ A by a static derivation then Γ |FV(e) ⊢ e : A →֒ M and, for all M ′ such that M 7→∗ M ′, it is the case that M ′ free.

Proof. Apply Theorem 19 and Theorem 10 to show M free.
The result follows by induction on the number of steps in M 7→∗ M ′, using Theorem 8.

D.7.1 Static derivations

Definition 2. We say that a derivation of Γ ⊢ e ⇐ A or Γ ⊢ e ⇒ A is a static derivation if, for all subderivations deriving checking or
synthesis judgments, the types checked or synthesized are static.

55 2020/8/16

Note. If a derivation is static, then all of its subderivations must be static.

Lemma 62 (Context thinning).
If y /∈ FV(e) then:

1. If Γ, y : A ′ ⊢ e ⇐ A then Γ ⊢ e ⇐ A.
2. If Γ, y : A ′ ⊢ e ⇒ A then Γ ⊢ e ⇒ A.

Proof. By induction on the structure of the given derivation.

• Case
(Γ, y : A

′
)(x) = A

Γ, y : A
′ ⊢ x ⇒ A

SynVar

y 6= x Since y /∈ FV(x)

(Γ, y : A ′)(x) = A Premise
Γ(x) = A By definition

Γ ⊢ x ⇒ A By rule SynVar

• Case ChkCSub: Use the induction hypothesis and apply rule ChkCSub.
• Case SynAnno: Use the induction hypothesis, and apply rule SynAnno.
• Case ChkUnitIntro: Apply rule ChkUnitIntro.
• Case ChkSumIntro: Use the induction hypothesis, the definition of FV(−), and apply rule ChkSumIntro.
• Case ChkSumElim1: Use the induction hypothesis, the definition of FV(−), and apply rule ChkSumElim1.
• Case ChkSumElim2: Use the induction hypothesis, the definition of FV(−), and apply rule ChkSumElim2.
• Case Chk→Intro: Use the induction hypothesis, the definition of FV(−), and apply rule Chk→Intro.
• Case Syn→Elim: Use the induction hypothesis, the definition of FV(−), and apply rule Syn→Elim.

Corollary 63 (Context support).

1. If Γ ⊢ e ⇐ A then Γ |FV(e) ⊢ e ⇐ A.
2. If Γ ⊢ e ⇒ A then Γ |FV(e) ⊢ e ⇒ A.

Proof. By induction on
∣

∣dom(Γ) \ FV(e)
∣

∣.
If dom(Γ) = FV(e), then Γ = Γ |FV(e) so we already have the result.
Otherwise, use the induction hypothesis, and apply Lemma 62 (Context thinning).

Theorem 19 (Static subformula).

1. If Γ ⊢ e ⇐ A by a static derivation then ΓS ⊢ eS
⇐ AS where ΓS = Γ |FV(e), e

S = e, and AS = A.

2. If Γ ⊢ e ⇒ A by a static derivation then ΓS ⊢ eS
⇒ AS where ΓS = Γ |FV(e), e

S = e, and AS = A.

Proof. By induction on the height of the given derivation.
Since Γ ⊢ e ⇐ A and Γ ⊢ e ⇒ A by static derivations, all occurrences of types in checking and synthesizing positions are static,

including A. Therefore, AS = A already holds.
Applying Corollary 63 individually to Γ ⊢ e ⇐ AS and Γ ⊢ e ⇒ AS produces the derivations Γ |FV(e) ⊢ e ⇐ AS and Γ |FV(e) ⊢ e ⇒ AS

respectively.
Note that Γ |FV(e) ⊢ e ⇐ AS and Γ |FV(e) ⊢ e ⇒ AS are also static derivations.
All cases are then immediate by the induction hypothesis and applying the relevant rule.

D.7.2 Static translations are free of casts and match failures

Notation. We write M free to denote that the target term M contains no casts or matchfails.

Lemma 64 (Subsums don’t need casts).

1. If +?
i ≤ δS and +?

i ⇒ δS
→֒ C then C = [].

2. If +i ≤ +∗

i and +i ⇒ +∗

i →֒ C then C = [].

Proof.

1. From definition of subtyping, it is either the case that δS = +i or δS = +. In both cases, by definition of subtyping, |+?
i | = +i ≤ |δS|. By

inversion on +?
i ⇒ δS

→֒ C, either rule CoeSub or CoeCast was applied. If rule CoeCast was applied then +i 6≤ |δS|, a contradiction. If
rule CoeSub was applied, then indeed C = [].

2. By definition of subtyping, |+i| = +i ≤ +i = |+∗

i |. By inversion on +i ⇒ +∗

i →֒ C, either rule CoeSub or CoeCast was applied. If rule
CoeCast was applied then +i 6≤ +i, a contradiction. If rule CoeSub was applied, then indeed C = [].

Lemma 65 (Gradual sums in static don’t need casts).

56 2020/8/16

1. If AS

11 +?
i A

S

21 ≤ AS

12 δ
S AS

22 and AS

11 +?
i A

S

21 ⇒ AS

12 δ
S AS

22 →֒ C and M free then C[M] free.

2. If AS

11 +i A
S

21 ≤ AS

12 +∗

i AS

22 and AS

11 +i A
S

21 ⇒ AS

12 +∗

i AS

22 →֒ C and M free then C[M] free.

Proof.

1. AS

11 +?
i A

S

21 ⇒ AS

12 δ
S AS

22 →֒ C Given
AS

i1 ⇒ AS

i2 →֒ Ci By inversion on CoeCase1L or CoeCase1R

+?
i ⇒ δS

→֒ C3
′′

C = C3

[

case([], inji xi.inji Ci[xi])
]

′′

AS

11 +?
i A

S

21 ≤ AS

12 δ
S AS

22 Given
AS

i1 ≤ AS

i2 By Lemma 1 (Subtyping inversion)
+?
i ≤ δS ′′

C3 = [] By Lemma 64 (Subsums don’t need casts)

M free Suppose
xi free By definition of free

Ci[xi] free By Lemma 67 (Static subtypes don’t need casts)
inji Ci[xi] free By definition of free

case(M, inji xi.inji Ci[xi]) free By definition of free

C3

[

case(M, inji xi.inji Ci[xi])
]

free By definition of C3

2. Similar to the proof for the previous statement, hence omitted.

Lemma 66 (Static sums don’t need casts).
If δS

0 ≤ δS and δS

0 ⇒ δS
→֒ C then C = [].

Proof. By definition of sum translation, |δS

0 | = δS

0 and |δS| = δS. Therefore, |δS

0 | ≤ |δS|. By inversion on δS

0 ⇒ δS
→֒ C, either rule CoeSub

or CoeCast was applied. If rule CoeCast was applied then |δS

0 | 6≤ |δS|, a contradiction. If rule CoeSub was applied, then indeed C = [].

Lemma 67 (Static subtypes don’t need casts).
If AS

0 ≤ AS and AS

0 ⇒ AS
→֒ C then C[M] free for any M free.

Proof. By induction on the structure of the derivation of AS

0 ⇒ AS
→֒ C.

• Case CoeUnit: Immediate by the definition of C = [].

• Case
A

S

12 ⇒ A
S

11 →֒ C1 A
S

21 ⇒ A
S

22 →֒ C2

(A
S

11 → A
S

21) ⇒ (A
S

12 → A
S

22) →֒ λx. C2

[

[] C1[x]
] Coe→

AS

11 → AS

21 ≤ AS

12 → AS

22 Given
AS

12 ≤ AS

11 By Lemma 1 (Subtyping inversion)
AS

21 ≤ AS

22
′′

x free By the definition of free

AS

12 ⇒ AS

11 →֒ C1 Subderivation
C1[x] free By the induction hypothesis

M free Suppose
M C1[x] free By the definition of free

AS

21 ⇒ AS

22 →֒ C2 Subderivation
C2

[

M C1[x]
]

free By the induction hypothesis
λx. C2

[

M C1[x]
]

free By the definition of free

• Case
A

S

11 ⇒ A
S

12 →֒ C1 +1 ⇒ δ
S
→֒ C3

(A
S

11 +1 A
S

21)⇒ (A
S

12 δ
S
A

S

22)

→֒ C3

[

case([], inj1 x1.inj1 C1[x1])
]

CoeCase1L

57 2020/8/16

AS

11 +1 A
S

21 ≤ AS

12 δ
S AS

22 Given
AS

11 ≤ AS

12 By Lemma 1 (Subtyping inversion)
AS

21 ≤ AS

22
′′

+1 ≤ δS ′′

+1 ⇒ δS
→֒ C3 Subderivation

C3 = [] By Lemma 66 (Static sums don’t need casts)

x1 free By the definition of free

AS

11 ⇒ AS

12 →֒ C1 Subderivation
C1[x1] free By the induction hypothesis
inj1 C1[x1] free By the definition of free

M free Suppose
case(M, inj1 x1.C1[x1]) free By the definition of free

C3

[

case(M, inj1 x1.C1[x1])
]

free By the definition of C3

• Case CoeCase1R: Symmetric to the CoeCase1L case, hence omitted.

• Case
+

?
1 ⇒ + →֒ C ′

1

A
S

11 ⇒ A
S

12 →֒ C1

+
?
2 ⇒ + →֒ C ′

2

A
S

21 ⇒ A
S

22 →֒ C2 + ⇒ δ
S
→֒ C3

(A
S

11 + A
S

21) ⇒ (A
S

12 δ
S
A

S

22) →֒ C3

[

case([], inj1 x1.C
′

1[inj1 C1[x1]], inj2 x2.C
′

2[inj2 C2[x2]])
] CoeCase2

AS

11 + AS

21 ≤ AS

12 δ
S AS

22 Given
AS

11 ≤ AS

12 By Lemma 1 (Subtyping inversion)
AS

21 ≤ AS

22
′′

+ ≤ δS ′′

+?
1 ⇒ + →֒ C ′

1 Subderivation
+?
2 ⇒ + →֒ C ′

2 Subderivation
+ ⇒ δS

→֒ C3 Subderivation
C ′

1 = [] By inversion on CoeSub

C ′

2 = [] By inversion on CoeSub

C3 = [] By Lemma 66 (Static sums don’t need casts)

x1 free By the definition of free

AS

11 ⇒ AS

12 →֒ C1 Subderivation
C1[x1] free By the induction hypothesis
inj1 C1[x1] free By the definition of free

C ′

1[inj1 C1[x1]] free By the definition of C ′

1

x2 free By the definition of free

AS

21 ⇒ AS

22 →֒ C2 Subderivation
C2[x2] free By the induction hypothesis
inj2 C2[x2] free By the definition of free

C ′

2[inj2 C2[x2]] free By the definition of C ′

2

M free Suppose
case(M, inj1 x1.C

′

1[inj1 C1[x1]], inj2 x2.C
′

2[inj2 C2[x2]]) free By the definition of free

C3

[

case(M, inj1 x1.C
′

1[inj1 C1[x1]], inj2 x2.C
′

2[inj2 C2[x2]])
]

free By definition of C3

Theorem 10 (Static derivations don’t have match failures).
If ΓS ⊢ eS

⇐ AS or ΓS ⊢ eS
⇒ AS

then there exists M such that ΓS ⊢ eS : AS
→֒ M

and M is free of casts and matchfail.

Proof. By induction on the structure of the given derivation.

• Case SynVar: Apply rule STVar. M = x is free of casts and matchfail.

• Case
Γ

S ⊢ e
S
⇒ A

S

0 A
S

0 ❀ A
S

Γ
S ⊢ e

S
⇐ A

S
ChkCSub

58 2020/8/16

ΓS ⊢ eS
⇒ AS

0 Subderivation
ΓS ⊢ eS : AS

0 →֒ M ′ By the induction hypothesis
M ′ free ′′

AS

0 ❀ AS Subderivation
AS

0 ≤ AS By Lemma 38 (Directed consistency for static types)
AS

0 ≃ AS By Lemma 15 (Subtyping obeys Structural Equivalence)
AS

0 ⇒ AS
→֒ C By Theorem 17

Z ΓS ⊢ eS : AS
→֒ C[M ′] By rule STCSub

Z C[M ′] free By Lemma 67 (Static subtypes don’t need casts)

• Case SynAnno: Use the induction hypothesis, the definition of free, and apply rule STAnno.
• Case ChkUnitIntro: Apply rule STUnitIntro. M = () is free of casts and matchfail.

• Case
Γ

S ⊢ e
S

i ⇐ A
S

i +
?
i ≤ δ

S

Γ
S ⊢ inji e

S

i ⇐ (A
S

1 δ
S
A

S

2)
ChkSumIntro

ΓS ⊢ eS

i ⇐ AS

i Subderivation
ΓS ⊢ eS

i : AS

i →֒ Mi By the induction hypothesis
Mi free ′′

AS

1 ≤ AS

1 By Lemma 2 (Reflexivity of subtyping)
AS

2 ≤ AS

2 By Lemma 2 (Reflexivity of subtyping)
+?
i ≤ δS Subderivation

AS

1 +?
i A

S

2 ≤ AS

1 δ
S AS

2 By definition of ≤
AS

1 +?
i A

S

2 ❀ AS

1 δ
S AS

2 By Lemma 8 (Subtyping obeys directed consistency)
AS

1 +?
i A

S

2 ≃ AS

1 δ
S AS

2 By Lemma 17 (Directed consistency obeys Structural Equivalence)
AS

1 +?
i A

S

2 ⇒ AS

1 δ
S AS

2 →֒ C By Theorem 17

ΓS ⊢ inji e
S

i : (AS

1 +?
i A

S

2) →֒ inji Mi By rule STSumIntro

Z ΓS ⊢ inji e
S

i : (AS

1 δ
S AS

2) →֒ C[inji Mi] By rule STCSub

Mi free By definition of free

Z C[inji Mi] free By Lemma 65 (Gradual sums in static don’t need casts)

• Case
Γ

S ⊢ e
S

0 ⇒ (A
S

1 δ
S
A

S

2)

δ
S
⇒⇒ +

∗

i Γ
S
, x : A

S

i ⊢ e
S

i ⇐ A
S

Γ
S ⊢ case(e

S

0, inji x.e
S

i) ⇐ A
S

ChkSumElim1

δS
⇒⇒+∗

i Subderivation
δS = +i By Lemma 33 (Static looseness, II)

AS

1 ≤ AS

1 By Lemma 2 (Reflexivity of subtyping)
AS

2 ≤ AS

2 By Lemma 2 (Reflexivity of subtyping)
δS ≤ +∗

i By definition of ≤
AS

1 δ
S AS

2 ≤ AS

1 +∗

i AS

2 By definition of ≤
AS

1 δ
S AS

2 ❀ AS

1 +∗

i AS

2 By Lemma 8 (Subtyping obeys directed consistency)
AS

1 δ
S AS

2 ≃ AS

1 +∗

i AS

2 By Lemma 17 (Directed consistency obeys Structural Equivalence)
AS

1 δ
S AS

2 ⇒ AS

1 +∗

i AS

2 →֒ C By Theorem 17

ΓS ⊢ eS

0 ⇒ (AS

1 δ
S AS

2) Subderivation
ΓS ⊢ eS

0 : (AS

1 δ
S AS

2) →֒ M0 By the induction hypothesis
M0 free ′′

ΓS ⊢ eS

0 : (AS

1 +∗

i AS

2) →֒ C[M0] By rule STCSub

C[M0] free By Lemma 65 (Gradual sums in static don’t need casts)

ΓS, x : AS

i ⊢ eS

i ⇐ AS Subderivation
ΓS, x : AS

i ⊢ eS

i : AS
→֒ Mi By the induction hypothesis

Mi free ′′

Z ΓS ⊢ case(eS

0, inji x.e
S

i) : A
S
→֒ case(C[M0], inji x.Mi) By rule STSumElim1

Z case(C[M0], inji x.Mi) free By definition of free

59 2020/8/16

• Case
Γ

S ⊢ e
S

0 ⇒ (A
S

1 δ
S
A

S

2)

δ
S
⇒⇒ +

Γ
S
, x1 : A

S

1 ⊢ e
S

1 ⇐ A
S

Γ
S
, x2 : A

S

2 ⊢ e
S

2 ⇐ A
S

Γ
S ⊢ case(e

S

0, inj1 x1.e
S

1, inj2 x2.e
S

2) ⇐ A
S

ChkSumElim2

AS

1 ≤ AS

1 By Lemma 2 (Reflexivity of subtyping)
AS

2 ≤ AS

2 By Lemma 2 (Reflexivity of subtyping)
δS ≤ + By Lemma 23 (All sums below +)

AS

1 δ
S AS

2 ≤ AS

1 + AS

2 By definition of ≤
AS

1 δ
S AS

2 ❀ AS

1 + AS

2 By Lemma 8 (Subtyping obeys directed consistency)
AS

1 δ
S AS

2 ≃ AS

1 + AS

2 By Lemma 17 (Directed consistency obeys Structural Equivalence)
AS

1 δ
S AS

2 ⇒ AS

1 + AS

2 →֒ C By Theorem 17

ΓS ⊢ eS

0 ⇒ (AS

1 δ
S AS

2) Subderivation
ΓS ⊢ eS

0 : (AS

1 δ
S AS

2) →֒ M0 By the induction hypothesis
M0 free ′′

ΓS ⊢ eS

0 : (AS

1 + AS

2) →֒ C[M0] By rule STCSub

C[M0] free By Lemma 67 (Static subtypes don’t need casts)

ΓS, x1 : AS

1 ⊢ eS

1 ⇐ AS Subderivation
ΓS, x1 : AS

1 ⊢ eS

1 : AS
→֒ M1 By the induction hypothesis

M1 free ′′

ΓS, x2 : AS

2 ⊢ eS

2 ⇐ AS Subderivation
ΓS, x2 : AS

2 ⊢ eS

2 : AS
→֒ M2 By the induction hypothesis

M2 free ′′

Z ΓS ⊢ case(eS

0, inj1 x1.e
S

1, inj2 x2.e
S

2) : A
S
→֒ case(C[M0], inj1 x1.M1, inj2 x2.M2) By rule STSumElim2

Z case(C[M0], inj1 x1.M1, inj2 x2.M2) free By definition of free

• Case Chk→Intro: Use the induction hypothesis, the definition of free, and apply rule ST→Intro.
• Case Syn→Elim: Use the induction hypothesis, the definition of free, and apply rule ST→Elim.

60 2020/8/16

	Introduction
	Overview
	Developing Typing and Subtyping
	Developing Precision

	Source Type System
	Subtyping and Precision
	Typing Rules

	Bidirectional Source Typing
	Static System
	Dynamic System
	Metatheory
	Example

	Target Language and Translation
	Target Syntax and Semantics
	Type-Directed Translation -3mu
	Target Precision
	Metatheory

	Related Work
	Future Work
	Dynamic System
	Omitted Definitions
	Differences from the Original Version
	Original, weak version of varying precision

	Proofs
	Source System
	Subtyping
	Precision
	Directed Consistency
	Structural Equivalence
	Decidability
	Equivalence of type assignment and bidirectional system

	Typability under varying precision
	Properties of the Static System
	Properties of the Dynamic System
	Target System
	Subtyping
	Values
	Typing and Evaluation Contexts
	Type Safety
	Precision

	Translation
	Soundness
	Precision

	Static programs don't go wrong
	Static derivations
	Static translations are free of casts and match failures

