CISC-102: Discrete Mathematics for Computing I

(Fall 2018)

Last Modified:

Education is not the filling of a pail, but the lighting of a fire. Plutarch.

Quick Links

Class Hours and Locations
Outline and Schedule

Course Instructor

David Rappaport
E-MAIL: daver AT cs dot queensu dot ca
OFFICE HOURS: Thursday 1:30-3:30
Or contact me after class or by e-mail to make an appointment.

Course Teaching Assistants

TA office hours will begin on Thursday September 13. All office hours will be held in Goodwin Hall room 241.
Tuesday office hours 12:30 - 18:30.
Wednesday office hours 10:00 - 12:00 and 13:00 - 19:00. Lunch break between 12:00 - 13:00
Thursday office hours 11:30 - 13:30 and 15:30 - 19:30. Note my office hours are 13:30-1530 in Goodwin 532

The following table lists all the teaching assistants and their office hours in Goodwin Hall room 241.

Name Day Time
Yuanhao Lou Tuesday 12:30 - 14:30
Sam McPhail Tuesday 14:30 - 16:30
Val Kobilaski Tuesday 16:30 - 18:30
Leo Toueg Wednesday 10:00 - 12:00
Rebecca Hisey Wednesday 13:00 - 15:00
Brandon White Wednesday 15:00 - 17:00
Anna Chulukov Wednesday 17:00 - 19:00
Daniel Pang Thursday 11:30 - 13:30
Matthew Eliot Thursday 15:30 - 17:30
Yiwen Feng Thursday 17:30 - 19:30

Class Hours and Locations

Classes will be held in the Biosciences Auditorium (also know as BIO 1101). You can get detailed instructions to find the class here.
Tuesday 9:30-10:30
Thursday 8:30-9:30
Friday 10:30-11:30


(required) Marc Lipson, Seymour Lipschutz, Schaum's Outline of Discrete Mathematics, McGraw-Hill Education (2009).

(optional) L. Lovász, J. Pelikán, K. Vesztergombi, Discrete Mathematics Elementary and Beyond, Springer (2003).

I use both of these books, but you should view the Schaum's notes as the only required book. They are both available in paperback, and the total cost of the two books is well under $100.

Intended Student Learning Outcomes

To complete this course students will demonstrate their ability to:
1. Understand standard Mathematics notation used in the field of Computing.
2. Recognize the difference between a proof and a counter example.
3. Able to formulate elementary proofs using mathematical induction.
4. Recognize comparative magnitudes of functions such as log(n), n2, 2n.
5. Ability to read and understand some elementary logical proofs.


Grades will be made up of, midterm quizzes and a final.
Three in class midterm quizzes, each worth 20%, total: 60%
Final exam: 40%
NOTE: A minimum of 50% must be obtained on the final exam to pass the course.
The quizzes will be scheduled as follows:
Quiz 1: Friday, October 12.
Quiz 2: Friday, November 2.
Quiz 3: Friday, November 23.
Please make every effort to be present for the midterm quizzes. It may be that you will be forced to miss a quiz for health, or other legitimate reasons. With my permission, you may miss a quiz. If you miss one or more quizzes then the marking scheme will be revised for you as follows:
1 missed - 2 quizzes 20% each and 60% final.
2 missed - 1 quiz 20%, and 80% final.
3 missed - 100% final.
If you get 49% or less on the final exam, then that will be your grade.

Calculator Policy

Calculators will not be needed nor will they be permitted at any of the quizzes or the final exam.

Grading Method

All components of this course will receive numerical percentage marks. The final grade you receive for the course will be derived by converting your numerical course average to a letter grade according to the Queen's grade conversion scale.
Numeric Range Letter Grade GPA
90-100 A+ 4.3
85-89 A 4.0
80-84 A- 3.7
77-79 B+ 3.3
73-76 B 3.0
70-72 B- 2.7
67-69 C+ 2.3
63-66 C 2.0
60-62 C- 1.7
57-59 D+ 1.3
53-56 D 1.0
50-52 D- 0.7
0-49 F 0

Location and Timing of Final Examinations

As noted in Academic Regulation 8.2.1, "the final examination in any class offered in a term or session (including Summer Term) must be written on the campus on which it was taken, at the end of the appropriate term or session at the time scheduled by the Examinations Office." The exam period is listed in the key dates prior to the start of the academic year in the Faculty of Arts and Science Academic Calendar and on the Office of the University Registrar's webpage. A detailed exam schedule for the Fall Term is posted before the Thanksgiving holiday; for the Winter Term it is posted the Friday before Reading Week, and for the Summer Term the window of dates is noted on the Arts and Science Online syllabus prior to the start of the course. Students should delay finalizing any travel plans until after the examination schedule has been posted. Exams will not be moved or deferred to accommodate employment, travel /holiday plans or flight reservations.


Homework will be assigned weekly. This work will not be collected for grading, rather, solutions to homework will be done in class. There will be four midterm quizzes that will be directly based on the homework assignments. Please see the grading scheme above.

Course Description

Calendar Description of CISC-102

Introduction to mathematical discourse and proof methods. Sets, functions, sequences, and relations. Properties of the integers. Induction. Equivalence relations. Linear and partial orderings.

This course is a direct prerequisite to CISC-203/3.0 (Discrete Mathematics for Computing II) CISC-204/3.0 (Logic in Computing) and a co- or pre-requisite to CISC-121/3.0.

This course is required in all Computing programs except COMA.

Course Syllabus

Mathematics plays an important role in many aspects of computer science. This course sets the stage for the type of mathematics that computer scientists rely on to produce effective software solutions. This course can be viewed as a language course, that is, you will be learning the language of mathematics. I will follow two books that cover similar material in distinctly different ways. Schaum's Notes (SN) are an excellent resource for a well organized source of course material. Discrete Mathematics Elementary and Beyond (DMEB) provides colour and motivation for the same material.
The course will consist of the following elements:

Notation and definitions and notational conventions: Using the language learning analogy this is equivalent to learning vocabulary and grammar and colloquialisms. SN will be the main source for this material.

Tricks and techniques: Sticking with the language learning analogy, this is equivalent to learning writing styles, problem solving methods. SN does a good job of presenting this. However, DMEB is better at providing lots of insight from experts. SN is a great guide for students, whereas DMEB comes straight from the experts in a more informal but also more insightful way.

Practice, practice, practice: This is the key to success. Doing exercises is the only way to absorb the material properly. You can't learn to play a sport, play an instrument, or how to be a good writer solely by reading a book. This material is no different.

Outline and Schedule

Topics. Chapter numbers are from SN. Topics from DMEB will be selected as the course progresses.

Sets (Chapter 1)
Relations (Chapter 2)
Functions (Chapter 3)
Logic (Chapter 4)
Counting Techniques (Chapter 5 and 6)
Integers and Induction (Chapter 11)
Patterns of Proof (PDF Handout) (Chapter 4)
The topics covered this term will be similar to last year (Fall 2017), but may differ slightly at times. You can see a fairly detailed record on last term's web page:
The following table will be updated as the term progresses.
Week 1
Introduction, Notation, Set Theory, Counting Problems
Notes for week 1 and week 2.
Tuesday, September 4
Thursday, September 6
Please read the lecture notes for week 1, the readings posted for homework, and work on homework 1 so that you finish it by next Thursday.
Homework 1

Friday, September 7

Week 2
Laws of Set Theory, Indexed Sets, Principle of Inclusion and Exclusion
Notes for week 2 and 3.
Tuesday, September 11
Thursday, September 13
Homework 2
Solutions Homework 1
Friday, September 14

Week 3
Mathematical Induction
Notes for week 3 and 4.
Tuesday, September 18
Thursday, September 20
Homework 3
Solutions Homework 2
Friday, September 21
Week 4
Notes for week 4 and 5.
Tuesday, September 25
Thursday, September 27
Solutions Homework 3
Homework 4
Friday, September 28
Week 5
Notes for week 5.
Tuesday, October 2
Thursday, October 4
Solutions Homework 4
Friday, October 5
Homework 5
Week 6
Integers, Primes
Notes for week 6.
Tuesday, October 9
Thursday, October 11
Friday, October 12
Quiz #1 based on homework 1, 2, 3, and 4.The quiz will be held in our classroom the Biosciences Auditorium (also know as BIO 1101) from 10:30-11:20. Please arrive a bit early so that we can start the quiz at 10:30 sharp. Late comers run the risk of not being admitted into the room. No calculators are permitted for this quiz, or any of the others.
Week 7
Prime numbers, G.C.D., L.C.M, Congruence Relations
Notes for week 7.
Tuesday, October 16
Homework 6
Thursday, October 18
Solutions Homework 5
Solutions Quiz 1
Friday, October 19
Week 8
Congruence Relations
Tuesday, October 23
Thursday, October 25
All office hours today are cancelled.
Solutions Homework 6
Friday, October 26
Week 9
Principles of Counting
Notes for week 9.
Tuesday, October 30
Homework 7
From now on I will do the solutions to homework every Tuesday morning.
Thursday, November 1

Friday, November 2
Quiz #2 based on homework 5, and 6.The quiz will be held in our classroom the Biosciences Auditorium (also know as BIO 1101) from 10:30-11:20. Please arrive a bit early so that we can start the quiz at 10:30 sharp. Late comers run the risk of not being admitted into the room. No calculators are permitted for this quiz, or any of the others.
Quiz #2

Week 10
Counting, Permutations, Combinations, Binomial Coefficients.
Notes for week 10.
Tuesday, November 6
Homework 8
Solutions Homework 7
Solutions to Quiz #2
Thursday, November 8

Friday, November 9
Class cancelled today due to Remembrance Day ceremonies.
Week 11
Pascal's Triangle, Propositional Logic
Notes for week 11.
Tuesday, November 12
Homework 9.
Solutions Homework 8
Thursday, November 14
Friday, November 15
Week 12
Tuesday, November 20
Thursday, November 22

Friday, November 23
Quiz #3 based on homework 7,8, and 9.

Week 13
Tuesday, November 27
Thursday, November 29

Friday, November 30

Accessibility Statement

Queen's is committed to an inclusive campus community with accessible goods, services, and facilities that respect the dignity and independence of persons with disabilities. This webpage is available in an accessible format or with appropriate communication supports upon request.
Please contact:
The Equity Office
B513 Mackintosh-Corry Hall
Phone: (613) 533-2563
Fax: (613) 533-2031

Academic Integrity

Queen's students, faculty, administrators and staff all have responsibilities for supporting and upholding the fundamental values of academic integrity. Academic integrity is constituted by the five core fundamental values of honesty, trust, fairness, respect and responsibility (see and by the quality of courage. These values and qualities are central to the building, nurturing and sustaining of an academic community in which all members of the community will thrive. Adherence to the values expressed through academic integrity forms a foundation for the "freedom of inquiry and exchange of ideas" essential to the intellectual life of the University. Students are responsible for familiarizing themselves with and adhering to the regulations concerning academic integrity. General information on academic integrity is available at Integrity@Queen's University, along with Faculty or School specific information. Departures from academic integrity include, but are not limited to, plagiarism, use of unauthorized materials, facilitation, forgery and falsification. Actions which contravene the regulation on academic integrity carry sanctions that can range from a warning, to loss of grades on an assignment, to failure of a course, to requirement to withdraw from the university.

Accommodation Statement

Queen's University is committed to achieving full accessibility for persons with disabilities. Part of this commitment includes arranging academic accommodations for students with disabilities to ensure they have an equitable opportunity to participate in all of their academic activities. If you are a student with a disability and think you may need accommodations, you are strongly encouraged to contact Student Wellness Services (SWS) and register as early as possible. For more information, including important deadlines, please visit the Student Wellness website at: